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Abstract: Microvasculature analysis in biomedical images is essential in the medical area to evaluate
diseases by extracting properties of blood vessels, such as relative blood flow or morphological
measurements such as diameter. Given the advantages of Laser Speckle Contrast Imaging (LSCI),
several studies have aimed to reduce inherent noise to distinguish between tissue and blood vessels
at higher depths. These studies have shown that computing Contrast Images (CIs) with Analysis
Windows (AWs) larger than standard sizes obtains better statistical estimators. The main issue is that
larger samples combine pixels of microvasculature with tissue regions, reducing the spatial resolution
of the CI. This work proposes using adaptive AWs of variable size and shape to calculate the features
required to train a segmentation model that discriminates between blood vessels and tissue in LSCI.
The obtained results show that it is possible to improve segmentation rates of blood vessels up to 45%
in high depths (≈900 µm) by extracting features adaptively. The main contribution of this work is
the experimentation with LSCI images under different depths and exposure times through adaptive
processing methods, furthering the understanding the performance of the different approaches under
these conditions. Results also suggest that it is possible to train a segmentation model to discriminate
between pixels belonging to blood vessels and those belonging to tissue. Therefore, an adaptive
feature extraction method may improve the quality of the features and thus increase the classification
rates of blood vessels in LSCI.

Keywords: adaptive processing; mathematical morphology; laser speckle contrast imaging; blood
vessel segmentation

1. Introduction

It is essential to visualize microvasculature within biological tissue because the vi-
sualization and location of blood vessels has several applications in the medical field;
it can help to diagnose and treat illnesses such as retinopathy or port-wine stain, mon-
itor perfusion around skin lesions, and assess the efficiency of photodynamic therapy,
among others [1–5]. Furthermore, surgeons in the medical area can use measurements
obtained from biomedical images as support in areas such as ophthalmology [1], derma-
tology [6], and neurosciences [7]. Measurements of blood vessels are essential to visualize
the microvasculature and blood flow. Currently, researchers are developing techniques
and computational algorithms to bring more precision to this task. Several methods for
microvasculature visualization have been developed, but most of them are costly because
of the required instrumentation and specialized medical machinery. The most common
techniques are Doppler fluxometry, optical computer tomography, and magnetic reso-
nance [7–11]. On the other hand, LSCI provides microvasculature visualization and high
spatial resolution with simple instrumentation [12], capturing the movement of a sensed
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object by a blurring pattern formed in a Raw Speckle Image (RSI). The blurring pattern is
studied through a CI to associate it with blood flow in tissue. Therefore, LSCI associates the
blood flow velocity with a contrast value. A point-to-point analysis of the RSI is required to
convert its grayscale values to contrast values. The process uses a squared analysis window
to compute statistical values of a sample in the image, reducing the spatial resolution of
the obtained CI. Loss of spatial resolution can be explained as a lack of contrast in the
boundaries between blood vessels and tissue, making it difficult to determine some blood
vessel characteristics, such as diameter. Current works on LSCI complement each other to
fully implement the method in clinical practice. The main problems addressed are spatial
resolution, high inherent noise in the CI, failure to satisfy ergodicity conditions, and the
compromise between noise attenuation and temporal resolution [13–15]. Several methods
have dealt with the loss of definition to improve the spatial resolution of the image, such
as temporal, spatio-temporal, or spatial algorithms. Further, the window used affects the
noise, since a square shape may not be ideal to compute a CI when blood vessels present
different morphologies and sizes. Among the existing problems in LSCI, the high noise in
the CI and the spatial resolution are addressed in this work.

The adaptive process of computing a contrast image aims to select a subset of pixels
for each analyzed pixel in the RSI. It seeks to improve the contrast between regions in the
CI by avoiding the combination of pixels between regions, obtaining more reliable statistics
to improve the spatial resolution and obtain less-noisy images [16]. Thus, we hypothesized
that using adaptive methods to compute features with pixels more representative of the
analyzed area to feed a machine learning algorithm could improve the segmentation of
blood vessels. The key contribution of this work is the analysis of adaptive feature extraction
methods with simple statistics for blood vessel segmentation and contrast recalculation.
Thus, it will improve blood vessel segmentation in LSCI and improve CI quality by reducing
noise and improving spatial resolution. In addition, a method for adaptive processing of
CI that considers the spatial relationship of pixels during adaptive structuring element
retrieval is proposed. In this way, we aim to extend the capabilities of current adaptive
processing methods to make them capable of improving CI even in small blood vessels.

2. Theoretical Framework

This section presents the theoretical framework required to understand the develop-
ment of the proposed algorithms; it is divided into two major parts: laser speckle contrast
imaging and image processing methods. The first part describes the methods to com-
pute the contrast representation from the raw speckle images, divided into traditional,
anisotropic, and adaptive. The second part introduces the state-of-the-art image processing
techniques and evaluation metrics used in this work.

2.1. Laser Speckle Contrast Imaging

When a coherent light source, such as a laser, illuminates an object containing dynamic
zones, the reflected and scattered light forms an oscillating pattern composed of bright and
dark points. Thus, when a camera integrates the laser light while the illuminated region
is moving, the speckles oscillate faster, creating a blurring pattern in the RSI. Therefore,
the blurring pattern is associated with movement of an object, and a noisy pattern is related
to a region with no movement. The study of the blurred pattern to locate and visualize
blood vessels in the RSI is performed through a contrast representation (Kp) calculated
using a sliding window W over the RSI by Equation (1) with values in the range [0, 1].
The variables σW and µW are the standard deviation and the mean, respectively, of the
neighboring adjacent pixels of p in a squared neighborhood.

Kp =
σW

µW (1)
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2.2. Traditional Methods in LSCI

In traditional methods, given a squared sample of pixels (W) around a pixel p, the con-
trast value represents how blurred the analyzed region is, and thus how much movement
or speed is in the sensed tissue. When movement is found, the intensity values in Wp are
closer, and thus the obtained contrast value is near 0, which is more likely to represent
a blood vessel. On the other hand, if no movement is found, the variance in Wp is high,
and therefore the contrast value is too; therefore, responses near to 1 are more related to
tissue regions [12]. Among the most-used traditional methods, we can find the Spatial Con-
trast (sK) [12], Temporal Contrast (tK), and the Averaged Spatial Contrast (asK) [17,18]. sK
processes one frame at a time by using a square analysis window of size d× d (Equation (2)).
An analysis window of 5× 5 is used to calculate CIs when the application requires more
spatial resolution, and an analysis window of 7× 7 is used when improved noise attenua-
tion is required [19]. The main advantage of sK is the temporal resolution since one frame
is required to obtain this CI. Nevertheless, when noise attenuation improvement is required
(e.g., deeper blood vessels), asK provides the best compromise between noise and spatial
resolution using 15 frames and a 5× 5 window [18].

sKx,y =

√
∑x+r

i=x−r ∑
y+r
j=y−r

1
d2 [RSI(i, j)− µs

x,y]
2

µs
x,y

(2)

where:

µs
x,y =

x+r

∑
i=x−r

y+r

∑
j=y−r

1
d2 RSI(i, j)

r =
d− 1

2
Finally, the tK defined by Equation (3) uses an anisotropic analysis window 1× n,

analyzing one pixel along n frames. The tK method is noisier, but it also achieves the
highest spatial resolution, preserving smaller blood vessels; to obtain a valid tK, at least
15 frames are necessary [17].

tKx,y,n =

√
∑n

f=1
1
n [RSI(x, y, ri)− µt

x,y]
2

µt
x,y

(3)

µt
x,y,n =

n

∑
ri=1

1
n

RSI(x, y, ri)

2.3. Adaptive Approaches in LSCI

Recent works suggest that applying a criterion to select the pixels involved in the
contrast calculation can improve the quality of the CIs in LSCI [20–22]. The related adaptive
processing methods are classified into three groups: those that select the size of W that best
suits a blood vessel, methods that choose pixels following a specific direction, and methods
that select pixels by comparing the central region of an AW with their connected pixels or
similar methodologies.

The Multi Scale Contrast (msK) approach improved the quality of the CIs by selecting
the window size d× d based on a granulometric analysis to match the size of the predom-
inant blood vessel [22]. This approach obtained CIs with improved noise attenuation in
general. Still, it reduces the contrast in the periphery of the blood vessels because of the
combination of information by using a large analysis window. On the other hand, Three
Sizes Contrast (TSK) computes the contrast representation by using squared AW with
variable sizes of W, depending on the local variance of the analyzed pixel [23]. The method
aims to compute the contrast representation using size d = 3 in areas with less variance
(dynamic region) and up to size 7 in areas with more significant variance (static region).
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On the other hand, methods such as Anisotropic Contrast (aK) and Space Directional
Contrast (sdK) compute contrast using a 1× n analysis window in the direction of the
blood flow [20,21]. The aK estimates the direction of blood flow by minimizing the contrast
in the analyzed pixel p0 gradient within a set of windows in different directions a, obtaining
CIs with noise attenuation. At the same time, it keeps an improved temporal resolution
requiring only three frames for processing CI [20]. The sdK is similar to the aK because
both perform adaptive computing by a directional analysis that maximizes the variance
over a set V of directional windows vi, performing an analysis of the RSI frame-by-frame,
allowing better pixel selection to obtain improved CI by increasing the contrast between
regions in the image and thus improving blood vessel visualization.

The main limitation of CI for microvasculature visualization in LSCI is the inherent
noise present in the images, because current adaptive methods do not perform reliable
pixel selection in noisy images. Thus, traditional adaptive methods for image processing
cannot be used to perform pixel selection in an RSI to compute feature representation.
Although current anisotropic and adaptive methods increase the contrast between regions,
they introduce artifacts in the resulting CI derived from the 1× n pixel selection. Therefore,
there is still room for improvement in adaptive methods.

2.4. Jaccard Index

The Jaccard Index (JI) is a similarity coefficient between two sets A and B. In the image
processing area, JI can be used as a segmentation overlap coefficient between two binary
images to determine the segmentation quality defined in Equation (4). Is is the segmented
image, and Igt is related to the ground-truth image, TP are the true positives, TN are the
true negatives, and FN are the false negatives.

J I(Is, Igt) =
Is ∩ Igt
Is ∪ Igt

=
TP

TP + FP + FN
(4)

2.5. Image Normalization

Image normalization is used to stretch the range of intensity values by scaling them
into a new range [gmax, gmin] given by a max value gmax and a min value gmin [24]:

In(x, y) =
gmax − gmin
Imax − Imin

(I(x, y)− Imin) + gmin (5)

where In represents a normalized pixel of image I, and Imax and Imin are the maximum and
minimum values, respectively.

2.6. Image Segmentation

In computer sciences, assigning a class label using computational models to an obser-
vation of features extracted from an entity is known as classification. Classification models
often use statistical representation from the data, known as features. When the classification
task is performed pixel-by-pixel in an image, it is called segmentation, which refers to
the process of assigning a label to each pixel in it. There are two types of classification:
when the label for each data observation is known and the process is guided, it is called
supervised learning; otherwise it is called unsupervised learning.

Given a set of n data points, also called observations. The goal of classification is to
infer an unknown relation between the features fi and a class ci. More formally, the process
is defined as c = m( f ) such that m( f ) : F → C [25]. The observations are of the form
D = {< f1, c1 >,< f2, c2 >, . . . < fn, c3 >=< F, C >}, where f can be a vector with a set of
features fi = { f1, f2, . . . fn}, and ci is the class label. The features are usually descriptors of
the observations, i.e., statistical measures from a set of pixels of an analysis window. When
the analysis window is squared Wd with size d, we call it traditional feature extraction,
and when the pixels used for feature extraction are a ⊆Wd, then we call it adaptive feature
extraction. On the contrary, unsupervised learning is a technique that consists of grouping
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data according to a given criterion without using any class label guiding the training of
the algorithm.

3. Materials and Methods

This section presents the experimental setup used to acquire the images for the experi-
mentation and the proposed methodology used to perform the adaptive feature extraction
and contrast recalculation.

3.1. Experimental Setup for Image Acquisition

A CCD camera (Retiga 2000R, Qimaging, Tucson, AZ, USA) equipped with a zoom
lens (NAV ITAR ZOOM 700) was employed to capture the RSIs with magnification = 1,
and different exposure times and 2 pixels/speckle for in vitro and in vivo datasets [26,27].
A polarizing filter was mounted in front of the zoom lens and perpendicularly oriented to
the polarization of the incident light (He–Ne laser at 632.8 nm, 15 mW) to mitigate specular
reflectance from the samples. The in vitro images were obtained from skin phantoms. We
constructed skin phantoms using an epoxy resin block with appropriate concentrations of
TiO2 powder (TiO2 1.45 mg/mL) to simulate the optical properties of the dermis. Later,
a capillary glass tube with an inner diameter of 700 µm was embedded at the surface of
the block (thinXXS Microtechnology AG, Zweibrücken, Germany). We placed thin silicone
phantoms (polydimethylsiloxane TiO2 powder 2 mg/mL) of varying thicknesses (190 to
1000 µm) on top of the resin block to simulate the epidermis. An infusion pump (Model
NE-500, New Era Pump System Inc., Farmingdale, NY, USA) was used to simulate the
blood flow passing by a solution (1% concentration) into a microchannel via Tygon tubing.
The complete experimental setup can be observed in Figure 1.

Figure 1. Experimental setup used to acquire the RSIs in vitro samples.

One male rat (Rattus norvegicus) weighing 120 g was anesthetized intraperitoneally
with xylazine and ketamine hydrochloride in doses of 0.1 and 0.7 mg/100 g body weight,
respectively, for the in vivo experiments. A circular template 1 cm in diameter was used to
outline the wound size on the dorsal skin of the rat (see Figure 2). Later, a full-thickness
wound corresponding to the template area was created using sterile surgical scissors and
forceps. It is important to mention that the wound was made down to the fascial layer to
expose the blood vessels. All animal procedures were performed in accordance with the
Mexican Norm NOM-062-ZOO-1999, and the experimental protocol (GASW-UALVIEP-
17) was approved by the Internal Committee for Care and Use of Laboratory Animals
(CICUAL) at Benemérita Universidad Autónoma de Puebla (BUAP). To acquire the speckle
images, the wound was sandwiched between two aluminum plates with a perforation
1.1 cm in diameter. The area of the wound coincided with the perforation area of the plates
so that a beam laser (633 nm wavelength) passed through the wound, and the blood vessels
were projected on a CCD. A saline solution was applied periodically in the subdermal layer
to prevent dehydration.
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Figure 2. Surgical procedure to acquire the in vivo speckle images.

3.2. Adaptive Feature Extraction in LSCI

This work is focused on the classification improvement of blood vessels at different
depths. In general terms, the method performs a punctual analysis pixel-by-pixel, calcu-
lating a binary mask with two possible values indicating whether a pixel is used or not to
operate with a feature extraction method δ to compute the set of features f = {δ1, δ2, . . . , δn},
where δ is a feature extraction operation such a texture or statistical analysis.

The solution to segment blood vessels in LSCI by calculating the features using
adaptive processing starts by computing a reference image to identify the pixels used
to calculate the features. The solution is divided into three steps: (i) reference image
retrieval, (ii) feature extraction, and (iii) classification. The first stage computes a reference
image R to perform pixel selection. R is needed to determine whether a pixel belongs to a
certain distribution to avoid noisy and outlier values in the RSI. First, a CI k is obtained.
Later, the CI obtained from the RSI I is grouped into clusters to avoid outliers in the
selected values. Then, a mask Sd

x is calculated for each pixel in I to compute the features
adaptively. Therefore, the mask is calculated using a region-growing process using the
currently analyzed pixel x as a seed. The region-growing process is performed over a
traditional analysis window superimposed in x with a size of d, and it selects the pixels
that will be operated with the criterion of Equation (6). Later, the feature set is calculated
with the superimposed W pixels marked as 1 in the mask Sd

x. Finally, a classification model
is trained with the feature representation F in the third step.

The Adaptive window Contrast (awK) [28] and the proposed Spatially Adaptive
Windowing Contrast (sawK) derived from the awK were used to perform the experi-
ments. The awK uses the k-NN algorithm to perform the grouping phase. In this manner,
the analysis matrix is formed by reducing the intra-class variance by using Equation (6)
as criteria.

Sd
p(pi) =

{
1, R(po) = R(pi)

0, otherwise
(6)

The awK may combine information from the dynamic and static region in the smallest
blood vessels or where the blood flow is insufficient, attacking the problem; we opted to
include spatial distance in the grouping of the reference image to perform pixel selection.
On the other hand, the sawK uses the Sequential Linear Iterative Cluster algorithm to
evaluate and generate pixel groups by using contrast intensity and spatial distance as a
similarity distance [29].

A postprocessing step selects the appropriate pixels, avoiding a posterizing effect
when the features are calculated. A set of k centers are initialized in regular intervals
around the image. The distribution is defined by L =

√
N/k in R, where N is the number

of pixels in the input image. First, the centers are moved to the lower gradient in a 3× 3
neighborhood. This step is performed to avoid allocating a center in the periphery of
the blood vessel and outlier values. Next in the assignment step, a label l(p) = −1 is
assigned for each pixel p. Then, the pixels at a maximum distance of 2L from each center
and adjacent pixels are labeled. Later, each cluster is updated until they no longer change.
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Then a pixel-by-pixel analysis is performed. A distance that combines the contrast value
and the proximity into a single measure is used to determine whether the pixel is included
in the calculation or not (Equation (7)).

D = ds +
M
S

dc (7)

where:
ds = sqrt(Ri,j − Rx,y)

2

dc = sqrt[(i− x)2 + (j− y)2]

The first step of pixel selection consists of calculating a distance between the analyzed
pixel pp, the central pixel p, and the centers obtained from a grouping algorithm that
considers the spatial distance to perform the clustering process. If the minimum distance
from the three distances is to p, then pp is set as 1 in Sd

p (Figure 3). Then, the contrast is
calculated as the awK.

Figure 3. Adjacency of the analyzed pixels with the cluster centers.

4. Experiments and Results

The images used in the experiments consist of three sets: two sets are of simulated
blood vessels and one is in vivo. The first one consists of straight and bifurcated blood
vessels with fixed mote size, exposure time, and flow with variable depth. The second set
consists of blood vessels with fixed mote size and flow and variable depth and exposure
time. Further, a set of simulated straight and bifurcated blood vessels are used to test the
factors that affect the segmentation of blood vessels by using adaptive methods. On the
other hand, a set of in vivo images is used for validation in a more realistic environment.
The experiments test the hypothesis that adaptive approaches for feature extraction can
improve segmentation of blood vessels. Most of the presented experiments focus on testing
the parameters influencing the results. The JI was used as an evaluation metric in the
periphery of the blood vessels to avoid bias in the measurements because we focus on
improving spatial resolution. The results are grouped into adaptive (awK and proposed
sawK) and a classical squared AW with size d = 5. The evaluation of segmentation and
classification algorithms is not intended in this work. For this purpose, a k-NN model
was trained with statistical features such as the sum, max and min values, mean, range,
standard deviation, and entropy with 10-fold cross-validation for replication.

The first experiment consists of the analysis of exposure time to determine the temporal
resolution of the model. The exposure time determines the intensity of the blurring pattern
by increasing or decreasing it as a function of the seconds that the camera senses information.
If it is lower than the slowest fluctuation in the speckle pattern, the blurring is insufficient
to detect movement in the image. On the other hand, if the exposure time is very long,
the static pattern could be averaged and confused with blood vessels. The controlled
factors in these experiments are depth and exposure time, where dp = {0, 190, 310, 510,
and 1000} µm, and et = {70, 138, 256, 500, 980, 1883, 3949, 5908, 8204, 11,062, 12,200, 20,885,
26,481, 31760, and 32,789} µs, respectively. In order to obtain different exposure times, we
use a set of neutral density filters (NDF) to compensate for the light intensity on the CCD
camera. For a specific NDF, automatic estimation of the exposure time is performed via
software. The results suggest that it is possible to improve the segmentation results for all
the depths independent of the exposure time, with more significant results at the profound
depths (Figure 4).
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Figure 4. Comparison of JI obtained with traditional (red) and adaptive feature extraction (blue),
performing the classification with a weighted k-NN. Results are grouped by depth to study depth
invariance. ANOVA (F-Value = 2413.46, p = 0, α = 0.05).

Figure 5a presents the results contrasting the exposure time with the depth in terms of
improvement percentage and shows a more significant increase in the longest exposure
times, stabilizing at exposure times higher than 980 µs. It can be inferred that depth has
more of an impact on image quality than exposure times, increasing it from 4.7% to 17% in
the shallow depths and 43% to 45% at profound depths (1000 µm).

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.6

0.7

0.8

0.9

1

Adaptive

Traditional

(b)

Figure 5. Comparison of traditional (red) and adaptive feature extraction (blue), performing the
classification with a weighted k-NN with all the exposure times and depths. (a) shows the differences
between the adaptive traditional methods in terms of percentage improvements, and (b) shows the
results grouped by exposure time at 0 µm. ANOVA (F-Value = 22.43, p = 0, α = 0.05).
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A representative patch from the in vivo dataset is shown in Figure 6 for comparison.
Figure 6b represents a segmented patch with the traditional method, and Figure 6c is a
segmented patch with the adaptive method. There are two main improvements in the
segmentation that can explain the JI increase. The noise reduction and the improved
statistics dismissed internal and external blobs (red dots and blue blobs, respectively).
On the other hand, the improved spatial resolution derived from the pixel selection leads
to better segmentation in the periphery of the blood vessels.

(a) (b) (c)
Figure 6. Segmentation results: (a) CI of an in vivo image of the used data where the square is
the close-up analyzed in (b,c); (b) is the traditional segmentation result, and (c) is the adaptive
segmentation results. Pixels in black represent true negatives, white are true positives, red are false
positives, and blue are false negatives.

Finally, an experiment is performed to establish the independence of the feature
extraction method to the contrast representation used to extract the features required to
train the classification algorithm. The aK, asK, sdK, awK, and sawK methods are used to
extract the features to know the effect of the method on the JI. The features are later used to
train the classification models. Adaptive feature extraction obtains a higher JI independent
of the method used, as seen in Figure 7, which means improvement in the segmentation of
blood vessels in LSCI. Therefore, adaptive feature extraction may be invariable to the CI
used. The results are invariant for each method, but the JI increases for all of them.

aK asK sdK awK sawK

Method

0

0.2

0.4

0.6

0.8

1

Ja
cc

ar
d
 I

n
d
ex

Adaptive

Traditional

Figure 7. Comparison of the segmentation results by method for the analyzed depths and variable
exposure times: Anisotropic Contrast (aK), Averaged Spatial Contrast (asK), Space Directional
Contrast (sdK), Adaptive window Contrast (awK), Spatially Adaptive Windowing Contrast (sawK).
ANOVA (F-Value = 27.70, p = 0, α = 0.05).

4.1. Contrast Recalculation

Although the segmentation of blood vessels in LSCI obtained significant results with
adaptive processing, the segmentation can also be used to perform a contrast recalculation
by using the same method for feature extraction, calculating only the mean and standard
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deviation to generate a CI. First, a pre-processing step is required to eliminate all the
isolated pixels and blood vessels with holes to use the segmented image as a reference to
perform the pixel selection. If the segmented image is used, the isolated pixels can lead
to a selection of AW of size 1× 1, obtaining a sample of one pixel, and thus, the statistics
cannot be calculated.

First, a morphological closing with a structural element of type disk eliminates all those
isolated pixels in the background region while maintaining the inner area of the Region
Of Interest (ROI) with minor changes. If pixels in the inner region of the blood vessels are
dismissed, then reconnection of the regions cannot be performed. A radius of 1 for the
structural element avoids thickening the periphery of the blood vessel and thus reduces the
spatial resolution. Later, a morphological area filter eliminates all the objects with less than
25 pixels in the background region of the image to avoid the contrast calculation with fewer
pixels than those in a 5× 5 analysis window. Finally, a reconnection step analyzes the inner
region of all the structures in the image. Based on its surroundings, a label is assigned to
all those isolated structures based on their neighborhood. The neighborhood is analyzed
to determine if a tissue pixel is labeled as a blood vessel. If there is at least one pixel in
each direction for four connectivity adjacencies around it, the pixel is marked as a blood
vessel. Otherwise, its label remains unchanged. Then, with this process, the isolated pixels
are eliminated outside the blood vessels, and the inner region is connected [16], as seen in
Figure 8, which shows a decrease of the FP due to the morphological closing (reduction of
red blobs) and a reduction of the FN in the inner region of the blood vessels or wrongly
classified pixels as tissue seen as blue blobs inside the blood vessels.

The noise reduction and elimination of disconnected pixels allows the use of the seg-
mented image as a reference to recalculate the contrast, as awK does, by using Equation (6),
the process of which is depicted in Figure 9.

Slices taken from representative regions of the recalculated images are shown in
Figure 10, in which the vertical dotted line indicates the periphery of the visualized blood
vessel. As seen in Figure 10, contrast recalculation can increase the definition of the blood
vessels in its periphery with the drawback of increasing the contrast values at its center, the
effect of which increases along with the size of the maximum analysis window.

(a) (b) (c)
Figure 8. Comparison of the segmentation results before and after the reconnection process: (a) CI
of an in vivo sample where the square represents a close-up of the (b) output of the segmentation
algorithm and (c) the reconnected blood vessel. Pixels in black are true negatives, white are true
positives, red are false positives, and blue are false negatives.

Although the main contributions of the recalculated contrast are the improved noise
attenuation and spatial resolution, improving the quality and visualization of blood ves-
sels, a postprocessing step can be performed to combine the best of asK and the recalcu-
lated contrast. In order to maintain the minimum value of contrast at the center of the
blood vessel and the improved spatial resolution and noise reduction in the outer region,
Equation (8) can be used at each pixel to obtain a Multi-Scale Recalculated Contrast (msrK)
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image (Figure 11). This can be useful in medical applications such as the measurement of
the diameter of a blood vessel or assessment of diabetic foot ulcer healing [30,31].

msrK(x, y) =

{
min(rK5, rK7, . . . rKd) Is(x, y) == 0
max(rK5, rK7, . . . rKd) otherwise

(8)

Multi sizes
Recalculated Contrast

(msrK)

Filtered image (Is) Segmented image 

Raw speckle image

Reference image
calculation

Adaptive feature
extraction Pixel classification

Post-processing with
mathematical
morphology

Multicontrast
recalculation

Figure 9. Methodology for the contrast recalculation using adaptively extracted features.
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Figure 10. Slice of a contrast image for contrast image calculated using a traditional (red) and an
adaptive approach (blue) for an in vivo image.
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Figure 11. Slice of a CI calculated using a traditional analysis window with d = 5 and by using the
multi-scale contrast with the recalculated contrast.

4.2. Establishing the Differences between awK and sawK

To compare the awK and sawK, an image showing the number of pixels required to
compute the contrast at each pixel in the glsRSI is obtained. Zp = |Spd| (Figure 12) is the
representation, commonly known as a size map. With the exception of the perimeter of
the blood vessels and transitional regions, the awK and sawK use an analysis window of
11× 11 in practically all of the images. The distinction between the awK and the sawK is in
the identification of the ROIs, as seen in Figure 12. Meanwhile, the analysis window size
in awK is determined by the correct amount of clusters: the blood vessel, the transition
region, and the static region. Blood vessels with different contrast values are hence the
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awK’s limiting factor. The spacing between regions may not be adequate if the contrast
value between blood vessels is too small, the main limitation of sawK being the parameter
selection (separation between regions and spatial distance influence).

0
µ

m
20

0
µ

m

Figure 12. Comparison of maps sizes for the adaptive processing of LSCI of an in vitro CI with size
of 344× 329 pixels. The depth of the blood vessel and the adaptive method vary.

5. Conclusions

The main limitation in the segmentation of blood vessels in LSCI is the intense noise
inherent to the CIs. Although several methods increase the quality of the images, state-of-
the-art methods introduce artifacts in the CI, which leads to a reduction in the segmentation
rates. Thus, this work presents an analysis to know if the proposed method sawK and the
adaptive awK can improve the classification of blood vessels derived from the improved
noise attenuation, spatial resolution, and image quality after a contrast recalculation process.

The sawK and awK use the advantages of unsupervised learning to select the pixels
involved in contrast calculation with anticipation. The use of spatial distance is essential
in cases where the contrast value is insufficient to discriminate between the static region
and blood vessels. Therefore, the grouping methods allow adaptive contrast calculation to
select pixels, avoiding the limits between regions and resulting in less noisy features with
improved spatial resolution. Thus, classification rates are improved when false positives in
the outer region of the blood vessel and false negatives in its periphery are reduced.

The adaptive feature extraction method can improve the classification rates signif-
icantly under several conditions. It can be used to locate blood vessels independent of
the contrast method used as a feature, the camera’s exposure time, and the blood vessel’s
depth and morphology compared with traditional feature extraction, which uses square
analysis windows. The adaptive feature extraction method can reduce the false positives
in the classification by reducing the outlier values in the outer region of the blood vessels,
which means more stable or smoothed features. On the other hand, the increase in spatial
resolution shows a reduction in the false negatives in the periphery of the blood vessel.
Further, the increased spatial resolution can lead to better diameter estimation of blood
vessels for medical applications.

On the other hand, the segmented markers can be used as a reference image to
adaptively recalculate the contrast representation after a postprocessing step, eliminating
the outlier values and improving the disconnected blood vessels. The main drawback is a
reduction of the contrast value at the center of the blood vessels compared with a traditional
contrast with an analysis window of size 5× 5. To address the problem, we selected an
appropriate contrast value using TSK. Then, the results suggested that the combination
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of traditional approaches and the proposed recalculation of contrast maintains the blood
flow values in the center of the blood vessels, reduces noise, and maintains increased
spatial resolution. Finally, although the proposed methods showed good performance
in the domain, further analysis could be required to use the techniques in images with
several objects.
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