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Abstract: The foremost focus of this article was to investigate the entropy generation in hydromag-
netic flow of generalized Newtonian Carreau nanofluid through a converging and diverging channel.
In addition, a heat transport analysis was performed for Carreau nanofluid using the Buongiorno
model in the presence of viscous dissipation and Joule heating. The second law of thermodynamics
was employed to model the governing flow transport along with entropy generation arising within
the system. Entropy optimization analysis is accentuated as its minimization is the best measure to
enhance the efficiency of thermal systems. This irreversibility computation and optimization were
carried out in the dimensional form to obtain a better picture of the system’s entropy generation. With
the help of proper dimensionless transformations, the modeled flow equations were converted into a
system of non-linear ordinary differential equations. The numerical solutions were derived using
an efficient numerical method, the Runge–Kutta Fehlberg method in conjunction with the shooting
technique. The computed results were presented graphically through different profiles of velocity,
temperature, concentration, entropy production, and Bejan number. From the acquired results, we
perceive that entropy generation is augmented with higher Brinkman and Reynolds numbers. It is
significant to mention that the system’s entropy production grew near its two walls, where the irre-
versibility of heat transfer predominates, in contrast to the channel’s center, where the irreversibility
of frictional force predominates. These results serve as a valuable guide for designing and optimizing
channels with diverging–converging profiles required in several heat-transfer applications.

Keywords: entropy; converging/diverging channel; magnetic field; heat transport; Carreau nanofluid

1. Introduction

The second law of thermodynamics is deemed to be more appropriate from an en-
gineering perspective as compared with the first law. This is because of several factors,
including internal friction, vibrating, spin, and molecular kinetic energy allowing heat
energy loss that cannot be converted into work. Heat transfer is an energy flow wherein
additional motion takes place. Examples of these motions include molecular vibrations,
molecule friction, spinning moment, internal movement of molecules, fluid mixing, chem-
ical processes, inelastic distortion of solids, and electric resistivity, etc. Such additional
activities result in greater energy loss and entropy. Entropy is a system’s inability to utilize
all the available energy efficiently. Entropy generation is a metric for assessing the efficiency
of thermal performance and lowering it is important to boost the system’s production.
These deficits in the physical world cannot be made up without effort. It is essential to inves-
tigate these consequences, which are referred to as irreversibility, inside of any mechanism.
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Entropy (Ns) is a broad attribute of a thermodynamic process in statistical mechanics. En-
tropy can only occur in one of three circumstances: case I: (Ns = 0) for reversible processes,
case II: (Ns < 0) for irreversible processes, and case III: (Ns > 0) no entropy estimation is
possible. For an isolated system, the entropy may be taken as Ns ≥ 0. The second law of
thermodynamics is applied, as the amount of accessible work is directly proportional to the
amount of entropy generated [1]. As a result, a thermal device that produces less entropy
due to irreversibility consumes less energy. This improves the thermal system’s overall
efficiency. Consequently, the second law and entropy-generation analysis are frequently
employed to assess the causes of irreversibility in diverse components and systems. For
instance, in the construction of air-cooled gas turbine engines, the localized rates of entropy
production was addressed by Natalini and Sciubba [2]. Kock and Herwig [3] used entropy
generation as a tool for evaluating heat-transfer performance in a turbulent shear flow.
They created entropy production phrases wall functions and implemented them into a
computational fluid dynamic (CFD) code. For an instance, pipe flow with heat flux was
investigated and the findings from a direct simulation analysis were compared, with a
special focus on entropy generation. The local and global entropy production rates in
natural convection in the air in a vertical channel were evaluated numerically by Andreozzi
et al. [4]. Later, Makindie [5] investigated the problem of fundamental irreversibility in the
flow of a variable-viscosity fluid in a channel with parallel walls and non-uniform tempera-
tures. The inherent irreversibility in a non-uniform (convergent/divergent) channel was
examined by Bég and Makindie [6]. After that, Weigand and Birkefeld [7] computed simi-
larity solutions to the Naiver stokes equations with entropy production in Jaffrey–Hamel
flow. Furthermore, many investigations considering both Newtonian and non-Newtonian
fluid flow through different geometries subject to entropy generation with various physical
impacts can be seen in several works [8–15].

The flow of both viscous and non-Newtonian fluids through non-uniform channels
having convergent/divergent nature has commanded interest in various fields. Its broad-
spectrum applications in industrial, scientific, and manufacturing industries have attracted
the interest of several researchers in past few decades. The improvement of the heat-
transmission rate in a heat exchanger for milk flow, molten polymer extruded via converg-
ing dies, cold drawing operation in the polymer sector, and blood flow through arteries are
a few of them. Jeffery [16] and Hamel [17] were the ones who initiated the pioneering work
on viscous fluid flow via convergent/divergent channels, a century ago. After that, several
researchers addressed this problem under different physical aspects. Hooper et al. [18]
analyzed the role of MHD on converging–diverging flow and observed that, in the case
of two-dimensional undiluted fluid flow across convergent walls with variable viscos-
ity, velocity interruption increased rapidly as the Reynolds value grows. Makinde and
Mhone [19] explored magnetohydrodynamic flows in converging–diverging channels, and
it was an extension of Jeffery–Hamel flows to magnetohydrodynamic. He postulated that
the external electromagnetic field’s effect serves as a parameter in the solution of MHD
flows in convergent–divergent channels. Makinde and Mhone [20] looked in another study
that, how tiny disruptions in MHD develop over time and explore the stability of hydro-
magnetic steady flows in converging–diverging channels at very modest magnetic fields.
The critical behavior of the MHD flow in converging–diverging channels was addressed
by Alam et al. [21]. Usman et al. [22] evaluated the flow and heat-transfer features of
water-based nanofluids within convergent–divergent tubes. Patel and Meher [23] utilized a
convergent–divergent channel to analyze the MHD Jeffery–Hamel flow.

Scientists are paying more attention to the evaluation of nanofluids these days. A
nano size-particle immersed in the base liquid is a dilute solution with an average size of
less than 100 nm, such as water, oils, or ethylene. Such nanoparticles are superior thermal
conductors, permitting base fluids to enhance their thermal performance. Choi [24] was the
pioneer while introducing nanofluids. Moradi et al. [25] also focused on the consequences
of heat transmission and viscosity dissipation on the Jeffery–Hamel flow of nanofluids.
Furthermore, Dogonchi and Ganji [26] investigated the impact of velocity and temperature
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slip on the flow of water-based nanofluids in converging and diverging channels. Extensive
reports in recent years have focused on heat-transport mechanisms during nanofluid flow
in different scenarios [27–31].

The abovementioned literature suggests that several studies examined the flow of
Newtonian and non-Newtonian fluids though converging–diverging channels. However,
to the best of the authors’ knowledge, numerical investigation on entropy generation in
Jeffery–Hamel flow of Carreau nanofluids has not been presented yet. The authors made
a sincere effort in this paper to analyze the impact of the entropy production properties
of Carreau nanofluid flowing between two non-parallel walls along with thermophoresis
and Brownian motion. It is crucial to note that this kind of surface may be found in a
variety of industrial projects where the movement of jet, rocket, and nozzle designs, as
well as blood flow in capillaries and arteries, occurs. The flow, energy, concentration,
and entropy transport equations for the radial flow of Carreau liquid were formulated
under various effects such as magnetic field, viscous dissipation, Joule heating, Brownian
diffusion, and thermophoresis diffusion. The leading equations for the flow fields were
changed into non-dimensional shapes by using suitable correspondence variables. The
important numerical and graphical outcomes were found by solving the non-linear ODEs
through the Runge–Kutta Fehlberg technique. Different dimensionless factors, velocity
and temperature profiles, and entropy generation and Bejan numbers were numerically
explored, and their physical importance was discussed.

2. Description and Formulation of the Problem
2.1. Physical Configuration

A mathematical formulation was modeled for entropy production alongside conser-
vation equations in radial coordinates (r, θ, z). The flow is between two non-parallel flat
surfaces having convergent and divergent characteristics, which intersect at an angle 2ψ,
as presented in Figure 1. For a purely radial flow, the velocity has only radial component.
The flow was taken to be incompressible and is subject to a uniform magnetic field. The
uniform magnetic field B0

r is acting vertically along the channel walls. Assume that the
domain of the investigated flow is −|ψ| < θ < |ψ|, Therefore, the channel’s semi-angle will
be ψ.
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The governing transport equations under the above-stated assumptions in their vector
form are expressed as:

∇·→q = 0, (1)(→
q ·∇

)
·→q = div

→
τ + J × B, (2)

(→
q ·∇

)
T =

k f

(ρc) f
∇2T +

(ρc)p

(ρc) f

[
DB(∇C·∇T) + DT

∇T·∇T
Tw

]
+ Φ +

J·J
σf

, (3)

(→
q ·∇

)
C = DB∇2C +

DT
Tw
∇2T. (4)

where
→
q = u(r, θ)î denotes the velocity field, ρ f is the fluid density, k f , µ, ν, σ, DB, DT ,

Φ, Tw, and Cw describs the thermal conductivity, fluid dynamic viscosity, kinematic
viscosity, electrical conductivity, Brownian diffusion coefficient, thermophoretic diffusion
coefficient, dissipative term, wall temperature, wall concentration, and the ratio of heat
capacity of the nanoparticle to the fluid respectively.

The constitutive relation for the non-Newtonian Carreau model is given as follows [32]:

T = −pI + µA1, (5)

where

µ = µ f

[
1 +

(
Γ

.
γ
)2
] n−1

2 . (6)

Here n, indicates the power–index ranges from 0 < n < 1, refers to pseudoplastic
or shear-thinning fluids, while n > 1, displays the dilatant or shear thickening fluids, Γ
represents the material parameter, and A1 denotes first Rivlin–Erickson tensor.

The strain rate under the assumed flow field takes the following form:

.
γ =

√
2(ur)

2 +
1
r2 (uθ)

2 +
2u2

r2 . (7)

While the viscous dissipation term can take the following form:

Φ = µ f

[
1 + Γ2

{
2(ur)

2 +
1
r2 (uθ)

2 +
2u2

r2

}] n−1
2
(

2(ur)
2 +

1
r2 (uθ)

2 +
2u2

r2

)
. (8)

Based upon these facts, the flow equations in view of the basic conservation laws
reduces to

Mass conservation:
ρ f

(
ur +

u
r

)
= 0, (9)

Momentum conservation:

ρ f (uur) = −pr +µ f

[
1
r

∂
∂r

{
r
(

1 + Γ2
{

2(ur)
2 + 1

r2 (uθ)
2 + 2u2

r2

) n−1
2 2ur

}
+ 1

r
∂
∂θ

{(
1 + Γ2

{
2(ur)

2 + 1
r2 (uθ)

2 + 2u2

r2

) n−1
2 1

r uθ

}
+ 1

r

((
1 + Γ2

{
2(ur)

2 + 1
r2 (uθ)

2 + 2u2

r2

) n−1
2
)
(uθ − 2u)

]
,

(10)

0 = − 1
ρ f r

pθ + ν f

 1
r2

∂
∂r

{
r2
(

1 + Γ2
{

2(ur)
2 + 1

r2 (uθ)
2 + 2u2

r2

) n−1
2 1

r uθ

}
+ 1

r
∂
∂θ

(
1 + Γ2

{
2(ur)

2 + 1
r2 (uθ)

2 + 2u2

r2

) n−1
2 2u

r

.
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The continuity Equation (9) suggests that the velocity is purely radial, which depends
on r and θ. On simple integration of Equation (9), from −|ψ| < θ < |ψ|, the radial velocity
originates as

u(r, θ) =
H(θ)

r
. (11)

Incorporating Equation (12) into the above-shown equations and eliminating the
pressure term, the momentum equations reduce to

(H′′′ + 4H′)
[
1 + Γ2

r4

(
H′2 + 4H2

)] n−1
2

+ 2HH′
ν f
− σB2

o H′
ρ f ν f

+ (n−1)Γ2

r4

[
1 + Γ2

r4

(
H′2 + 4H2

)] n−3
2 ×(

3H′H′′ 2 + 32HH′H′′ + H′2H′′′ + 64H′H2
)
+ (n−1) (n−3)Γ4

r8

[
1 + Γ2

r4

(
H′2 + 4H2

)] n−5
2 ×(

H′3H′′ 2 + 16HH′3H′′ + 32H3H′H′′ + 16H2H′3 + 64H4H′ − 4H′5
)
= 0.

(12)

The energy and concentration Equations (3) and (4) become
Energy equation:

uTr =
k

(ρcp) f

[
1
r Tr + Trr +

1
r2 Tθθ

]
+ τ

[
DB

[
TrCr +

1
r2 TθCθ

]
+ DT

T∞

[
(Tr)

2 + 1
r2 (Tθ)

2
]]

+
µ f

(ρcp) f

[
1 + Γ2

{
2(ur)

2 + 1
r2 (uθ)

2 + 2u2

r2

}] n−1
2
[{

2(ur)
2 + 1

r2 (uθ)
2 + 2u2

r2

}]
+ σB0

2u2

(ρc) f r2 .
(13)

Concentration equation:

uCr = DB

(
1
r

Cr + Crr +
1
r2 Cθθ

)
+

DT
T∞

(
1
r

Tr + Trr +
1
r2 Tθθ

)
, (14)

With related constraints at the boundaries{
u = U, uθ = Cθ = Tθ = 0, at θ = 0
u = 0, T = Tw, C = Cw, at θ = ψ

}
, (15)

2.2. Similarity Solutions

The similarity solutions are established via well-known dimensionless variables [33]

f (η) =
H(θ)

rU
, η =

θ

ψ
, β(η) =

T
Tw

, γ(η) =
C

Cw
, (16)

With the aid of these similarity transformations, Equations (13)–(15) reduce to

(
fηηη + 4ψ2 fη

) [
1 + We2

(
4ψ2 f

2
+ f

2
η

)] n−1
2

+ 2ψRe f fη − ψ2M2 fη + (n− 1)We2×[
1 + We2

(
4ψ2 f

2
+ f

2
η

)] n−3
2
(

3 fη f
2
ηη + 32ψ2 f fη fηη + f

2
η fηηη + 64ψ2 fη f

2
)
+ (n− 1) (n− 3)We4×[

1 + We2
(

4ψ2 f
2
+ f

2
η

)] n−5
2

(
f

2
ηη f

3
η + 16ψ2 f f

3
η fηη + 32ψ4 f

3
fη fηη

+16ψ4 f
2

f
3
η + 64ψ6 f

4
fη − 4ψ2 f

5
η

)
= 0,

(17)

βηη + Pr(NBβηγη + NT βη
2) + PrEc

[(
1 + We2

(
4ψ2 f 2 + fη

2
)) n−1

2
](

4ψ2 f 2 + fη
2
)
+ ψ2M2PrEc f 2 = 0, (18)

γηη +
NT
NB

βηη = 0. (19)

In conjunction with dimensionless boundary conditions

f (0) = 1, fη(0) = 0, f (1) = 0,
β (1) = 1, βη(0) = 0,
γ (1) = 1, γη(0) = 0.

. (20)
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The leading flow parameters are as follows:

Re = ψrU
v , We2 = Γ2U2

r2ψ2 , M2 = σB0
2

ρ f υ f
, Pr =

µρ f Cp
k f

, Ec = U2

Tw cp
, NB = τDBCw

ν , and

Nt = τDT Tw
υT∞

demonstrate the Reynolds, Weissenberg, Magnetic, Prandtl, and Eckert num-
bers and the Brownian diffusion thermophoretic parameter, respectively. Additionally, n
indicates the shear-thinning and shear-thickening behavior of the Carreau model.

2.3. Entropy Generation within the System

Entropy generation implies wastage; therefore, controlling entropy accumulation is
frequently a primary goal in modern engineering. Entropy generation assessment can
be used to identify the causes of wastage in any system and can be used to optimize the
effectiveness of any physical device. The scarcity of universal energy supplies necessitates
a reassessment of energy consumption and production practices. The second law of ther-
modynamics was employed to evaluate energy-generating, -exchanging, and -utilizing
systems from a scientific perspective. A nanoparticle’s volumetric rate of local entropy gen-
eration is written in terms of thermal transport, viscous dissipation, diffusive irreversibility,
and a magnetic field. In vector notation, the entropy rate can be expressed as follows [1,14]:

Sgen =
κ f

Tw2 (∇T)2︸ ︷︷ ︸
Heat−transfer irreversibility

+
µ f

Tw
Φ︸ ︷︷ ︸

Viscous dissipition
irreversibility

+
DB
Cw

(∇C)2 +
DB
Tw

(∇C.∇T)︸ ︷︷ ︸
Diffusive irreversibility

+
J.J

σTw︸︷︷︸
Joul heating

irreversibility

. (21)

In polar coordinates, the above equation can be put forward as

Sgen =
κ f

Tw2

[
(Tr)

2 + 1
r2 (Tθ)

2
]
+

µ f
Tw

[{
2(ur)

2 + 1
r2 (uθ)

2 + 2u2

r2

}][
1 + Γ2

{
2(ur)

2 + 1
r2 (uθ)

2 + 2u2

r2

}] n−1
2

+DB
Cw

[
(Cr)

2 + 1
r2 (Cθ)

2
]
+ DB

Tw

[
TrCr +

1
r2 TθCθ

]
+ σB0

2u2

Tw
,

(22)

The dimensionless entropy generation rate with the procedure of similarity variables
reduces to

Ns =
r2ψ2Sgen

κ f
= βη

2 + Br
[(

1 + We2
(

4ψ2 f 2 + fη
2
)) n−1

2
](

4ψ2 f 2 + fη
2
)
+ Md

(
γη

2 + βηγη

)
+ ψ2BrM2 f 2, (23)

Ns = NT + NV + ND + NM, (24)

where 
NT = βη

2,

NV = Br
[(

1 + We2(4ψ2 f 2 + fη
2)) n−1

2

](
4ψ2 f 2 + fη

2),
ND = Md

(
γη

2 + βηγη

)
,

NM = ψ2BrM2 f 2,

 . (25)

Here Br and Md denote the Brinkman number and constant parameter.

Br = PrEc, Md =
DBCw

κ f
. (26)

2.4. Irreversibility Distribution Ratio

Bejan [1] established the irreversibility distribution ratio as ∆ = NV + ND + NM/NT
to determine whether fluid friction exceeds heat-transfer irreversibility or conversely. When
0 ≤ ∆ < 1, heat transmission uplifts, and when ∆ > 1, fluid friction rises. The ratio of
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entropy generation due to the heat exchange with the entropy generation number is known
as the Bejan number Be, which is calculated as follows:

Be =
NT
Ns

=
NT

NT + NV + ND + NM
=

1
1 + ∆

. (27)

In fact, the Bejan number varying from 0 to 1 is significant. When Be = 0, the influence
of fluid friction is dominant over irreversibility. At Be = 1, the flow system is dominated
by irreversibility because of heat transfer. When Be = 0.5, the inputs of heat transmission
and fluid friction to the generation of entropy are equal.

2.5. Curiosity in Physical Measurements

In this study, skin friction coefficient C f , local Nusselt number Nu, and local Sherwood
number Sh were the quantities of engineering importance, which are mathematically
written as:

C f =
τw

ρ f U2 , (28)

Nu =
rqw

k f Tw
, (29)

Sh =
rjw

DCw
. (30)

Here, the wall shear stress τw, heat qw, and mass flux jw at the wall are given by

τw =
µf
r

[
1 + Γ2

{
2
(

∂ur

∂r

)2
+

1
r2

(
∂ur

∂θ

)2
+

2ur
2

r2

}] n−1
2

∂ur

∂θ

∣∣∣∣∣∣
θ=ψ

, (31)

qw = −k f

(
∂T
∂θ

)∣∣∣∣
θ=ψ

, (32)

jw = −D
(

∂C
∂θ

)∣∣∣∣
θ=ψ

. (33)

Applying the transformations (13) and (14), the dimensionless form of these quanti-
ties become

C f =
1

Re

[(
1 + We2

(
4ψ2 f 2 + fη

2
)) n−1

2 fη

]
, (34)

Nu = − 1
ψ

βη(1), (35)

Sh = − 1
ψ

γη(1). (36)

3. Numerical Scheme for the Solution

Utilizing the Runge–Kutta Fehlberg method via the MATLAB program, the determin-
ing Equations (18)–(20) in conjunction with the boundary conditions Equation (21) were
numerically solved. The linked equations and the absence of boundary conditions are the
two key justifications for utilizing this method. To guess the missing conditions, we first
turned our system of differential equations into a first-order initial value problem. Let
us consider

f = x1, fη = x2, fηη = x3, (37)

Then, Equation (18) becomes x3
′ =

c5

c4
− c6

c4
− c7

c4
− c8

c4
+

c9

c4
. (38)
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where

c1 =
[
1 + We2(x2

2 + 4ψ2x1
2)] (n−1)

2

c2 =
[
1 + We2(x2

2 + 4ψ2x1
2)] (n−3)

2

c3 =
[
1 + We2(x2

2 + 4ψ2x1
2)] (n−5)

2

c4 =
[
c1 + (n− 1)We2c2x2

2]


(39)


c5 = −4ψ2x2c1
c6 = 2ψRex1x2

c7 = (n− 1)We2c2
[
3x1x2

3 + 32ψ2x1x2x3 + 64ψ4x2x2
1
]

c8 =
[
x3

2x2
3 + 16ψ2x1x3

2x3 + 32ψ4x3
1x2x3 + 16ψ4x2

1x3
2 + 64ψ6x2

1x2 − 4ψ2x5
2
]

c9 = −ψ2M2x2

 , (40)

x4 = β, x5 = βη , x6 = γ, x7 = γη (41)

x′5 = −Pr
(

Nbx5x7 + Ntx5
2
)
− PrEcχ1

(
4ψ2x1

2 + x2
2
)
− ψ2M2PrEcx1

2 (42)

x7
′ = − Nt

Nb
x5 (43)

with reduced boundary conditions

x1(0) = 1, x2(0) = 0, x1(1) = 0,
x4(1) = 1, x5(0) = 0.
x6(1) = 1, x7(0) = 0

 (44)

The Runge–Kutta Fehlberg integration scheme was used in conjunction with the initial
guess values for fηη(0), βη(0), and γη(0) to arrive at the solution. Then, using the shooting
iteration strategy, we altered the values of fηη(0), βη(0), and γη(0) to provide a better
approximation for the solution by comparing the computed values of f (0), β(0), and γ(0)
at η = 1, with the supplied boundary conditions f (1), β(1), and γ(1). The procedure was
repeated until the results were reliable to the required level of 10−8 accuracies, satisfying
the convergence requirement.

4. Results and Discussion
4.1. Consequences of the Reynolds Number

The growing Reynolds numbers Re on velocity f (η), temperature β(η), concentration
γ(η), and entropy production Ns, within the system, are depicted in (a), (b), (c), and (d).
Figure 2a reveals that flow velocity climbed as the Reynolds number increased in con-
vergence channels. While for expanding/divergent channels the prescription is converse.
Physically, small Reynolds numbers mean that viscous forces are prominent, which means
that the flow will be retarded by the development and extension of the boundary layer
into this regime. A low Reynolds number means that the viscous force predominates,
which signifies that the flow will decelerate since the boundary layer that forms does not
reach far into the flow region. Thus, high Reynolds numbers are indicative of turbulent
flow patterns, such as those seen in turbulent flows. The Reynolds number elevates heat
transfer, as shown in Figure 2b. Temperature configurations for converging/extending and
narrowing channels are contrasting. The dropping of temperature in the convergence case
was witnessed from the green curves. This is because, as the Reynolds number rises, the
viscous force becomes less significant, resulting in reduced fluid viscosity. Due to their
inverse relationship, decreasing viscosity inevitably leads to an increase in temperature
and vice versa. Thus, the heat progression in narrowing channels is clear. Figure 2c depicts
a variety of concentration sketches for a variety of physical parameters. Diverse values of
Re depict diverse sketches for concentration in the converging and diverging channels. The
concentration of nanoparticles in the divergent channel is stimulated by elevating Reynold
numbers. Physically, escalating Re values create inertia, which drives the concentration
field to expand in a divergent orientation. Entropy generation rates increase quickly along
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the two walls with rising Re values as shown in Figure 2d for the oblique channel, which is
consistent with the flow-reversal results that are observed in that location. With increasing
Re, the rate of entropy formation increased in the vicinity of narrowing and diverging
regions. The entropy generation was at its lowest along the centerline of the channel in
a particular flow thickness range, relying on the Re. According to this study, there was a
minimal entropy generation zone along the channel wall on both sides of the channel.
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4.2. Consequences of the Weissenberg Number

Figure 3 displays the flow, heat transfer, mass concentration, and entropy generation
for dominant values of Weissenberg numbers We in narrowing and extending channels.
Fluid flow within diverse geometries seemed diverse against escalating We. Velocity
curves uplifted when improving within the range 1 ≤We < 5 for the converging channel
however, in another portion, a drastic decline was observed. Growing We upsurges the
time constant-to-viscosity ratio, enhancing the Carreau fluid velocity and uplifting the
heat of the fluid within the channels, as shown in Figure 3b. Nanoparticle concentration
upsurges with escalating We. This justification is due to the lagging values of improving
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the momentum and thermal boundary layer thickness; as a result, the concentration
improves. The heat loss was especially dominant in the converging channel, with an
uplifting Weissenberg number. Physically, large relaxation time and fluidic resistance grow
faster within converging channels, producing more heat loss and consequently entropy
upsurge. While in a narrowing channel, heat loss was subsequently small and hence
entropy diminished.

Figure 3. Impacts of the Weissenberg number We on (a) velocity f (η), (b) temperature β(η), (c) con-
centration γ(η), and (d) entropy production Ns.

4.3. Consequences of Indexed Power

A variety of power-law index parameter values are used in Figure 4 to exhibit the
evolution of fluid flow and temperature, concentration, and entropy production rates in
distinct fluid channels. Improved power index values cause both the flow and temperature
to rise, as seen in these Figure 4a,b. This emerges because the fluid undergoes a shear-
thinning to shear thickening transition for higher values of n. Figure 4c conveys the
nanoparticle concentration diminutions as the indexed power was enlarged for n > 1.
In fact, the shear-thickening fluid had a low concentration as compared with the shear-
thickening fluid. In addition, the heat transfer and nanoparticle concentration were contrary.
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Thus, a concentration drop was obvious for non-Newtonian fluid in diverse channels.
The heat loss for shear-thickening fluid was more dominant, as clear from Figure 4d.
Physically, by improving values of n, the rheological assets of Carreau fluid offer additional
confrontation to the nanoparticles drift; as result, more heat loss within diverse channels
became dominant, and consequently the system entropy was uplifted.
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4.4. Consequences of Magnetic Parameter

Raising the magnetic number M caused a reduction in the channel’s radial velocity,
as shown in Figure 5a. It was found that as the magnetic parameter (M) improved, the
temperature distribution (Figure 5b) improved while the velocity profile dropped. This is
because when M increases, the magnetic field’s Lorentz force also grows and creates more
resistance to the flow and nanoparticles. However, the magnetic field raises temperature
throughout, causing the thickness of the thermal boundary layer to rise. The reduction of
the temperature in the narrowing channel is faster compared with an extended channel.
This can be justified by the fact that Lorentz forces suppress the fluid drift and, as a result,
the temperature contracts. Concentration uplift for magnetic parameter M strengthening
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can be witnessed in Figure 5c. The entropy production rate against M is illustrated in
Figure 5d. It is seen that magnetic parameters offer a tendency for entropy grooming within
the channels. Physically, magnetic field strength suppresses the fluid temperature; as a
result, the rheological fluid transmits extra heat to the nanoparticle. Consequently, heat
loss ascends within the channel.
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4.5. Effect of the Eckert Number

Increasing the Eckert number did not have a significant effect on the fluid velocity, as
seen in Figure 6a. In oblique channels, viscous dissipation influenced the velocity a little
bit but had a significant influence on temperature, as can be witnessed in Figure 6b. Based
on the estimation, the Eckert number endorsed the ratio of the square of maximum velocity
and specific heat. Consequently, as the Eckert number rose, the fluid-flow rate along the
centerline sped up. For both convergent and divergent channels, Figure 6b reveals that
the fluid temperature went up as the viscous heat parameter Ec increased. As a result of
the nanofluid’s greater thermal conductivity coefficient, the heat was transported more
intensively. Converging–diverging channel nanoparticle concentration trends diminished
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as the Eckert number Ec increased. In Figure 6d, the Eckert number’s consequence on the
system’s irreversibility is examined. Viscous dissipation induced the entropy generation
rate Ns to rise massively and consistently along the two hot walls as Ec climbed, as seen
in the figure. On the other hand, the positive fluctuation of the Eckert number had a
significant influence on the dominating effect of heat-transfer irreversibility at the two
heated walls.
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4.6. Effect of the Brinkman Number on Entropy Generation Rate and the Bejan Number

The relative contribution of heat generated by viscous dissipation and heat transmitted
by molecular conduction is well embodied by Br. The entropy generation growth within the
system of diverse channels against coupled parameter Brinkman number Br is illustrated
in Figure 7a. It is related to greater Brinkman numbers in intensifying the fluid friction
and heat-transfer rates of the fluid; hence, the entropy generation number significantly
upsurges with rising values of Br. Physically, with a higher Brinkman number, the gap in
kinetic energy and boundary layer enthalpy increased, owing to which more disturbance
developed in the working liquid, and, consequently, the entropy rate rose. The Bejan
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number Be is determined by the pressure drop along the length of a channel. Physically, it
is the connection between the irreversibility of heat transfer and the entire irreversibility
produced because of heat transfer. With the enhancement in the Brinkman number, the
Bejan profile was significantly lowered.

Figure 7. Impact of the Brinkmann number Br on (a) entropy production Ns and (b) the Bejan
profile Be.

4.7. Influence of Various Physical Parameters on the Bejan Number

The impact of individual thermophysical characteristics on the Bejan number is de-
picted in the various figures. We found that heat-transfer irreversibility dominated the flow
process inside the channel centerline region, with a Bejan number near 1, whereas fluid fric-
tion irreversibility had a limited impact on the channel walls. The action of the Weissenberg
number on the Bejan profile is illustrated in Figure 8a. Bejan’s curves with improving
We seemed to drop. As the the Reynolds number rose, the Bejan number dropped at the
converging channel regime to the dominating influence of fluid friction irreversibility and
began to rise at the higher-wall region due to the rising effect of heat-transfer irreversibility,
as shown in Figure 8b. For diverging channels, the entropy production rates went up
at the two walls as Re increased, which is consistent with the findings of flow reversal
in that section. The assessment of this graph reveals that increasing parameter n had a
substantial impact on improving the Bejan number. Figure 8d highlights the impact of
magnetic parameter M on the entropy generation profile. As the magnetic number grew,
the liquid temperature went up, enhancing entropy formation. As the fluid temperature
went up, the Bejan number near the channel walls went up as well. Furthermore, the major
effect of heat transmission irreversibility at the two heated walls illustrated in Figure 8e
was influenced by the positive fluctuation of the Eckert number.
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Figure 8. (a) Impacts of the Weissenberg number We, (b) Reynolds number Re, (c) power-indexed
parameter n, (d) magnetic parameter M, and (e) Eckert number Ec on the Bejan profile Be.

4.8. Influence of Physical Parameters on Skin-Drag Force and Heat-Transfer Rate

The consequences of We and n on the skin friction coefficient and local Nusselt number
are illustrated in Figures 9a,b and 10a,b. Figure 9a exhibits the action of Weissenberg number
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We on skin friction. It explains that skin friction improved as a function of the applied
magnetic field, while a contrary trend was noticed for We. Furthermore, as revealed in
Figure 9b, skin friction diminished as the power-law index improved. The action of We
against heat-transfer rate is depicted in Figure 10a. The heat-transfer rate was found to be
an increasing function of We in oblique channels. Physically, the large amount of relaxation
time contributed a significant amount of heat transfer among the nanoparticles in the base
fluid; consequently, the Nusselt number improved. The influence of n, when depicted
in the view of magnetic field strength, is portrayed in Figure 10b. It was found that the
heat-transfer rate dramatically declined with growing n.

Figure 9. Impact of (a) the Weissenberg number We and (b) the power-indexed parameter n on skin
friction C f .

Figure 10. Impact of (a) the Weissenberg number We and (b) the power-indexed parameter n on the
Nusselt number Nu.

Tables 1–3 display agreement between our proposed model and the conventional
Jaffrey Hamel flow model after implementing certain limitations. We provide a comparison
for velocity f (η) in Table 1, the skin force fη(1) in Table 2, and Nusselt number − 1

α βη(1)
in Table 3 for diverse values of angle α; for the channel width, existing data are provided
in the literature. An admirable agreement between our numerical approach and existing
literature data can be seen, which confirms the accuracy level of our proposed method.
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Table 1. Comparison of numerical values of f (η) against multiples values of an opening angle ψ = 3ˆ0,
when Re = 4, We = 0, Γ = 0 or n = 1, M = 0.

η Al-Saif and Jasim [34] Ghagha et al. [35] Present Study

0.0 1 1 1
0.1 0.98901 0.98953 0.98953
0.3 0.95626 0.95819 0.95991
0.4 0.90917 0.90619 0.90998
0.5 0.84124 0.83386 0.84001
0.6 0.75123 0.741635 0.74887
0.7 0.64012 0.630019 0.63981
0.8 0.51324 0.499554 0.51018
0.9 0.36129 0.350769 0.35918
1.0 0.19913 0.184134 0.19023
0.3 0 0 0

Table 2. Comparison of numerical values of skin friction fη(1) against multiples values of the
parameters and an opening angle ψ, when Re = 50, We = 1.0, Γ = 0 or n = 1.

α
fη(1)

Alam et al. [21] Rehman et al. [36] Present Study

−50

−5.13092 −5.13092 −5.13094
−4.65216 −4.65215 −4.65216
−2.83395 −2.83391 −2.83393

0 0 0

50

3.66971 3.66971 3.66963
−3.50810 −3.50810 −3.50831
−1.10933 −1.10932 −1.10941

0 0 0

Table 3. Comparison of numerical values of −1/α β_η (1) against multiples values of an opening
angle ψ, when Re = 50, Pr = 3.0, Nb = 0.4, Nt = 0.2, Γ = 0, or n = 1, M = 0.

α Alam et al. [21] Hayat et al. [33] Present Study

0.03157 0.03157 0.03156
−50 0.03734 0.03732 0.03735

0.04214 0.04215 0.04217
0.04214 0.04215 0.04213
0.05052 0.05024 0.05053

50 0.034751 0.03477 0.03474
0.039993 0.03998 0.03999
0.046401 0.04640 0.04541

5. Conclusions

An entropy production assessment for non-Newtonian hydromagnetic Carreau fluid
in the manifestation of viscous dissipations was carried out. The entropy generation rate
that arose within the system was calculated using velocity, temperature, concentration,
and magnetic field strength. In a converging channel, the flow’s pattern for changing the
physical parameters is opposed to that of a divergent channel. The analysis revealed that
for the thermally fully developed flow, viscous dissipation had a considerable influence on
entropy distribution for higher values of Br (Br > 1), whereas this influence was insignificant
for Be. Skin and Nusselt were decreasing functions of power index n. The channel’s walls
served as a substantial source of entropy and irreversibility and heat transference. The
irreversibility of fluid friction drove entropy production in the channel centerline portion.
The flow and heat transmission were controlled by an aligned magnetic field direction.
The performance of the Eckert number’s entropy production had a growing influence at
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the channel’s centerline, and the diverging channel’s rate of heat transfer exhibited the
same tendency. The irreversibility of heat and mass transfer dominated the channel’s
centerline portion. It is noteworthy to ensure that the two walls caused the system’s overall
entropy generation to expand, which had a substantial impact on the heat-transfer rate and
velocity profiles. Both divergent and convergent channels experienced increased entropy
production, velocity, and heat flux because of channel opening expansion.
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