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Abstract: The brain’s learning and adaptation processes heavily rely on the concept of associative
memory. One of the most basic associative learning processes is classical conditioning. This work
presents a memristive neural network-based associative memory system. The system can emulate
Pavlovian conditioning principles including acquisition, extension, generalization, differentiation,
and spontaneous recovery that have not been considered in most of the previous counterparts. The
proposed circuit can emulate these principles thanks to the resistance-changing characteristics of the
memristor. Generalization has been achieved by providing both unconditional and neutral stimuli
to the network to reduce the memristance of the memristor. Differentiation has been attained by
employing unconditional and conditional stimuli in a training scheme to obtain a certain memristance
that causes the network to respond differently to both stimuli. A revival of an exterminated stimuli
is also done by increasing the synaptic weight of the system. Compared to previous designs, the
proposed memristive circuit can implement all the functions of conditional reflex. Our rigorous
simulations demonstrated that the proposed memristive system can condition neutral stimuli, show
generalization between similar stimuli, distinguish dissimilarities between the generalized stimuli,
and recover faded stimuli.

Keywords: associative memory; Pavlovian conditional reflex; memristor; neural network

1. Introduction

With increasing demands for brain-like computing, neuromorphic systems have en-
grossed the attention of scientists. As a result, artificial neural networks (ANNs) have seen
rapid growth in hardware and software implementation [1,2]. ANNs have been used to
mimic biological characteristics, brain functions, and means of processing information. A
neural network has a comprehensive range of applications and growth potential in many
fields. Synaptic plasticity is an influential part of the study of ANN, by which it can become
adaptive. Synaptic plasticity can be implemented by using digital, analog, or a combination
of both hardware settings, which spends a large amount of area budget [3]. Therefore,
ANN is generally fetched by software as it is challenging to scale up the hardware to an
acceptable biological size to implement intricate bionic functionality.

From the hardware point of view, various semiconductor devices such as ferroelectric
transistors, floating-gate devices, non-silicon artificial semi-conductors, and memristors
can serve as nonvolatile devices [4–7]. Among these candidates, memristors have emerged
as promising devices due to their nonvolatility, compactness, power efficiency, agility,
and integration capability with the complementary metal–oxide–semiconductor (CMOS)
manufacturing process [8,9]. A memristor can hold multiple values by varying its resistance
and emulating artificial synapses in brain-inspired computing. Memristors can be used in
immense applications such as neural networks, logic gates, image processing, and machine
learning [10–12]. Therefore, memristors have emerged as a tool for building synaptic
structures at the circuit level of ANNs.
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Many studies have been conducted to investigate the integration possibilities of
memristors with neural networks to explore associative memory [13,14]. The ability to
recall relationships between concepts, as well as un-connected facts, is referred to as
associative memory. Understanding the learning behaviors of an organism is possible
through associative learning. As a result, numerous studies have established the principles
of biological associative memory for learning and assessment [15,16]. Classical conditioning
is a straightforward type of associative learning in which the conditioned stimulus modifies
the behavioral response. Many experiments and case studies have been conducted to
develop classical conditioning theory. Among these experiments, the validation of Pavlov’s
experiment is known as the basis for the majority of the current research on associative
memory using memristor-based ANNs [17].

Pavlovian classical conditioning theory had a profound impact on the understanding
of the learning and forgetting process. Associative memory is the most fundamental and
widespread form of learning both for humans and animals [18]. The proposed associative
memory circuit can realize the fundamental principle of the Pavlovian conditional reflex
principle. From the circuit-level point of view, associative systems had previously been
implemented at software and processing levels. However, they are significantly budget-
consuming and complex. As a result, a brand-new class of circuits known as “neuromorphic
circuits” was created. The main goal of this work is to investigate the implementation
possibilities of Pavlovian conditional reflex at the memristive circuit level. This provides
a pathway for systems with chip implementation for more complex associative memory
systems based on our proposed method.

Pavlovian conditioning was primarily implemented using a microcontroller and a
memristor-based synapse by Pershin et al. [19]. Since this work does not have a specific
learning method, researchers afterwards worked on modifying associative memory circuits
for learning [20]. To explore more of the learning functionality, a method based on imple-
menting learning rules was proposed by Chen et al. [15]. However, they did not include the
forgetting functionality. Therefore, the forgetting function was explored by Hu et al. [14].
Nevertheless, they worked on only one type of forgetting. Liu et al. formulated two kinds
of forgetting functions [21]. However, the rest of the conditional reflex principle was not
explored. In an attempt to investigate further, generalization and differentiation principles
were proposed in a feed-forward neural network [22]. However, this work does not explore
spontaneous recovery.

Previously, we have focused on the fabrication of a doped HfO2 memristor and its
application in memristive image edge detection hardware [23]. This work aims to propose
a memristive system that can include all possible Pavlovian conditional reflex principles.
The proposed implementation method incorporates reflex principles including acquisition,
extinction, generalization, differentiation, and spontaneous recovery in order to explore
all principles of Pavlovian conditional reflex in a single system. In addition to simulating
acquisition and extinction, the proposed model can also demonstrate generalization and
differentiation principles. Moreover, it shows a process of recalling extinct conditional
stimuli (CS).

Following this introductory section, the research background including Pavlov’s
experiment and the developed memristor model is presented in Section 2. The proposed
memristive system is provided in Section 3. Mathematical descriptions and a performance
evaluation are carried out in Section 4. Finally, Section 5 highlights the main achievements.

2. Research Background
2.1. Pavlov’s Experiment

Psychological phenomena related to associative learning are collectively called classical
conditioning. One of the first studies to show the essential features of classical conditioning
was the well-known experiments of Pavlov with dogs [17]. The dogs salivated in the
presence of food, at the sight of food, an empty bowl, and even at the sound of lab assistants’
footsteps. This “acquisition” happens when an organism learns to link a neutral stimulus
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and an unconditional stimulus (UCS) [24]. Once these external stimuli were presented
repeatedly without food, the dogs faced extinction of learned behavior. Pavlov stimulated
a dog by showing food from a distance but not giving it. The dog initially salivated, but
the conditional response (CR) died ultimately. Nevertheless, the CR revived once the
UCS was provided again. This response is regarded as “spontaneous recovery” [24–26].
Later, Pavlov worked on “generalization” and “differentiation” [24]. Pavlov worked with
various tactile stimuli, such as scratching, rubbing, stroking, and pressing. He used these
complex stimuli as CS and hydrochloric acid as UCS. After a series of experiments with
different dogs, Pavlov found that when a dog had CS enforced in the form of scratching,
it also provided a CR when pressure was applied in the same area. He described the
event as a “generalization” due to the similar aspects of a stimulus with another one that
stimulated the dogs [25]. Because of the complexity and shared components of all tactile
sensory stimuli, these recurring components generalized the stimuli and enabled a novel
stimulus to cause salivation. Even though the tactile stimuli were comparatively complex,
they had specific characteristics and elements in each tactile stimulation. Therefore, with
a repeated presentation, “differentiation” between distinct types of tactile impulses was
possible. Pavlov also found that if tactile stimuli were repeatedly presented without being
reinforced by an UCS, the CR gradually waned until it disappeared. Figure 1 shows an
illustration of Pavlov’s experiment.
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Figure 1. Illustration of Pavlovian conditional reflex. (a) Brief description of the preposition of
the experiment. (b) Training scheme for dogs to associate unrelated things. (c) Generalization and
differentiation experiment. (d) Spontaneous recovery principle.

2.2. Memristor Model

A memristor is an electrical element that modulates and restricts the flow of electrical
current in a circuit while also keeping track of the amount of charge that has passed through
it. Popular memristor mathematical models include the linear ion drift model [27], the
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Simmons tunnel barrier model [28], the generalized model [29], the threshold adaptive
memristor model [30], and the voltage threshold adaptive memristor model [31]. The above
models do not describe the synaptic behavior of modern memristive devices in artificial
neural circuit systems. In this work, we utilized a voltage-controlled threshold memristive
model [32]. The mathematical memristor is defined as:

dw(t)
dt

=


uv

RON
D

ioff
i(t)−i0

f(w(t)), v(t)> VT+> 0

0, VT− ≤ v(t) ≤ VT+

uv
RON

D
i(t)
ion

f(w(t)), v(t)< VT−< 0

(1)

where ioff, i0, and ion are equation constants, VT+ and VT− are threshold voltages of opposite
polarity, and uv is the migration rate of the impurity layer, respectively. RON is the low
resistances of the memristor, D is the size, and w (t) is the doped region of the memristor.

The nonlinear ion drift phenomenon of the modeled memristor is expressed by [33]:

f(w(t))= 1−
(

2w(t)
D
−1
)2p

(2)

Figure 2 shows the gradual resistance variation of the modeled memristor with respect
to the input signal. The developed model has been implemented using Verilog-A in the
Cadence Virtuoso environment. The positive and negative threshold voltages are VT+ =
5 V and VT− = 1 V, respectively. According to Figure 2, when the positive terminal of the
memristor is given a positive pulse greater than VT+, the memristance starts to decrease.
Initially, the memristance decreases at a significant rate, and after that, it decreases at a
slower rate. The opposite case happens when the negative terminal is given a negative
voltage pulse less than VT−. The conductance is the reciprocal of memristance, and the
change in conductance can accurately reflect the change in synaptic weight. Increasing
(decreasing) the conductance of the memristor leads to the strengthening (weakening) of
synaptic weight. Table 1 shows the fundamental parameters of the modeled memristor.
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Table 1. The key parameters of the modeled memristor.

Parameters Values

Initial current (i0) 1 mA

On current (ion) 1 A

Off current (ioff) 10 µA

Memristor on-state resistance (RON) 100 Ω

Memristor off-state resistance (ROFF) 6.5 KΩ

Positive threshold voltage (VT+) 5 V

Negative threshold voltage (VT-) 1 V

Physical width (D) 3 nm

Linear ion mobility (uv) 4.5 × 10−19 m

The proposed memristor model is based on the AgInSbTe, which was fabricated in [34],
and the spice model was presented in [32]. The HP model [27] is unable to adequately
represent the device behavior of memristors based on AgInSbTe. Therefore, the new spice
model is used to obtain the characteristic of AgInSbTe-based memristors. The voltage
applied at both ends affects the memristance of the model. The memristor’s resistance
does not change when the applied voltage is withdrawn. Compared to previous memristor
models, this model seems to be more appropriate for designing an artificial network circuit.

3. The Proposed Memristive System

The proposed system has a control circuit and four input and one output neurons.
The input and output neurons are connected through two memristors and a resistor. The
entire network is divided into three synapses (Synapse 1 to Synapse 3). Neuron one
to Neuron four (N1–N4) are considered as food, scratching, spontaneous recovery, and
stroking stimuli, respectively. The summation of N1 to N4 regulates the response of the
output neuron. If the combination of the input stimuli and memristance (resistance) is
greater than a certain threshold voltage, the output neuron produces an output. As food
is UCS, a high weight should be connected to N1 to have an output when a productive
input is present. As both scratching and stroking are learned behaviors [24], a variable
weight should be connected, allowing for a weight change based on the given stimulus.
As synapse weight determines the strength of the connection between two neurons, and
food is a UCS, a resistor with low resistance (high conductance) is connected to N1 to
have a significant connection weight. As scratching and stroking are both instances of CS
and have to be learned [24], a memristor is connected to the rest of the input neurons. If
CS is given along with a USC, the reaction appears, and if CS is given without UCS, the
reaction eventually disappears. Therefore, the connection weight has to be variable. The
scratching and stroking stimuli are learned and can be faded without food stimuli. As a
result, memristors are employed to mimic the synaptic weight.

In order to feed the system with the input stimuli, a control circuit has been designed
using complementary logic gates (Figure 3). As depicted, the first operating signal of the
synaptic network (VOP1) has been established through the OR operation of food (N1) and
scratching (N2) stimuli. A two- input AND gate (AND1) serves to prepare the associating
signal (VA) related to the food and scratching stimuli. The AND2 logic gate collects the
data from all input stimuli to produce the recovery signal (VR) of the synaptic network. The
AND3, AND4, and OR2 logic gates have been exploited to generate the second operating
signal (VOP2) related to the food, scratching, and stroking stimuli. The third operating
signal (VOP3) is used to generate the related control signal when only food and scratching
(not stroking) stimuli are in operation.
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Figure 3. The schematic view of the proposed control circuit to feed synaptic network.

Table 2 shows the truth table for all combinations that have been used in the work.
Initially, all the stimuli are given separately and the responses of all the gates are recorded.
Afterwards, combinations of more than one stimulus are considered and the responses of
the logic gates are noted. It is worth mentioning that (↑) and (↓) are considered 1 and 0,
respectively.

Table 2. The truth table of the proposed control circuit.

AND1 AND2 AND3 AND4 AND5 OR1 OR2

N1 (↑) ↓ ↓ ↓ ↓ ↓ ↑ ↓
N2 (↑) ↓ ↓ ↓ ↓ ↓ ↑ ↓
N3 (↑) ↓ ↓ ↓ ↓ ↓ ↓ ↓
N4 (↑) ↓ ↓ ↓ ↓ ↓ ↓ ↓

N1 (↑) + N2 (↑) + N4(↓) ↑ ↓ ↓ ↑ ↑ ↑ ↑
N1 (↓) + N2 (↓) + N4 (↑) ↓ ↓ ↑ ↓ ↓ ↓ ↑

N1 (↓) + N4(↓) + N2 (↑) + N3 (↑) ↓ ↑ ↓ ↓ ↓ ↑ ↓

Figure 4 represents the modeled Synapse 1 (related to the food neuron) using a
threshold (1 V)-dependent switch and a resistor. When the input is fed with a 5 V magnitude
signal, the SW1 switch turns on and provides 7 V to the output. The RF = 80 Ω is in a series
connection with SW1 to translate the input stimuli to the synapse output.
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Figure 5 portrays the modeled Synapse 2 (related to the scratching, spontaneous recov-
ery, and stroking neurons) having two p-type (T1, T2) and two n-type (T3, T4) transistors.
When operating signal 1 (VOP1) is in a high state, T1 and T3 are on, and T2 and T4 transis-
tors enter the cut-off region. Correspondingly, reducing VOP1 to 0 V turns on T2 and T4
transistors and deactivates T1 and T3 transistors.
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Figure 5. The circuit-level implementation of modeled Synapse 2 consisting of three input neurons
(N2–N4).

The modeled Synapse 2 contains four switches (SW2 to SW5) with a threshold voltage
of 1 V, six resistors (R1 to R6) with a 1 KΩ resistance, one memristor (M1), one summing
operational amplifier (Amp1), and one inverting operational amplifier (Amp2). When the
second neuron (N2) is in operation, the SW3 turns on and passes V3 = 4.5 V to the memristor
navigating circuit. Since the V3 voltage (4.5 V) is smaller than the positive threshold voltage
(VT+ = 5 V), memristance of the memristor is not changed. However, when the acquisition
voltage signal, VA (5 V), and N2 are in operation, the accumulated voltage is now greater
than the positive threshold voltage of the memristor. Therefore, it forces the memristor to
decrease the memristance and increase the connection weight between N2 and the output
neuron. Similarly, when N3 is in operation, generates a recovery signal (VR), and feeds the
input of the SW4 with VR, the SW4 turns on and passes V4 voltage (2 V) to the memristor
navigating circuit. Since the V4 voltage (2 V) is smaller than the positive threshold voltage,
memristance does not change once again. However, when N3 and N2 are in operation, the
total voltage is greater than the positive threshold voltage. As a result, the memristance
changes, and the connection weight between N2, N3, and the output neuron increases. N4
goes directly to the negative terminal of M1. When the VOP1 is low and N4 is in operation,
V5 (2 V) goes to the negative terminal. In such a case, the memristance decreases when a
voltage less than −5 V is given. On the contrary, the memristance increases once a voltage
greater than −1 V is given. As a result, V5 is sufficient to change the memristance.

Figure 6 represents the modeled Synapse 3. The modeled Synapse 3 contains a switch
(SW6) with a threshold voltage of 1 V, the Memristor 2 (M2), and two p-type (T5, T6) and
two n-type transistors (T7, T8). When operating signal 3 (VOP3) is high, T5 and T7 are on,
and T6 and T8 transistors enter the cut-off region. Correspondingly, reducing VOP1 to 0 V
turns on T6 and T8 and deactivates T5 and T7 transistors. When N4 is involved and both
operating signal 2 (VOP2) and VOP3 are in a high state, SW6 turns on and passes V6 (6.2 V)
to the positive terminal of M2. When VOP3 is in a low state and VOP2 is in a high state, V6
goes to the negative terminal of the M2 memristor.
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Figure 6. The circuit-level implementation of modeled Synapse 3 consisting of two operating signals,
a switch, and Memristor 2 (M2).

The circuit-level implementation of the output neuron is illustrated in Figure 7. It
consists of one summing amplifier (Amp3), one inverting amplifier (Amp4), one comparator
(Amp5), and four resistors (R7 to R10). The output of the summing amplifier, Amp3, is
negative, and to invert the outcome of Amp3, an inverter, Amp4, is used. Amp5 is a
comparator with a threshold voltage of VREF (90 mV).
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Figure 7. The circuit-level description of the output neuron.

When the output of Amp4 passes the threshold voltage of Amp5, the output signal of
the comparator provides a high state (1 V), which means that the output neuron is activated.
On the contrary, if the Amp4 output voltage is lower than the threshold voltage, the output
neuron is not activated. This is similar to feed-forward propagation in neural networks.

In the following, the comprehensive mathematical description and performance eval-
uation of the proposed system are provided. It is worth mentioning that all the simulations
have been performed in the Cadence Virtuoso environment.

4. Mathematical Description and Performance Evaluation

Figure 8 shows the complete schematic of the proposed circuit for Pavlovian condi-
tional reflex. As depicted, the proposed design has five AND gates, two OR gates, and
five NOT gates. All the voltage-controlled switches (SW1 to SW6) have a 1 V threshold
voltage. The switches deliver V1 to V6 voltages to the synaptic network. Moreover, there
are five op-amps to perform summation (Amp1 and Amp3), inversion (Amp2 and Amp4),
and comparison (Amp5) operations. VOP1, VOP2, VOP3, VR, and VA represent the operating
signal 1, signal 2, signal 3, recovery, and associating signal, respectively. Memristor 1 (M1)
and Memristor 2 (M2) have an initial value of 6.5 KΩ. The entire circuit contains an output
neuron portion, three synapse portions, and a control circuit.
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Figure 8. The schematic view of the proposed circuit for Pavlovian conditional reflex.

Table 3 provides the critical description of each simulation framework. It is worth
noting that ”1” and ”0” binary digits represent activated and deactivated states of signals,
respectively.

Table 3. The status of electrical components and signals during simulation.

Steps VN1 VN2 VN3 VN4 VOP1 VOP2 VOP3 VA M1(KΩ) M2(KΩ) VOutput

Step 1 1 0 0 0 1 0 0 0 6.5 6.5 1
Step 2 0 1 0 0 1 0 0 0 Unvarying Unvarying 0
Step 3 0 0 1 0 0 0 0 0 Unvarying Unvarying 0
Step 4 0 0 0 1 0 1 0 0 Unvarying Unvarying 0
Step 5 1 1 0 0 1 1 1 1 0.15 0.14 1
Step 6 0 1 0 0 1 0 0 0 Increasing Increasing 1
Step 7 0 0 0 1 0 1 0 0 1.5 2.8 1
Step 8 1 1 0 0 1 1 1 1 Decreasing Decreasing 1

0 0 0 1 0 1 0 0 Increasing Increasing 1
1 1 0 0 1 1 1 1 Decreasing Decreasing 1
0 0 0 1 0 1 0 0 Increasing Increasing 1
1 1 0 0 1 1 1 1 Decreasing Decreasing 1
0 0 0 1 0 1 0 0 1.20 4.45 1

Step 9 0 0 0 1 0 1 0 0 1.47 5.28 0
Step 10 0 1 0 0 1 0 0 0 Unvarying Unvarying 1
Step 11 0 0 0 1 0 1 0 0 2.38 5.77 0
Step 12 0 1 0 0 1 0 0 0 Unvarying Unvarying 0
Step 13 0 1 1 0 1 0 0 0 0.31 Unvarying 1
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Initially, in Step 1, only the N1 is activated and turns SW1 on, which passes V1 to the
input terminal of the output neuron. The input of the comparator (Amp5) is determined as:

vAmp3 = −R7

RF
× v1 = −2.625 V

vAmp4 = −R9

R8
× vAmp3 = 2.625 V

As threshold voltage VREF = 90 mV, the comparator is in operation and activates the
output neuron.

In Step 2, only scratching (N2) is given. Therefore, the SW3 turns on and delivers V3
to Amp1. Moreover, the high state of VOP1 turns on T1 and T3 transistors. Consequently,
the V3 is fed to the summing amplifier, Amp1. In this regard:

vAmp1 = −R4

R2
× v3 = −4.5 V

vAmp2 = −R6

R5
× vAmp1 = 4.5 V

vAmp3 = − R7

RM1
× vAmp2 = −20.7 mV

vAmp4 = −R9

R8
× vAmp3 = 20.7 mV

The output of VAmp4 is 20.7 mV, which is lower than VREF = 90 mV of Amp5 and, as a
consequence, the output neuron is not activated.

In Step 3, only spontaneous recovery (N3) is given, which is connected to a four-input
AND gate, and it only works when N1 and N4 are off and N2 and N3 are on. As long as
N2 stimulus is not in operation, nothing comes to Amp1, and the output neuron is not
activated.

In Step 4, only the stroking (N4) neuron is activated. Therefore, SW5 turns on and
passes V5 (2 V) to the negative terminal of Memristor 1 (M1). The low state of VOP1 turns
on T2 and T4 transistors. However, M1 is in the ROFF state (high-resistance state). Since
applying a voltage greater than the threshold voltage for the negative terminal causes the
memristor to increase the memristance, there is no scope for increasing the memristance
beyond the high-resistance ROFF state. Furthermore, a high state of VOP2 activates SW6,
and a low state of VOP3 turns on T6 and T8 transistors. However, the second memristor
(M2) is also in the ROFF state, so its memristance retains the previous value. The output of
VAmp4 in this step is insufficient to turn on Amp5 and, therefore, the output neuron is not
activated.

Figure 9 shows these four steps where food (N1), scratching (N2), spontaneous recov-
ery (N3), and stroking (N4) stimuli are in operation. Each stimulus is presented for 36 s,
and the stimuli comprise six cycles each. When a food stimulus is given, the output neuron
produces an output.

In Step 5, food (N1) and scratching (N2) stimuli are given. As VOP1 is in a high state,
the T1 and T3 transistors turn on. In addition, the VA signal turns on the SW2, which
supplies V2 (5 V) to Amp1. The N2 turns on the SW3, which provides V3 (4.5 V) to Amp1.
Moreover, the high state of VOP2 signal turns on the SW6. The high state of operating signal
VOP3 turns on the T5 and T7 transistors, and the input of the comparator op-amp (Amp5)
is determined as:

vAmp3 = −
(

R7

RF
× v1

)
−
(

R7

RM1
× vAmp2

)
−
(

R7

RM2
× v6

)
= −5.79 V

vAmp4 = −R9

R8
× vAmp3 = 5.79 V
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Figure 9. The initial transient response of each input neuron stimulus.

The output of VAmp4 is 5.79 V, which is higher than VREF = 90 mV of Amp5. As a
consequence, the output neuron is activated.

In Step 6, only scratching (N2) stimulus is given to the system. The high state of
operating signal VOP1 turns on the T1 and T3 transistors. The SW3 provides V3 (4.5 V) to
the system. Although the voltage V3 is less than the positive voltage threshold of M1, the
unvarying memristance allows the output neuron to have an outcome. The input of the
comparator op-amp (Amp5) is determined as:

vAmp3 = − R7

RM1
× vAmp2 = −0.88 V

vAmp4 = −R9

R8
× vAmp3 = 0.88 V

where VAmp4 = 0.88 V, which is higher than VREF = 90 mV of Amp5, activating the output
neuron.

In Step 7, only stroking (N4) is given. The low state of VOP1 turns on the T2 and T4
transistors. Further, the VOP2 activates the SW6, and a low VOP3 state turns on the T6 and
T8 transistors. Since applying a voltage greater than the threshold voltage of the modeled
memristor to the negative terminal increases the memristance, the input of the comparator
op-amp (Amp5) with the latest memristance is determined as:

vAmp3 = −
(

R7

RM1
× v5

)
−
(

R7

RM2
× v6

)
= −0.105 V

vAmp4 = −R9

R8
× vAmp3 = 0.105 V

The value of VAmp4 is 0.105 V, which is higher than VREF = 90 mV of Amp5, and this
leads to the firing of the output neuron.

From Step 5 to Step 7, the generalization process is demonstrated. In the original
experiment, both food (N1) and scratching (N2) were given simultaneously to train dogs
to associate scratching with food. After conditioning, the dog salivated even with only
scratching stimuli. However, tactile stimuli are complex and difficult to differentiate; hence,
stroking stimuli also produced salivation.
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Figure 10 shows the transient response of Steps 5, 6, and 7. Step 5 represents the
training period and Steps 6 and 7 represent the testing periods of scratching (N2) and
stroking (N4) stimuli, respectively. Initially, food (N1) and scratching (N2) stimuli are given
to train the system. These are given for 25 cycles and 150 s. The given voltage is more
than the positive threshold of M1 and M2. It causes the memristance of the memristors to
decrease and triggers the comparator to provide an output. As the memristance reduces,
the connection strength between N2 and the output neuron increases. When only the
N2 is presented for 36 s, the output neuron still provides the related response since the
memristance does not change due to the insufficient voltage given by the N2 stimuli to the
memristor. When only stroking (N3) is given for 36 s, the memristance of both memristors
increases. However, the memristance of both memristors is not high enough to hamper the
system from producing an output.
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Figure 10. The transient response of Step 5 to Step 7.

Step 8 comprises three rounds of trials, and each has two stages. Initially (Stage 1),
food (N1) and scratching (N2) stimuli are given together, and in the latter stage (Stage
2), only stroking (N4) is given. The first stage acts similar to Step 5 and the input of the
comparator op-amp (Amp5) with M2 is determined by

vAmp3 = −
(

R7

RF
× v1

)
−
(

R7

RM1
× vAmp2

)
−
(

R7

RM2
× v6

)
= −3.4517 V

vAmp4 = −R9

R8
× vAmp3 = 3.4517 V

The later stage behaves similar to Step 7 and can be obtained as:

vAmp3 = −
(

R7

RM1
× v5

)
−
(

R7

RM2
× v6

)
= −0.1019 V

vAmp4 = −R9

R8
× vAmp3 = 0.1019 V

Each of the three rounds can be sorted out following Steps 5 and 7. In each round of
Step 8, the comparator receives more than the threshold voltage as its input, so the output
neuron produces an outcome in every case.
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Steps 9 and 10 are both testing steps, and these steps show how the system could
differentiate the tactile stimuli and render outputs according to their prospective charac-
teristics. In Step 9, only stroking (N4) is given and the input of the comparator op-amp
(Amp5) with the latest memristance is determined as:

vAmp3 = −
(

R7

RM1
× v5

)
−
(

R7

RM2
× v6

)
= −0.0746 V

vAmp4 = −R9

R8
× vAmp3 = 0.0746 V

According to calculations, the output of VAmp4 is 74.6 mV, which is lower than the
reference voltage of Amp5 (90 mV), and the output neuron does not fire.

In Step 10, only scratching (N2) is given and the input of the comparator op-amp
(Amp5) with M2 is given by:

vAmp3 = − R7

RM1
× vAmp2 = −0.092 V

vAmp4 = −R9

R8
× vAmp3 = 0.092 V

The output of VAmp4 is 91.6 mV, which is higher than the reference voltage of Amp5.
Therefore, the output neuron starts to engender the related response.

Steps 8 to 10 can demonstrate the differentiation process. The researchers found
through the Pavlovian reflex experiment that although tactile stimuli are difficult to differ-
entiate, there are some specific characteristics within every stimulant. In the experiment, as
the dogs were frequently exposed to the same stimuli, they eventually learned to differenti-
ate the dissimilarities between stimuli. As a result, they eventually salivated only when
scratching (N2) was given, which was initially associated with food (N1).

Figure 11 depicts the transient response of Steps 8, 9, and 10. Step 8 consists of three
rounds, and each round consists of stages: (1) food and scratching are given, and (2) only
stroking is given. Stages 1 and 2 are given for six and three cycles, respectively. The three
rounds ran from 0 to 162 s. Stage 1 decreases the memristance of both memristors, which
makes a strong connection between N2 and the output neuron. As connection strength
increases, the system delivers an output at this stage. Stage 2 forces a rise in memristance
for both memristors, which indicates a reduction in the connection strength of presynaptic
neurons and postsynaptic neurons. However, the connection remains strong enough to
produce an output in Stage 2 as well. Step 9 starts from 198 s and ends at 216 s and comes
only with a stroking (N4) stimulus. As the connection weight decreases, the stroking
stimulus does not provide an outcome when an interval of 36 s is introduced to the system
to mimic the actual experiment of Pavlov. However, the memristance of M1, after several
fluctuations, was low enough to provide an output when scratching (N2) is given alone for
36 s in Step 10.

Step 11 and onwards is a continuation of Step 10. Memristance of both memristors
starts from the end of Step 10. Step 11 and Step 12 are testing phases to check the behavior
of the system. In Step 11, only stroking (N4) is given, and it works in the same way
Step 7 works. The input of the comparator op-amp (Amp5) with latest memristance is
determined as:

vAmp3 = −
(

R7

RM1
× v5

)
−
(

R7

RM2
× v6

)
= −0.05738 V

vAmp4 = −R9

R8
× vAmp3 = 0.05738 V

The Amp4 produces 57.3 mV, which is lower than 90 mV reference voltage of Amp5.
In this regard, the output neuron does not fire.
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Figure 11. The transient response of Step 8 to Step 10.

In Step 12, only scratching (N2) is given and the input of the Amp5 is defined as:

vAmp3 = − R7

RM1
× vAmp2 = −0.05661 V

vAmp4 = −R9

R8
× vAmp3 = 0.0566 V

The output of Amp4 is 56.6 mV, and compared to the reference voltage of Amp5, the
output neuron is not activated.

Step 13 consists of activating two stimuli: scratching (N2) and spontaneous recovery
(N3). When both stimuli are given, the memristance decreases and allows the output
neuron to produce the related response.

vAmp3 = − R7

RM1
× vAmp2 = −0.6325 V

vAmp4 = −R9

R8
× vAmp3 = 0.6325 V

Based on the calculations, the output neuron starts to fire the related output.
Based on the description, it can be inferred that step 12 shows the extinction of a

conditional response. Moreover, step 13 indicates the retrieval of the response after a
period of time following the extinction. Furthermore, the spontaneous recovery principle is
demonstrated using steps 11 to 13.

According to the Pavlovian experiment, the dogs would salivate in response to a
sudden ring (CS) of a bell even after enough time had passed since the last extinction of the
CR. Once both spontaneous recovery and scratching stimuli are given, the conductance
improves. As a result, the output neuron engenders the related response.

Figure 12 shows the transient response of Steps 11, 12, and 13. Initially, stroking
(N4) is given in Step 11 for 30 s, and it increases the memristance of both memristors. As
memristance increases, the connection strength of the neurons decreases. As a result, the
stroking stimulus does not provide any output. Step 12 has a scratching (N2) stimulus
given for 30 s; the output neuron is not activated since memristance is high. Step 13 is given
after a period of time (60 s) to mimic the experiment, which reduces the memristance of
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M1 and eventually makes a strong connection between the N2, N3, and the output neuron.
Therefore, the output neuron produces the related response.
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Our demonstrations show that the system can associate neutral stimuli with UCS and
make them CS. Initially, a neutral stimulus is given with UCS to invoke the association
phase, which makes the novel stimulus a CS. The system ultimately forgets to produce
an outcome when only CS is given. Shortly afterwards, following the extinction of the
association, once CS is given again, the system renders an output. Because tactile stimuli
are difficult to distinguish, they can elicit an outcome even when not conditioned. However,
each stimulus has specific characteristics that can be discerned after several encounters.
These propositions can be demonstrated using the proposed system and Steps 1 to 13 are
consistent with the Pavlovian conditional reflex experiment.

5. Conclusions

The goal of this work was to build a system in a memristive neural network that
can mimic the principles of Pavlovian conditional reflexes such as acquisition, extinction,
generalization, differentiation, and spontaneous recovery. This exploration was inspired by
experiments conducted by Pavlov and his assistants. Initially, it explains the connection
strength of different neurons and the reasoning behind using resistors and memristors as
synapses. It also describes how using a memristor has helped to achieve various connection
strengths that assist in explaining the system behavior of weak and strong connections
between neurons. Initially, the input neurons are initiated to show a preliminary response
of the system. Afterwards, a training session is conducted to associate food and scratching
and later, a test with scratching and stroking is performed. Both the association and
testing phases invoke an outcome. However, after a while, once stroking is given, no
salivation happens. Scratching, however, induces a reaction because the proposed system
can distinguish between both tactile stimuli. Moreover, the system is capable of restoring
the extinguished stimulus to demonstrate its recovery capabilities. Our simulations show
varying synaptic weights matching real-world scenarios and help the system to be in
agreement with the experiments conducted by Pavlov and his assistants.
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