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Abstract: Monitoring sleep conditions is of importance for sleep quality evaluation and sleep disease
diagnosis. Accurate respiration detection provides key information about sleep conditions. Here,
we propose a perforated temperature sensor that can be worn below the nasal cavity to monitor
breath. The sensing system consists of two perforated temperature sensors, signal conditioning
circuits, a transmission module, and a supporting analysis algorithm. The perforated structure
effectively enhances the sensitivity of the system and shortens the response time. The sensor’s
response time is 0.07 s in air and sensitivity is 1.4‰◦C−1. The device can achieve a monitoring
respiratory temperature range between normal room temperature and 40 ◦C. The simple and standard
micromachining process ensures low cost and high reproducibility. We achieved the monitoring of
different breathing patterns, such as normal breathing, panting, and apnea, which can be applied to
sleep breath monitoring and exercise information recording.

Keywords: wearable device; respiratory sensor; temperature; sleep monitoring

1. Introduction

Breath is a basic physiological activity reflecting physical and mental states of the human
body [1]. For example, rapid breath often indicates stress, panic, or fear, and high exhaled gas
temperatures may indicate respiratory inflammation [2,3]. Moreover, many physiological and
psychological problems, such as stress, anxiety, chronic obstructive pulmonary disease, and
post-traumatic stress disorder, can be regulated or alleviated by respiratory treatment [4,5].

With increasing social pressures, the incidence of sleep disorders is getting higher and
higher, often accompanied by abnormal respiratory system symptoms. Obstructive Sleep
Apnea-Hypopnea Syndrome (OSAHS) is the most common sleep respiratory disorder [6–8]. It
damages the cardiovascular system and may cause hypertension, aggravation of respiratory
failure, arrhythmia, and even sudden death [9]. Continuous hypoxia caused by apnea or hypop-
nea may lead to myocardial infarction or cerebral infarction. In addition, according to relevant
investigations and studies, the incidence increases with age [10,11]. Therefore, continuous and
accurate respiratory monitoring is important in both daily and clinical applications [12].

At present, the sensing mechanisms of respiratory sensors mainly include temperature,
humidity, airflow, stress and strain [13–15]. Polysomnography (PSG) is commonly used in
the sleep examination department of hospitals to manifest sleep respiratory signals and other
electrophysiological signals [16]. These devices use intubation-type nasal airflow pressure and
temperature monitoring modules that invade the nasal cavity and cause strong discomfort.
Additionally, thorax and abdomen breath monitoring using a piezoelectric belt is susceptible
to noise caused by limb movements and affects normal breath. There are also some indi-
rect measurement methods, such as 3D image sensing, ultrasonic sensing, and fiber-optic
sensing, which can be used to monitor respiration by detecting chest movement. However,
these measurement schemes are susceptible to body movements [17–21]. Presently, some
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respiratory monitoring devices use face-mask nasal airflow detection devices, which are too
large and cause discomfort [22]. Jin et al. used a piezoresistive MEMS sensor (connected
through a medical nasal cannula) to obtain breathing signals for detecting apnea [23]. Shinya
Kano et al. proposed an all-painting process to produce a respiration sensor made from a
humidity-sensitive nanoparticle (NP) film and a graphite trace [24]. Tong Zhang et al. describe
how polymer humidity sensors with humidity-sensitive polyelectrolytes perform ultrafast
responses for respiration monitoring. Asadnia et al. have developed a polymeric airflow
sensor based on nanocomposites of vertically grown graphene nanosheets (VGNs) with
polydimethylsiloxane (PDMS) and have explored their applications in monitoring human
respiration. Xue Feng et al. built skin-like hybrid integrated circuits (SHICs) with stretch-
able temperature sensors and commercial chips for long-term respiration monitoring [25].
However, the response and recovery times of the device are relatively long. Fiber Bragg
grating (FBG) is also utilized to monitor respiration, which has the advantages of small size
and anti-electromagnetic interference. However, a hygroscopic coating and a special optical
demodulator are additionally required to read the information [26,27]. Y. Liu et al. intro-
duced an ultrathin respiration sensor based on the thermal convection effect. The device
features a filamentary fractal design with a gold heating electrode and a mini sensor with
high thermal sensitivity [28]. Tao Jiang et al. introduced a wearable hot-film/calorimetric
breath sensing system composed of a hot-film senor in the center and two calorimetric sensors
on two sides [29]. However, the power consumption of this kind of sensor is large. Low
thermal conductivity for the substrate is significant for maintaining unnecessary heat loss.
The thermal conductivity of the silicon substrate is high; therefore, it needs to be suspended.
The photolithography process for perforated or suspended structures is more complicated,
and the cost is higher. Additionally, the suspended metal wires are easily destroyed. The
perforated PI structure has sufficient mechanical strength and low thermal conductivity.

This paper reports a perforated respiratory sensing system, which is composed of
two flexible perforated respiratory sensors (fPRS), a signal processing circuit, a lithium
battery, and enclosure architectures. The perforated respiratory sensor effectively improves
the gas convection efficiency and the thermal sensitivity. As shown in Figure 1a, the device
is placed below the nose, where it is able to accurately sense the human breath status. The
signal processing circuit is used for signal acquisition, conditioning and transmission, as
shown in Figure 1d. At the same time, it can also transmit the breathing signal to the
external device for real-time display. With the algorithm design, it can realize the diagnosis
of obstructive apnea, hypopnea, or other respiratory diseases.
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with measuring circuit and PC. sensor.
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2. Experimental Section
2.1. Design of the Sensor

Platinum (Pt) is a material with stable physical and chemical properties, and is compat-
ible with various fabrication processes [30,31]. The resistance-temperature characteristic of
Pt shows good linearity and a fast thermal response. Moreover, its good electrical properties
and thermal conductivity make it sensitive to temperature changes, thereby helping to
reduce the drive current. The above advantages prove that Pt is a suitable material for res-
piratory temperature sensors with high-precision measurement. The choice of low thermal
conductivity for the substrate is significant to maintaining unnecessary heat loss around
the substrate and the sensor. Therefore, Polyimide (PI) is selected as the substrate material.

Figure 1c provides an image of the perforated respiratory sensor. The perforated
structure of the substrate can simplify the design of the mask and control the sputtering
graphics, which can be directly processed. It is of great significance to improve the align-
ment accuracy of the mask. As shown in Figure 1b, the small rounded fPRS can be installed
in the short nasal breathing tube, which is very light to wear and does not affect normal
physical activities. The warm air exhaled from the nostril can pass through the perforated
structure and fully contact the platinum temperature-sensitive layer, which effectively
improves the sensitivity of the sensor.

In general, the calculation formula of metal resistance is as follows:

R = ρ
L
S

(1)

where ρ is the metal resistance, L is length of resistance, and S is the cross-sectional area of
resistance.

According to the Fuchs–Sondheimer (FS) and Mayadas–Shatzkes (MS) models, metals
with a smaller mean electron free path (EMFP) exhibit a size effect for smaller dimen-
sions [32]. An inverse relationship between film thickness and electrical resistivity has been
commonly demonstrated with the FS surface scattering and MS grain boundary scattering
models [33,34]. According to the FS model, the resistivity of thin film is given by:

ρ = ρbulk[1 − 3
2k (1 − p)

∫ ∞
1 ( 1

t3 − 1
t5 )

1−e−kt

1−pe−kt dt]−1,

k = d
λ

(2)

where d is the film thickness, k is the EMFP, λ is the intrinsic electron mean free path and p
is the surface scattering factor. As the platinum film thickness approaches the EMFP (about
30 nm), a strong increase in resistivity is observed [35].

Considering that the inner diameter of the nose of an adult is generally less than 1 cm,
the design sensor diameter is 8 mm. The geometry is designed with a line width of 200 µm
and spacing of 200 µm as the sensing area. The metal platinum film thickness of the sensor
is 50 nm.

2.2. Fabrication

Figure 2 shows the manufacturing process of the perforated respiratory sensor. Firstly,
two copper leads are patterned on the PI substrate via the standard flexible printed circuit
board (fPCB) process. The mesh-hollowed shape is made by performing laser-cutting, a
standard process for fPCB, forming a perforated structure as shown in Figure 2a. Then, it is
soaked in ethanol and cleaned ultrasonically for 10 min to remove organic impurities on the
substrate. Afterwards, it is treated with oxygen plasma cleaning to remove the insoluble
organic impurities on the surface and strengthen the adhesion of Pt. Finally, the Pt layer is
sputtered with a shadow mask for pattering of the thermo-sensitive layer. The dashed line
is the edge of the shadow mask, as shown in Figure 2b.
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Figure 2. Fabrication processes of the perforated respiratory sensor. (a) Print two copper leads on
PI substrate and laser cut the target pattern. (b) Pt deposition on PI substrate with shadow mask.
(c) Parylene-C deposition on the surface. (d) The shadow mask is designed as a bottom plate with a
graphic groove and a cover plate with limit holes.

It is worth noting that the perforated pattern on the substrate is specially designed to toler-
ate the edge diffusion and misalignment during the sputtering process, ensuring good sensor
consistency. With this design, the path of the series resistor will always remain unchanged
when process deviation occurs. Moreover, a self-alignment structure is designed to further
increase the alignment accuracy. As shown in Figure 2d, the mask is designed as a bottom plate
with a graphic groove and a cover plate, which can be combined together and fixed by the limit
holes at the four corners to ensure the stability of the mask during the sputtering process.

In order to avoid the influence of air humidity and mechanical damage on the sensor
in use, Parylene-C is encapsulated by Chemical Vapor Deposition (CVD). By configuring
the deposition rate, the 0.3 µm-thickness Parylene-C can be controlled to achieve a good
packaging effect as shown in Figure 2c.

2.3. Simulation

The thermodynamic simulation of the device is carried out using finite element analy-
sis software (COMSOL 5.4) to prove the excellent thermal conductivity of the fPRS. The
environment of the model is set as air; the substrate and heat-sensitive materials are PI
and Pt, respectively. The relevant parameters are set to simulate the temperature change
caused by breathing. It is assumed that the ambient air temperature far away from the
sensor is 20 ◦C and the respiratory air temperature is 30 ◦C. Set a voltage of 0.01 V on one
end of the model and ground on the other end. Set the heat transfer module to an external
forced convection, and set 6 m/s and 10 m/s, respectively, to simulate slow breathing and
fast breathing. The same conditions are used to simulate a non-perforated structure and
perforated structure, respectively. The temperature range of the perforated sensor is 20 ◦C
to 26.8 ◦C at a respiratory airflow speed of 6 m/s, with a maximum temperature of 28.0 ◦C
at a speed of 10 m/s, as shown in Figure 3a,b. The temperature range of the non-perforated
sensor is 20 ◦C to 25.5 ◦C at a speed of 6 m/s, and the maximum temperature is 26.5 ◦C at a
10 m/s speed, as shown in Figure 3c,d. Figure 3e shows the temperature distributions from
point A to B for non-perforated and perforated sensors at different respiratory airflow rates,
proving that the perforated sensor has a larger temperature dynamic range. By comparison,
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it can be found that the perforated sensor has a higher temperature response, indicating
that it is more sensitive to the temperature change of breathing.
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Figure 3. Comparison of the heat transfer properties between the non-perforated sensor and perfo-
rated sensor. (a) The temperature distribution of the perforated sensor at a respiratory airflow speed
of 10 m/s and (b) at a speed of 6 m/s. (c) The temperature distribution of the non-perforated sensor
at a speed of 10 m/s and (d) at a speed of 6 m/s. (e) The temperature distributions from point A to B
for non-perforated and perforated sensors at different respiratory airflow rates.

3. Results and Discussion
3.1. Metrological Characterization

The original impedance of the fPRS is about 14 kΩ, and there is good consistency
between different sensors. Through observation under a microscope, as shown in Figure 4a,
the appearance is complete and uniform, and the edges are straight and neat. The sputtered
Pt film has no cracks, and the width and thickness are uniform, as shown in Figure 4e–f.
The connection between the copper wire and platinum is firm, as shown in Figure 4g.
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Figure 4. (a) Microscopic image of the perforated respiratory sensor. (b) 180-degree bend and (c) 90-
degree bend. (d) Integrated picture. (e,f) SEM image of the perforated respiratory sensor. (g) SEM
image of the connection between copper wire and platinum.

We attached the sensor to the nasal air duct, as shown in Figure 4d. The material of the
tube is Acrylonitrile Butadiene Styrene (ABS) which is non-toxic and harmless. These nasal
air ducts can prevent the influence of the external airflow. Simple multiple mechanical
tests are performed on the fPRS including 180-degree and 90-degree bending, as shown
in Figure 4b,c, showing good flexibility. The flexibility property of the sensor prevents
damage during insertion into the nasal air duct.
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We tested the response time of the sensor under different conditions in the electro-
chemical workstation (PGSTAT302N). As the actual operating condition is 100 µA, the
test condition is to implement a 100 µA direct current at one end and ground the other
end. The test result is shown in Figure 5a. According to the calculation of the amplitude,
rising to 90% of the maximum, the response time of the sensor is 0.07 s. We know the
respiratory rate of humans is 0.2–0.5 Hz. The response time is much smaller than the
human breathing period, indicating that the perforated respiratory sensor is sufficiently
fast when monitoring breathing signals. In order to verify the performance of the sensor to
isolate the influence of humidity, the sensor was placed in deionized water; the response
time is 0.1 s, as shown in Figure 5b. The impulse test is performed by applying a pulse
current at intervals of 1 s. As shown in Figure 5c, the response time is small and there is
almost no delay. The performance of the sensor fully meets the response time requirements
of respiratory monitoring. A respiratory temperature sensor and standard high-precision
temperature module are placed close to one another in a heating box. The temperature
of the heating box was set from 23 ◦C to 40 ◦C with a step of 1 ◦C, and the resistance of
the sensor was measured after the temperature stabilized. Sensors were tested five times
and the mean and standard error of the mean were calculated. Figure 5d shows that the
repeatability is good. The same method was used to test five sensors and more consistent
results were obtained, as shown in Figure 5e.
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3.2. System Set-Up and Calibration

We designed a circuit acquisition module with a Bluetooth function, thereby improving
the comfort of breathing monitoring. The way of wearing the respiratory sensor is shown
in Figure 6a, greatly reducing the discomfort of the subjects. The sensors can be connected
to external circuit modules by flexible wires, as shown in Figure 6b. A lithium battery is
also encapsulated by the case. The geometric dimensions of the shell are 38 cm in length,
10 cm in width, and 15 cm in height, respectively, and the inclination angle is 40 degrees.
The device does not penetrate the nostrils, and it can be reused after alcohol sterilization.
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Figure 6. (a) Photograph of the device worn below the nose. Subject: 23 years of age, female, nonprofes-
sional healthy volunteer. (b) Device with wires is connected to external circuit modules. (c) Architecture
of signal acquisition circuit. (d) Experimental setup for respiration simulation. (e) Monitoring results of
simulated respiratory signals.

The architecture of the circuit is shown in Figure 6c, including the fPRS, current source,
amplifier, analog-to-digital converter (ADC), and micro control unit (MCU) board with Blue-
tooth. The power module includes a 100 µA constant current source chip. The constant current
is added to the respiratory sensor and a thermistor, and the voltage of the sensor and thermistor
is differentially amplified using an amplifier. The resistance of the sensor can be obtained by
measuring the output voltage. The thermistor can monitor the external ambient temperature,
and after differential amplification with the sensor, the influence of the ambient temperature on
the circuit performance can be excluded. The MCU configures the ADC with a 32 Hz sampling
frequency and 16 bits resolution to obtain the voltage signal. It converts the analog signal
voltage value into a digital signal, and transmits it to the computer through Bluetooth.

To preliminarily verify the performance of the device in monitoring breathing, the
airflow tube of the commercial ventilator (BY-Dreamy-B19) and the respiratory sensor
were placed close together for testing, Figure 6d. The parameters of the ventilator were
set to simulate the airflow of human breathing and a comparative study was conducted.
The inspiratory pressure was set to 25 cmH2O, the expiratory pressure to 5 cmH2O, the
temperature to 35 ◦C, and the test time to 35 s. Next, the inspiratory pressure was changed
to 15 cmH2O, the expiratory pressure to 5 cmH2O, and the test duration and temperature
remained unchanged. The test results are shown in Figure 6e, where the black line is the
airflow generated by the ventilator, and the magenta and blue lines are the data collected
by the sensors in the left and right channels of the device, respectively. The amplitudes of
the signals of the two channels are significantly contrasted after changing the parameter.
At the same time, the data collected by the two channels are basically consistent.

3.3. Monitoring of Respiration

A pilot study was performed on a non-professional healthy 23-year-old female volun-
teer (body mass 50 kg, and height 165 cm) to assess the feasibility of the wearable device
for monitoring respiration. The participants in the respiratory monitoring experiment were
investigators who volunteered to be subjects. The protocol for the study was approved by
the Ethics Committee of Peking University Sixth Hospital. The volunteer sat quietly for ten
minutes to ensure steady breathing. Then, we began to collect breathing signals for one
minute and conducted five experiments.

To illustrate the respiratory waveform clearly, part of the original respiratory signal
is shown in Figure 7a. Since the collected data are affected by noise and body movement
artifacts, the signals need to be filtered. The results, after filtering in MATLAB, are shown
in Figure 7a. Here, mainly Butterworth low-pass filtering was used to eliminate noise and
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baseline drift. The respiratory signal is filtered using a 10th order low-pass Butterworth
filter with a cutoff frequency of 3 Hz. The magnitude of original signals and filtered signals
are shown in Figure 7b, respectively. The respiratory rate is in the range of 0.2–0.5 Hz. It is
clear that the device can monitor breathing signals effectively.
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Figure 7. Breath signal recorded by the proposed system. (a) Original breathing signal and filtered
breathing signal. (b) Magnitude analysis of the orignal signal and filtered signal.

The volunteer simulated breathing in different states, including normal breathing, deep
breathing, shallow breathing, rapid breathing, and apnea. We obtained breathing waveforms
of different frequencies and amplitudes. As shown in Figure 8a, the yellow part represents
deep breathing, the green part is normal breathing, and the orange part is shallow breathing.
The amplitudes of deep breathing are larger than shallow breathing. Shallow breathing is
smaller in amplitude but with a greater breathing rate than deep breathing. In Figure 8b,
normal breathing is indicated in green. During apnea, there is basically no change in the
apparent amplitude. The light green part indicates abnormal breathing, and the frequency
and amplitude of breathing are obviously different from normal breathing.
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sensor in respiratory monitoring during normal breathing, abnormal breathing, and apnea.
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Monitoring sleep apnea is an important area, and sleep disorders require continuous
breathing monitoring during sleep. The volunteer simulated sleep breathing, and we
monitored long periods of normal sleep breathing signals for up to 6 min as shown in
Figure 9a. The normal breathing signal during sleep is very stable. When apnea or hypopnea
occurs, the signals change significantly, as shown in Figure 9b,c, respectively.
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Figure 9. (a) Long−time measurement results (6 min). (b) Apnea respiration signal. (c) Hypopnea.
The voltage changes of the sensor during different exercising. (d) Sitting. (e) Walking. (f) Running.
(g) After running.

Here, we proposed a method for detecting apnea. Firstly, monitor the signal in the
state of calm breathing, and calculate the amplitude of the respiratory waveform. Search
the peaks and troughs of the respiration waveform, and the points where the respiration
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amplitude is significantly below the threshold. Conduct high-pass filtering of the signal
with a cutoff frequency of 0.1 Hz and set the baseline to 0. Set the time window to 5 s
and use increments of 1 s. Compare the extreme points in each time window to determine
the peaks and troughs of waves. When the peak value is detected to be less than the
threshold value or the valley value is greater than the threshold magnitude, the decreases
in magnitude and duration are recorded. As shown in Figure 9c, a decrease in the breathing
amplitude of more than 30% for more than 10 s is defined as sleep apnea hypopnea. When
the distance between the peaks and troughs of the respiratory waves is reduced by 90% of
the threshold of the normal amplitude and the duration is 10 s or more, it can be regarded
as sleep apnea. Figure 9b shows the test result of respiratory signals under simulated apnea
conditions for preliminary diagnosis. There is a period of apnea from 15 s to 34 s.

We measured people’s breathing in different exercise states as shown in Figure 9d–g.
When sitting, the respiratory signal is relatively gentle, and the amplitude is small. The
breathing rate of walking and the breathing rate of sitting are both about 0.3 Hz with little
difference. When running, breathing speeds up and the frequency becomes greater, at
about 0.5 Hz. Running is followed by the recovery process, for which the amplitude of the
respiratory waveform is large, and the frequency reduces. The results demonstrate that
wearing fPRS did not affect body movements and clearly distinguish between different
types of body movements.

4. Conclusions

In summary, we propose a wearable respiratory sensor based on thermal sensitive
materials with a perforated structure for respiratory monitoring. The respiratory sensor
adopts a new structure and fabrication process, which improves the thermal conductivity
of the sensor and solves the uncertainty in the process. The simulation results show that
the perforated design will improve the dynamic range and the temperature sensitivity of
the sensor. Because of the protection of the nasal air ducts, the sensors will not be directly
interfered with by external factors such as environmental humidity and airflow; the sensors
do not interfere with breathing.

In various respiration tests, the normal and abnormal breathing signals measured by
the sensors show significant differences. Therefore, the proposed sensor is promising for
sleep breathing monitoring and the diagnosis of respiratory disorders in the future.

5. Patents

This paper is based on some patents, such as the one named Nasal Respiratory Airflow
Monitoring Device (ZL 2020 2 1943771.1).
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