
Citation: Liu, M.; Luo, S.; Han, K.;

DeMara, R.F.; Bai, Y. Autonomous

Binarized Focal Loss Enhanced

Model Compression Design Using

Tensor Train Decomposition.

Micromachines 2022, 13, 1738.

https://doi.org/10.3390/

mi13101738

Academic Editor: Arman Roohi

Received: 1 September 2022

Accepted: 11 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Autonomous Binarized Focal Loss Enhanced Model
Compression Design Using Tensor Train Decomposition
Mingshuo Liu 1 , Shiyi Luo 1, Kevin Han 1, Ronald F. DeMara 2,* and Yu Bai 1,*

1 Electrical and Computer Engineering Department, College of Engineering and Computer Science,
California State University, 800 N State College Blvd, Fullerton, CA 92831, USA

2 Department of Electrical and Computer Engineering, College of Engineering and Computer Science,
University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA

* Correspondence: Ronald.Demara@ucf.edu (R.F.D.); ybai@fullerton.edu (Y.B.);
Tel.: +1-407-823-5916 (R.F.D.); +1-657-278-5359 (Y.B.)

Abstract: Deep learning methods have exhibited the great capacity to process object detection tasks,
offering a practical and viable approach in many applications. When researchers have advanced deep
learning models to improve their performance, the model derived from the algorithmic improvement
may itself require complementary increases in computational and power demands. Recently, model
compression and pruning techniques have received more attention to promote the wide employment
of the DNN model. Although these techniques have achieved a remarkable performance, the class
imbalance issue during the mode compression process does not vanish. This paper exploits the
Autonomous Binarized Focal Loss Enhanced Model Compression (ABFLMC) model to address the
issue. Additionally, our proposed ABFLMC can automatically receive the dynamic difficulty term
during the training process to improve performance and reduce complexity. A novel hardware
architecture is proposed to accelerate inference. Our experimental results show that the ABFLMC can
achieve higher accuracy, faster speed, and smaller model size.

Keywords: tensor decomposition; focal loss; embedded hardware

1. Introduction

The current state-of-the-art object detection network using Deep Learning conducts
a competition between various models due to their incredible feats in the field. Deep
learning techniques are widely adopted in various applications, such as self-driving UAVs,
Water Quality Prediction [1], autonomous robotics, and robot vision. It is clearly seen that
these tasks demand a Deep Learning technology with high accuracy, smaller size, and low
latency model running on mobile electronic devices.

Among various deep learning techniques in the object detection field based on Con-
volutional Neural Networks (CNNs), there are two approaches that can be summarized
in the past decades [2]: one stage approach [3] and two-stage approach [4]. Although the
latter method achieves a remarkable accuracy performance on object detection benchmarks
COCO [5], the models suffer from a longer execution time. In contrast, a one-stage de-
tector runs faster, suffering from poorer accuracy. Although these one- and two-stage
approaches have demonstrated powerful capabilities in many applications, the previous
research paper [6] has indicated that class imbalance has been identified as a key effect of
this performance gap. Two-stage approaches can immune this imbalance problem as they
remove the background before identifying the objects [7]. In addition, these approaches use
fixed background ratio [4] or online hardware example mining [8] to balance the training
data in the second stage. In contrast, the one-stage detector faces more challenges since
it needs to learn the difference between foreground classes and possible scenery. Thus,
the two approaches mentioned above cannot be applied directly to a one-stage detector.

Micromachines 2022, 13, 1738. https://doi.org/10.3390/mi13101738 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13101738
https://doi.org/10.3390/mi13101738
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-9692-1610
https://doi.org/10.3390/mi13101738
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13101738?type=check_update&version=3

Micromachines 2022, 13, 1738 2 of 14

Furthermore, although class imbalance has been addressed in the R-CNN series
detectors using a two-stage cascade and sampling heuristics [6], the one-stage detector must
process large candidate locations in an image. For example, in practice, the detector may
receive ∼100K candidate locations in the image. Thus, it is inefficient during the training
procedure when the samples are dominated by easily classified background examples.

Recent work has been proposed to employ α balancing to the loss function to dis-
tinguish classes and backgrounds. This method is intended to improve the detector to
avoid imbalance classification. After this first attempt toward a dynamic loss function, Reti-
naNet [6] has added a data dynamic to the loss function, named Focal Loss. The probability-
based difficulty for the correct class is calculated differently in each classification. In this
work, a hyper-parameter γ is added to control the loss function. However, different neural
network models may require different hyper-parameters to obtain the best accuracy. In our
earlier work [9,10], we have shown that the class imbalance issue gets worse during model
compression, and we have demonstrated that the Focal Loss can improve the model ac-
curacy within imbalanced data. However, the proposed Focal Loss is difficult to obtain
preliminary information and fine-tune the parameters.

Limitations of Existing Imbalance Issue on Model Compression: Although the model
compression approach plays an important role in developing efficient deep leanings [11,12],
the state-of-the-art model compression methods still suffer from a class imbalance issue due
to three challenging limitations. First, the existing works only focus on the model size and
accuracy of the model as its target objectives without considering the issue of class imbalance.
Second, although TT-decomposition achieves a remarkable result in compressing the model
without significant accuracy drops, the added more tensor cores create a complex parameter
setting when we apply focal loss technology directly to the model compression algorithm.
Third, current focal loss methods have been implemented only on software platforms. Thus,
such focal loss methods can only achieve suboptimization and lead to performance drop on
model compression when we employ the resource constraint hardware.

In this paper, a novel approach constructing an autonomous focal loss algorithm that
performs an efficient loss function for class imbalance issues during model compression
is presented. We first attempt to address the imbalance issue during the model compres-
sion. In addition, a high-performance hardware accelerator is developed in this paper.
Specifically, the main technical contributions are as follows:

• In this work, we first attempt to consider the class imbalance issue during compression
of the tensor train-based model. The proposed ABFLMC algorithm can be used for
the tensor train decomposition method to overcome the class imbalance issue.

• At the algorithm level, the proposed ABFLMC algorithm is designated by consid-
ering the characteristics of the tensor train decomposition to reduce the complexity
and increase the performance. Consequently, the proposed framework can automati-
cally search for the best parameters for overcoming the imbalance issue during the
training process.

• At the hardware design level, the architecture of the proposed ABFLMC algorithm has
been developed to maximize parallelism and processing throughput. Thus, the pro-
posed ABFLMC algorithm can achieve an optimized solution on the resource con-
straint hardware.

The remainder of this paper is organized as follows: In Section 2, we introduce
the related background in object detection, focal Loss, and tensor train decomposition.
In Section 3, we demonstrate a novel algorithm for optimizing autonomous focal loss
models (ABFLMC) to overcome unbalanced issues during model compression. Section 4
discusses the hardware design of the ABFLMC model. Section 5 presents experimental
results in both software and hardware. Finally, Section 6 concludes the manuscript.

Micromachines 2022, 13, 1738 3 of 14

2. Related Work
2.1. Object Detection

Object detection is a fundamental task in the field of computer vision. The purpose of
an object detector is to classify and localize all objects in an image or video. Object detectors
are designed to extract hand-crafted features [13,14], which are widely employed in various
branches like self-driving cars. With the increasing size of datasets, object detectors become
larger and larger, leading to decreased speed and accuracy. Thus, much research has been
done to improve object detectors. Generally, object detectors can be summarized into two
categories according to the structure: one-stage and two-stage detectors.

Two-Stage Detectors: In paper [4], Girshick et al. propose a region-based convo-
lutional neural network (R-CNN) using AlexNet [15] as the backbone. This framework
employs the region proposal module to extract features. After the feature is extracted, it is
classified by class-specific support vector machines (SVMs) to obtain scores. Although it
achieves good performance, the longer execution time to detect an image is a drawback.
Some research efforts such as Fast R-CNN [16] have been proposed to overcome this prob-
lem. The Fast R-CNN is trained with an end-to-end architecture, and a multitask loss, which
is very simple for the training and can improve operation speed and forecast accuracy.
After researchers constantly strive for excellence, a novel model that combines Fast R-CNN
and a region proposal network (RPN) is proposed [7]. This faster R-CNN can learn and
generate better region proposals using CNN used in the region proposal module, leading
to improved accuracy. Later, an R-FCN [17] combined with faster R-CNN and FCN is pre-
sented to reduce model training time. The proposed R-FCN can improve the 2.5–20× speed
compared to Faster R-CNN. However, since it uses ResNet101, the model is difficult to
implement on devices with limited resources. Recently, DetectoRS [18] employing Re-
cursive Feature Pyramid (RFP), Atrous Spatial Pyramid Pooling (ASPP), and Switchable
Atrous Convolution (SAC) is proposed. This work builds a switch system to control the
rate of convolution. Consequently, it can improve the detection of multi-scale objects.
Although the DetectoRS have improved the model performance, it is still ineffective in
real-time tasks due to its complexity.

One-Stage Detectors: Compared with two-stage detectors, the one-stage detectors
exchange object detector tasks from classification to a regression. You Only Look Once
(YOLO) [19] utilizes multiple smaller convolutional networks in a cascading way to predict
the image directly with a bounding box. An image is divided into N× N parts, and each of
the parts must predict multiple bounding boxes. In this way, the YOLO model achieves a
significant improvement in both running speed and accuracy. Following the YOLO Model,
Single Shot MultiBox Detector (SSD) [3] is proposed. It can balance the speed and accuracy
of real-time detection tasks. Its accuracy achieves similar performance to a two-stage
detector Faster R-CNN. Later, a variant of the YOLO network-YOLOv2 (YOLO9000) [20] is
presented. It uses Darknet-19 [21] as the backbone architecture and uses multiple efficient
techniques such as Batch Normalization [22], WordTree [23] to improve efficiency. The fully-
connected layer is removed to enhance the inference speed. YOLOv2 becomes “better,
faster, and stronger”. Within the YOLO series, Yolov4 [24] is proposed for object detection
and achieves a new record speed (65FPS).

Many innovations are implemented within the framework of YOLOv4. Specifically,
the “Bag of Freebies” includes class label smoothing, data augmentation, and the Cross
mini-Batch Normalization (CmBN) algorithm that collects the statistics between the mini-
batches, these technologies are efficient to improve model performance without increasing
the inference time. However, the “Bag of Special” with CSP (Cross-stage partial connection),
SPP module, and PAN neck still leads to the inference time rise [25]. The latest variant of
YOLO YOLOv5 [26] has been proposed to improve YOLOV4. However, in general, these
object detectors are not feasible on resource-constrained devices such as non-GPU laptops
and mobile devices. Current research efforts, including MobileNet-SSDLite [27], develop
lightweight depth-wise convolutions to extract features and use the delinearized module
in low-dimensional layers. Both the execution time of the operation and the size of the

Micromachines 2022, 13, 1738 4 of 14

model are decreased while maintaining the same accuracy. Following this work, YOLO-
LITE [28] and Tiny-DSOD [29] aim to create a faster, smaller, and high-performed model
enhancing the accessibility that makes real-time detection model deployed on all devices.
Moreover, many compression algorithms like pruning and tensor-train decomposition are
introduced to improve computational efficiency. YOLObile [30] presents a novel block-
punched pruning scheme that exhibits a high accuracy on mobiles and embedded devices.

Class Imbalance Issue: In the paper [6], Tsung-Yi Lin et al. state that the object
detection models encounter the class imbalance problem while training. There are 104–105

potential samples per image; however, a small amount of them comprise the desired objects.
The imbalance would make training inefficient and disturb the training process because of
many easy negative samples. To address this issue, they came up with the focal loss. This
focal loss can naturally deal with class imbalance without the traditional sampling method
by applying the balance factor and modulating the factor into the loss function.

2.2. Tensor Decomposition Methods

The tensors are important for an efficient computation since a large number of dimen-
sions of tensors demands an intensive memory. The number increases exponentially with
the number of dimensions. Over the last decades, Many notable tensor decomposition
approaches are proposed, including Tucker decomposition [31], the canonical polyadic
decomposition (CPD) [32–34], parallel factor (PARAFAC2) [35], CTSVD-QR [36] and tensor
train decomposition (TT decomposition) [10,37,38]. Among these approaches, TT decom-
position is an impressive method with some benefits, such as efficient tensor representation
(TT format) dedicated to reducing memory storage and flexible and high-efficiency rea-
soning logic with singular value decomposition. Moreover, experimental results in [39]
show that TT decomposition can be applied to fully connected (FC) layers, resulting in a
significant reduction in the number of parameters with a tiny drop in accuracy. After that,
Novikov1 et al. adopt the TT decomposition to tensorflow for its easier utilization [40].
Subsequently, Garipov et al. [41] propose a novel method that applies TT decomposition
to both convolutional layers and fully-connected layers. Therefore, the TT decomposition
approach has become a very promising model compression tool.

In detail, TT decomposition is capable of factorizing a d-dimensional tensor with the
size of n1× n2× . . .× nd into several tensor cores with the size of rk−1× nk× rk. To expound
the concept of TT decomposition, we utilize the naming convention from Garipov et al. [41].
A tensor is defined as A ∈ Rn1×n2×...×nd . The TT-representation of the tensor A is a set of
TT-cores Gk[jk] ∈ Rrk−1×rk , where jk ∈ [1, nk], k = 1, 2, . . . , d. Therefore, A(j1, j2, . . . , jd) as
the element of the tensor A can be decomposed as:

A(j1, j2, . . . , jd) = G1[j1]G2[j2] . . . Gd[jd] (1)

where rk is the rank value, and r0 = rd = 1 are adopted to ensure the feasibility of TT
decomposition. After the decomposition of the TT, the number of parameters of the tensor
A is ∑d

k=1 rk−1nkrk, which is significantly less than the original size ∏d
k=1 nk. Therefore,

the compression ratio can be defined as ∏d
k=1 nk/ ∑d

k=1 rk−1nkrk, and choosing the balanced
value of rk is significant in maximizing the compression ratio.

3. Autonomous Binarized Focal Loss Enhanced Model Compression Algorithm
(ABFLMC)
3.1. TT-Convolutional Layer in the Model YOLOV5

Garipov et al. [41] point out that using the TT-decomposition to factorize the convo-
lutional kernel into the product of several low-rank matrices directly has the limitation
on the convolutional layer. To address this drawback, a new decomposition is intro-
duced that can be applied to the convolutional and fully connected layers. For a con-
volutional layer, assume that the input tensor I has the size WI × HI × CI , the output
tensor O ∈ RWO×HO×CO , and the kernel tensor T is a 4-dimensional tensor with the size
K× K×CI ×CO. Now, we can easily write the formula for the operation of a YOLOV5 con-

Micromachines 2022, 13, 1738 5 of 14

volutional layer as: O(w, h, cO) = ∑K
i=1 ∑K

j=1 ∑CI
cI=1 T (i, j, cI , cO)I(w + i− 1, h + j− 1, cI).

Figure 1 shows the Tensor Train process and the element shift process. The convolutional
formula can also be calculated as several matrix multiplications O = I × T. The top in
Figure 1 shows how the input tensor is decomposed into several matrix multiplications.
The purpose of the following derivation is to express the relationship between the input
tensor, output tensor, and the kernel tensor via introducing how the n-th row of the input
matrix is used to compute the n-th row of the output of the matrix multiplication. First,
we transfer the input tensor I ∈ RWI×HI×CI and the output tensor O ∈ RHO×WO×CO

to matrices. To analyze the process, we define a patch of the input tensor within size
K × K × CI and a patch of the output tensor is 1× 1× CO, so we easily obtain the con-
nection HO = HI − K + 1 and WO = WI − K + 1. Now, we remodel the output tensor O
into a matrix O: O(w, h, cO) = O(w + WO(h− 1), cO), where w + WO(h− 1) represents
the position of the patch in the plane HO ×WO of the output tensor that is transferred
to the height of the output matrix O. Furthermore, cO is the width of matrix O, where
w ∈ (1, . . . , WO) and h ∈ (1, . . . , HO). In this way, the 3-dimensional tensor can be reshaped
into a 2-dimensional matrix. Therefore, the input tensor I also can be resized as follows:

I(w + i− 1, h + j− 1, cI) =

I(w + WO(h− 1), i + K(j− 1) + K2(cI − 1))

where i, j ∈ (1, . . . , K)

(2)

Then, we can obtain the kernel matrix of size K2CI × CO from the kernel tensor T :
T (i, j, cI , cO) = T(i + K(j− 1) + K2(cI − 1), cO).

Figure 1. Tensor Train convolutional process: The top shows a convolutional layer can be reformulate
to a matrix-by-matrix multiplication O = I × T, the bottom introduces how to calculate the n-th row of
the matrices that correspond to the K× K× CI patch of the input tensor as Equation (2) illustrates.

Micromachines 2022, 13, 1738 6 of 14

In the following work, the TT format is introduced to decompose the matrix using the
coincidence of the TT decomposition and the low-rank decomposition. More specifically, we
have reshaped the tensor into the matrix before, then we transfer the matrix to a more compact
tensor, and TT-decomposition is applied on the new tensor to obtain the matrix format TT. Let
us assume a matrix X ∈ RM×N, M = ∏d

a=1 ma and N = ∏d
a=1 na. Two objective functions

can be constructed to shape the matrix X into the tensor X ∈ Rn1m1×n2m2×...×nama in the
following way:

F(i) = [f1(i), . . . fa(i), . . . , fd(i)]

G(j) = [g1(j), . . . ga(j), . . . , gd(j)]

where fa(i) ∈ (1, . . . , ma) ga(j) ∈ (1, . . . , na)

a ∈ (1, . . . , d) i ∈ (1, . . . , M) j ∈ (1, . . . , N)

(3)

Sequentially, using the TT-format to represent the elements, the X(i, j) is defined as:

X(i, j)

= X ((f1(i), g1(j)), . . . , (fa(i), ga(j)), . . . , (fd(i), gd(j)))

= G1[(f1(i), g1(j)] . . . Ga[(fa(i), ga(j)] . . . Gd[(fd(i), gd(j)]

(4)

According to the TT-representation, it can reshape these matrices I, O, and T into new
tensors Î , Ô, and T̂ . Herein, we firstly define CI = ∏d

a=1 CIa and CO = ∏d
a=1 COa , the output

matrix O can be reshaped into a new tensor Ô with size WO×HO×CO1 × . . .×COa . . .×COd ,
then the new input tensor is Î of size (WI + K− 1)× (HI + K− 1)×CI1 × . . .×CIa . . .×CId .
For the kernel tensor, we deduce the formula according to Equation (4) as:

T(i + K(j− 1) + K2(ĉI − 1), ˆcO)

= T̂ ((i + K(j− 1), 1), (cI1 , cO1), . . . , (cIa , cOa), . . . , (cId , cOd))

where ĉI = cI1 +
d

∑
i=2

(cIi − 1)
i−1

∏
j=1

cIj

ˆcO = cO1 +
d

∑
i=2

(cOi − 1)
i−1

∏
j=1

cOj

(5)

Then we use TT-decomposition to factorize the kernel tensor as:

T(i + K(j− 1) + K2(ĉI − 1), ˆcO)

= Ĝ0[i + K(j− 1), 1]G1[cI1 , cO1] . . . Ga[cIa , cOa] . . . Gd[cId , cOd]
(6)

where Ĝ0 is the tensor core related to the convolution kernel and G1 to Gd are the regular
tensor cores as we mentioned above. Finally, the convolution layer can be rewritten using
the TT-format:

Ô(w, h, cO1 , . . . , cOa , . . . , cOd)

=
K

∑
i=1

K

∑
j=1

∑
cI1 ,..,cIa ,..,cId

Î(w + i− 1, h + j− 1, cI1 , . . . , cIa , . . . , cId)

Ĝ0[i + K(j− 1), 1]G1[cI1 , cO1] . . . Ga[cIa , cOa] . . . Gd[cId , cOd]

(7)

3.2. Design of ABFLMC

The use of compact data types, such as 1-bit representations, is a current trend to
enhance the effectiveness of deep neural networks. A Binary Neural Network (BNN) is
a Convolutional Neural Network (CNN) of low accuracy with binarized activations and
weights. BNNs normally include several layers, such as the convolutional layer, fully
connected layer, pooling layer, and batch normalization layer. As shown in Figure 2a,b,

Micromachines 2022, 13, 1738 7 of 14

an XNOR network has distinct functional blocks than CNNs. Generally, the convolutional
layer, the batch normalization layer, the activation layer, and the pooling layer are just exam-
ples of the various functional layers that make up a typical neural network. The input tensor
of the batch normalization layer can be normalized by computing its mean and variance.
An element-wise nonlinear function (e.g., Sigmoid, ReLU) is applied to the activation layer.
The pooling layer uses several pooling techniques (e.g., max, min, and average). Compared
to CNN, the functional layers of the BNN are arranged differently in Figure 2b. When
receiving a binarized input batch, the pooling layer suffers a significant information loss.
For instance, the input batch of the min-pooling layer accepts the binarization and returns
it with the majority of its members equal to −1. Thus, the grouping directly connects the
convolutional layer (BinConv) to overcome the critical issue of considerable information
loss. We normalize the input prior to binarization in the BNN to address the information
loss problem brought on by binarization. In this case, the normalization process is efficient
in increasing the model precision by forcing the input to hold a zero mean, whose threshold
range shrinks to zero, resulting in a reduced binarization error. To calculate the sign(I),
the binary activation layer (BinActiv) is utilized.

To combine Tensor Train Decomposition method with the binary convolution layer,
we designed a structure shown in Figure 2c. The Tensor Train cores could be stored in
binary format with the scaling factors for each, which is the same as in the XNOR network.
After the TT reconstruction of the real weight, as demonstrated above, we would binarize
it and use another scaling factor α along the real weight to perform the binary convolution.
Thus, the TT-format binary convolution can be rewritten in short as:

αGB(α0α1 . . . αa . . . αdB(Ĝ0G1 . . . Ga . . . Gd)) = αGB(T) ∗ I ≈∑ αG f (B(Tf)⊕ I) (8)

where B denotes the element wise weight binarization, α0α1 . . . αa . . . αd are the scaling
factor according to the Tensor Train cores , αG is scaling factor based on the reconstructed
real weight and f stands for the filters’ index in the weight T where Tf ∈ T , αG f ∈ αG.
The Tensor Train cores are fixed after the training, thus we consider the α values are
fixed as well, which means it would not require the L1-Norm mean operation in FPGA
implementation. Focal Loss can be used as the supervision to alleviate the effect of class
imbalance. However, it only supports the standard label of the [0, 1] category. In order to
enable the Focal Loss to train successfully on the joint model, autonomous quality focal
loss is proposed, which optimizes the traditional focal loss in two parts: −log(pc) →
−((1− y)log(1− σ) + ylog(σ)) and (1− pc)γ → |y− σ|β β ≥ 0. The estimation σ denotes
the output of the sigmoid operators [6,42]. The modulating factor |y − σ|β means the
non-negative absolute distance between y and σ. When the estimation is accurate, σ will be
close to y, the loss is down-weighted. Thus, we draw less attention to the simple example.
Conversely, the distance |y− σ|β hard example produced will increase, attracting more
attention to learn. Our final loss is defined as: Loss = −|y − σ|β((1 − y)log(1 − σ) +
ylog(σ)), β ≥ 0. In addition, manually setting β to a fixed value has its drawback because
both a high value of β and a low value β lead to an undesirable result [2]. Inspired by
automated Focal Loss [2], we design a dynamically adjusted β to fit our model convergence
during the training process. The value of β should be large enough to allow the network
to focus on hard samples at the beginning, then the value of β should be lower to prevent
decreasing gradients. Here, we apply 1− p̂c and bias b to numerically alter β. Therefore,
the dynamic β is defined:

β = −log(1− p̂c)− b

where pc =

{
σ if y = 1
1− σ if y = others

(9)

p represents the expected probability when a sample is predicted correctly. Further-
more, the p̂ is roughly equivalent to the mean over p in one training batch, and we use
p̂ = 0.95 ∗ p̂old + 0.05 ∗ p̂new here to smooth the training process. After that, we reduce the

Micromachines 2022, 13, 1738 8 of 14

frequency of change in β to train our model effectively, and the threshold for change is set
to 0.05:

βi+1 =

{
βi if βi − βi+1 < 0.05
βi+1 if βi − βi+1 ≥ 0.05

(10)

where i represents the iteration.

Figure 2. (a) Conventional CNN blocks, (b) XNOR-network blocks, (c) ABFLMC blocks.

4. Overall Hardware Architecture of ABFLMC-YOLOV5

Figure 3 shows our proposed implementation of the FPGA architecture for ABFLMC-
YOLOV5. The architecture consists of a computation kernel, registers, and BRAM. Our
model presents a higher compression rate resulting in a relatively friendly environment for
hardware implementation. Our core weight model size has only 1.39MB in VOC dataset,
which is one-fifth of the size compared to YOLOv5s. This allows fast-speed access from
BRAM to become applicable. The PE (processing element) cluster is designed to address
a large amount of parallel multiplication and accumulation within the convolution com-
putation. A series of DSPs is implemented as a multiplied cumulative (MAC) system that
performs the computation. Attributed to the ABFLMC-YOLOV5 algorithm, the param-
eters of our model were reduced to a certain level, which benefited from the scarcity of
resources that is intrinsic for most low-power computing units. In Figure 3, the routing
component computed by convolution is the core of the whole inference computation, which
is responsible for running the overall algorithm. Schedule the timing and order of each
computation and sends a control signal to access the required data. With our compressed
model, the computation complexity for each layer presents an advantage when applied to
a pipelining platform with sufficient hardware resources.

Micromachines 2022, 13, 1738 9 of 14

Figure 3. Overall hardware architecture of the implementation.

5. Experiment and Results
5.1. Experiment Setup

Our Yolov5n-based ABFLMC model performs the ABFLMC compression algorithm
and the tensor train compression algorithm to shrink the model and simultaneously main-
tain accuracy. To demonstrate the effectiveness of autonomous quality focal loss in our
model, we designed an ablation study based on the VOC dataset containing the Yolov5n
model benchmark, the benchmark model with quality focal loss where γ = 1.5 and
Tensor Train compression, and our ABFLMC model, herein we set the dynamic bias β:
b = 1.0, 1.4, 1.5 separately, while keeping the other hyperparameters constant. Specifically,
we set the epoch at 300, use rank = 16 to decompose our tensor to balance the size and
precision of the model, and apply SGD optimizer with an initial learning rate of 0.01. Finally,
our overall experiment is based on the PyTorch framework, and we use an Intel i9-9920X +
RTX3090 PC as our hardware platform.

5.2. Ablation Study and Comparison with State of Art Models

As shown in Table 1, we use mAP50:95, mAP50 and the number of parameters to
evaluate the performance of the model. Obviously, compared to the original model, the size
of other models after compressing the tensor train decreases from 1.79 M to 1.39 M in the
VOC Dataset. In terms of accuracy, our ABFLMC model with autonomous quality focal
loss performs better than the traditional Focal Loss-Tensor Train (FL-TT) model. When
the bias is b = 1.4, our ABFLMC method achieves the best mAP50:95 in 33.9 and mAP50
in 62.1. Therefore, the proposed autonomous quality focal loss architecture efficiently
enhances the basic FL-TT model. Besides, Table 1 also reveals that the higher b could
shrink the difference between the hard samples and easy samples, resulting in the rapid
mAP drop under the higher IOU threshold. However, the higher b is helpful for the lower
IOU threshold to achieve higher performance according to its 0.1 drops of mAP50 between
b = 1.4 and 1.5. In contrast, lower b is more efficient in keeping mAP below the higher
IOU threshold because it can enlarge the discrimination by sampling. The model keeps the
similar performance of mAP0.5:0.95 between b = 1.0 and 1.4. Furthermore, Table 2 shows
that our ABFLMC model with b = 1.4 achieves a competitive result compared to other state-
of-the-art light-weight models. Our model achieves the smallest size with an acceptable
accuracy drop in the comparison VOC dataset based. For the COCO dataset, although the
mAP50 of our ABFLMC model is 6 percent lower than the latest lightweight model yolov5n,
our size is 22.1% less and computational complexity is 0.1 GFLOPs lower than the yolov5n.
Specifically, our ABFLMC model reaches mAP50 of 28.1 under VisDrone Dataset, which is
2.2× higher than yolov5n while keeping the light-weight design. This comparison also
reveals that our ABFLMC design achieves the advantage under the large scene and small

Micromachines 2022, 13, 1738 10 of 14

target dataset. Therefore, our model definitely has a better trade-off between accuracy and
model size.

Table 1. Ablation Study under Different Bias in VOC.

Dataset Model mAP50:95 mAP50 # Paras

VOC 07 + 12

Original (Yolov5n) 45.4 72.5 1.79 M

FL-TT (γ = 1.5) 33.1 61.0

1.39 MABFLMC (b = 1.0) 33.9 61.7
ABFLMC (b = 1.4) 33.9 62.1
ABFLMC (b = 1.5) 33.6 62.0

Table 2. Performance Comparison Across Models and Datasets [9,30,43].

Dataset Models Input
Size Backbone mAP50:95 mAP50

Parameters
(M) GFLOPs

VOC 07 + 12

Faster R-CNN [7] 600 VGG - 73.2 134.7 -
Faster R-CNN [7] 600 ResNet-101 - 76.4 - -

R-FCN [17] 600 ResNet-101 - 79.5 50.9 -
SSD300 [3] 300 VGG - 75.8 26.3 -

DSSD321 [44] 321 ResNet-101 - 78.6 >52.8 -
GRP-DSOD320 [43] 320 DS/64-192-48-1 - 78.7 14.2 -

YOLOv5s [9] 640 - 51.9 78.4 7.11 16.5
TT-YOLOv5s(rank 16) [9] 640 - 48.8 76.9 4.74 18.4

MobileNetv2-Yolov5s 640 - 50.27 76.8 4.6 10.0
ABFLMC-YOLOv5n 640 - 33.9 62.1 1.39 4.2

COCO

CenterNet-DLA [45] 512 DLA34 39.2 57.1 16.9 52.58
CornerNet-Squeeze [46] 511 - 34.4 - 31.77 150.15

SSD [3] 300 VGG16 25.1 43.1 26.29 62.8
MobileNetv1-SSDLite [27] 300 MobileNetv1 22.2 - 4.31 2.30
MobileNetv1-SSDLite [27] 300 MobileNetv2 22.1 - 3.38 1.36

Tiny-DSOD [29] 300 - 23.2 40.4 1.15 1.12
YOLOV4 [24] 320 CSPDarknet53 38.2 57.3 64.36 35.5

YOLO-Lite [28] 224 - 12.26 - 0.6 1.0
YOLOV3-tiny [47] 320 Tiny Darknet 14 29 8.85 3.3
YOLOV4-tiny [24] 320 Tiny Darknet - 40.2 6.06 4.11

YOLObile [30] 320 CSPDarknet53 31.6 49 4.59 3.95
YOLOv5s [48] 640 - 37.2 56.0 7.2 16.5

TT-YOLOv5s (rank 16) [9] 640 - 34.2 54.6 4.9 18.9
YOLOv5n [48] 640 - 28.4 46.0 1.9 4.5

ABFLMC-YOLOv5n 640 - 22.8 40.0 1.48 4.4

VisDrone YOLOv5n [48] 640 - 12.9 25.9 1.78 4.2
ABFLMC-YOLOv5n 640 - 14.3 28.1 1.38 4.1

5.3. Hardware Evaluation

The hardware implementation environment is evaluated by the development evalua-
tion board Ultrascale+ KCU116 on the XCKU5P FPGA from Xilinx. By reducing the size
of the tensors and parameters with binarization, the model can be stored in the on-board
storage (BRAM, regs) without using a DDR4 module. The results of the evaluation are listed
in Table 3 for comparison and analysis. For the validation process of the ABFLMC model,
a series of convolution computations have been applied. Thus, the process element cluster
(PE) has been modified to adapt the convolution computation to speed up. With the binary
computation, it only takes a small portion of computing resources compared to Float32.
As a result, a mux function has been deployed in the routing of the computation in order to
optimize the usage of PE speeding up the XOR computation with fewer registers and DSPs.
The foremost factor affecting the on-chip power consumption will be the utilization of the
Look-up Table (LUT) and Flip-Flops (FF) resources.

Micromachines 2022, 13, 1738 11 of 14

Table 3. Hardware evaluation in different datasets.

Hardware Evaluations VOC 07 + 12 COCO VOC 07 + 12 COCO

Model Name ABFLMC-Yolov5n TT-Yolov5s [9]

Param M 1.39 1.48 4.74 4.9

LUT 111,233 120,533 182,022 187,022

LUT Utilization (%) 51.3 55.6 83.9 86.2

FF 174,210 178,720 123,098 143,728

FF Utilization (%) 40.2 41.2 28.4 33.1

BRAM (MB) 305 305 220 235

BRAM Utilization (%) 63.5 63.5 45.8 49

DSP 569 577 1321 1351

DSP Utilization (%) 31.2 31.6 72.4 74.1

GOPS 135.5 129.4 42.6 34.2

Power (W) 6.12 6.33 15.2 16.1

The differential function can define LUT as a register to store the active data or as
a logic gate that fulfills the arithmetic requirement. In our design, LUT resources have
been deployed about 51.3% for the VOC dataset and 55.56% for the COCO. The flip-flops
usually work as a recording state; in most cases, they will be deployed as shared registers
or high-speed buffering for the calculation. Due to the high compression rate of our model,
the model size is available for pipelining design. FF utilization is approximately 40.2% for
the VOC dataset and 41.2% for the COCO dataset.

The BRAM is used for storing compressed binary weight tensor cores and some float32
offset. BRAM utilization reaches 63.5% on VOC 07 + 12 and on the COCO Dataset. A dedi-
cated MAC (Multiply Accumulate) unit has been implemented to speed up the convolution
computing, which consists of multiple DSPs. In convolution computing, the addition
operation can easily cause a delay due to a position replacement issue. However, DSP can
be formed for a high-speed accumulator for a specific purpose to overcome the bottleneck
of the computation process. Our DSP deployment shows 31.2% and 31.6% on each dataset.
In Table 3, the power consumption is measured in two parts: on-chip power and off-chip
power. We calculated the on-chip power for the FPGA ICs and included all peripheral
devices on the board. The overall power consumption is presented in Table 3. The VOC
Dataset reaches the power consumption of 6.12 W, and the GOPS reaches 135.5. The overall
power consumption of the COCO Dataset is 6.33 W, and the GOPS reaches 129.4.

The state-of-the-art Yolov5 hardware comparison is presented in Table 4. However,
most of the usage and result is on a different platform or did not mention in the article. We
can only compare them in specific situations. With ABFLMC-YOLOv5n works, contributing
to the auto focal loss and BNN quantization reducing a huge amount of the register resource
utilization, the FPGA evaluation deployment can reach 6.33 W of power usage, which is
only 39.3% of the TT-Yolov5s model under the COCO dataset and significantly lower than
other high performance platforms. It is also difficult to monitor the power consumption
of the whole operation on a mobile phone due to all the other high power-consuming
parts besides the CPU (e.g., Screen, Camera). The mobile phone platform has the strength
of mobility, but sacrifices the processing speed. Usually, the mobile SoC has dedicated
compute units serving a specific function, only applying the general purpose compute units
is quite inefficient. SVM simulation could be a possible way to enhance SoC performance
according to Helali1’s work [49].

Micromachines 2022, 13, 1738 12 of 14

Table 4. Hardware Comparison in different platforms within COCO dataset.

Models Dataset Platform GFLOPs Power (W)

ABFLMC-YOLOv5n (Ours) COCO Intel i9-9920X + RTX3090 4.4 200

ABFLMC-YOLOv5n (Ours) COCO Ultrascale + KCU116 FPGA 4.4 6.33

TT-YOLOv5s (rank16) [9] COCO Ultrascale + KCU116 FPGA 18.9 16.1

YOLObile [30] COCO Qualcomm Snapdragon 865 3.95 5 *

YOLOv5n [48] COCO na 4.5 na

REQ-YOLO [50] VOC 07 + 12 ADM-7V3 FPGA na 21
* The power is not mentioned in the article. We estimated it only based on the theoretical TDP of the SoC.

6. Conclusions

This article states a novel ABFLMC object detection model that combines efficient
autonomous quality focal loss and compression of the tensor train with the acceleration
of FPGA hardware. Our ABFLMC model achieves 33.9 in mAP50:95 and 62.1 in mAP50
with model size 1.79M and computational complexity 4.2 GFLOPs in the VOC Dataset,
22.8 in mAP50:95 and 40.0 in mAP50 with model size 1.48M and computational complexity
4.4 GFLOPs in the COCO Dataset, and 14.3 in mAP50:95 and 28.1 in mAP50 with model size
1.38M and computational complexity 4.1 GFLOPs in the VisDrone Dataset. Meanwhile, our
ABFLMC method also benefits the computational efficiency of hardware implementation.
In the VOC 7 + 12 dataset, the throughput reaches 135.5 GOPS while the power usage re-
mains 6.12 W. On the COCO dataset, we present 129.4 GOPS with 6.33 W. The compression
ratio of the model and the reduced number of operations give high flexibility for edge
computing and other low-power applications. Moreover, the TT decomposition and BNN
method still have the drawback of a drop in accuracy. Our architecture still has the potential
to be improved in the future such as utilizing a lighter structure or more efficient BNN
method to reduce computational complexity while maintaining more competitive accuracy.

Author Contributions: Conceptualization, M.L. and Y.B.; methodology, M.L., S.L. and Y.B.; software,
M.L. and K.H.; validation, M.L. and K.H.; formal analysis, M.L. and K.H.; investigation, M.L. and
S.L.; resources Y.B.; data curation, M.L. and Y.B.; writing—original draft preparation, M.L., S.L., K.H.
and Y.B.; writing—review and editing, M.L., S.L., K.H. and Y.B.; visualization, M.L., S.L. and K.H.;
supervision, Y.B. and R.F.D.; project administration, Y.B. and R.F.D.; funding acquisition, Y.B. and
R.F.D. All authors have read and agreed to the published version of the manuscript.

Funding: Research was sponsored by the Army Research Office and was accomplished under Grant
Number W911NF-20-1-0174. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or implied,
of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author upon reasonable request.

Acknowledgments: Research was sponsored by the Army Research Office and was accomplished
under Grant Number W911NF-20-1-0174. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation herein.

Conflicts of Interest: The authors declare no conflict of interest.

Micromachines 2022, 13, 1738 13 of 14

References
1. Wu, J.; Wang, Z. A hybrid model for water quality prediction based on an artificial neural network, wavelet transform, and long

short-term memory. Water 2022, 14, 610. [CrossRef]
2. Weber, M.; Fürst, M.; Zöllner, J.M. Automated focal loss for image based object detection. In Proceedings of the 2020 IEEE

Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 1423–1429.
3. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 21–37.

4. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

5. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 740–755.

6. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

7. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]

8. Shrivastava, A.; Gupta, A.; Girshick, R. Training region-based object detectors with online hard example mining. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 761–769.

9. Liu, M.; Luo, S.; Han, K.; Yuan, B.; DeMara, R.F.; Bai, Y. An Efficient Real-Time Object Detection Framework on Resource-
Constricted Hardware Devices via Software and Hardware Co-design. In Proceedings of the 2021 IEEE 32nd International
Conference on Application-specific Systems, Architectures and Processors (ASAP), Virtual Conference, 7–9 July 2021; IEEE
Computer Society: Los Alamitos, CA, USA, 2021; pp. 77–84. [CrossRef]

10. Liu, M.; Han, K.; Luo, S.; Pan, M.; Hossain, M.; Yuan, B.; DeMara, R.F.; Bai, Y. An Efficient Video Prediction Recurrent Network
using Focal Loss and Decomposed Tensor Train for Imbalance Dataset. In Proceedings of the 2021 on Great Lakes Symposium on
VLSI, Virtual Event, 22–25 June 2021; pp. 391–396.

11. Comon, P. Tensor decompositions, state of the art and applications. arXiv 2009, arXiv:0905.0454.
12. De Lathauwer, L.; De Moor, B.; Vandewalle, J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 2000,

21, 1253–1278. [CrossRef]
13. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1;
p. I.

14. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; IEEE: Piscataway, NJ,
USA, 2005; Volume 1, pp. 886–893.

15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

16. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

17. Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. In Proceedings of the
Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 379–387.

18. Qiao, S.; Chen, L.C.; Yuille, A. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021;
pp. 10213–10224.

19. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

20. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

21. Redmon, J. Darknet: Open Source Neural Networks in C. 2013. Available online: https://pjreddie.com/darknet/ (accessed on 31
August 2022).

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

23. Miller, G.A.; Beckwith, R.; Fellbaum, C.; Gross, D.; Miller, K.J. Introduction to WordNet: An on-line lexical database. Int. J.
Lexicogr. 1990, 3, 235–244. [CrossRef]

24. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
25. Zaidi, S.S.A.; Ansari, M.S.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A Survey of Modern Deep Learning based Object Detection

Models. arXiv 2021, arXiv:2104.11892.

http://doi.org/10.3390/w14040610
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/ASAP52443.2021.00020
http://dx.doi.org/10.1137/S0895479896305696
http://dx.doi.org/10.1145/3065386
https://pjreddie.com/darknet/
http://dx.doi.org/10.1093/ijl/3.4.235

Micromachines 2022, 13, 1738 14 of 14

26. Jocher, G.; Stoken, A.; Borovec, J.; Christopher, S.T.A.N.; Laughing, L.C. ultralytics/yolov5: V4.0—nn.SiLU() Activa-
tions, Weights & Biases Logging, PyTorch Hub Integration. 2021. Available online: https://zenodo.org/record/4418161
(accessed on 31 August 2022).

27. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

28. Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers.
In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018;
pp. 2503–2510.

29. Li, Y.; Li, J.; Lin, W.; Li, J. Tiny-DSOD: Lightweight object detection for resource-restricted usages. arXiv 2018, arXiv:1807.11013.
30. Cai, Y.; Li, H.; Yuan, G.; Niu, W.; Li, Y.; Tang, X.; Ren, B.; Wang, Y. Yolobile: Real-time object detection on mobile devices via

compression-compilation co-design. arXiv 2020, arXiv:2009.05697.
31. Hoff, P.D. Equivariant and scale-free Tucker decomposition models. Bayesian Anal. 2016, 11, 627–648. [CrossRef]
32. Rai, P.; Wang, Y.; Guo, S.; Chen, G.; Dunson, D.; Carin, L. Scalable Bayesian low-rank decomposition of incomplete multi-

way tensors. In Proceedings of the International Conference on Machine Learning, PMLR, Bejing, China, 22–24 June 2014;
pp. 1800–1808.

33. Zhao, Q.; Zhang, L.; Cichocki, A. Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1751–1763. [CrossRef]

34. Ermis, B.; Cemgil, A.T. A Bayesian tensor factorization model via variational inference for link prediction. arXiv 2014,
arXiv:1409.8276.

35. Jørgensen, P.J.; Nielsen, S.F.; Hinrich, J.L.; Schmidt, M.N.; Madsen, K.H.; Mørup, M. Probabilistic parafac2. arXiv 2018,
arXiv:1806.08195.

36. Zheng, Y.; Xu, A.B. Tensor completion via tensor QR decomposition and L2, 1-norm minimization. Signal Process. 2021, 189, 108240.
[CrossRef]

37. Oseledets, I.V. Tensor-train decomposition. SIAM J. Sci. Comput. 2011, 33, 2295–2317. [CrossRef]
38. Deng, C.; Sun, F.; Qian, X.; Lin, J.; Wang, Z.; Yuan, B. TIE: Energy-efficient tensor train-based inference engine for deep neural

network. In Proceedings of the 46th International Symposium on Computer Architecture, Phoenix, AZ, USA, 22–26 June 2019;
pp. 264–278.

39. Novikov, A.; Podoprikhin, D.; Osokin, A.; Vetrov, D. Tensorizing neural networks. arXiv 2015, arXiv:1509.06569.
40. Novikov, A.; Izmailov, P.; Khrulkov, V.; Figurnov, M.; Oseledets, I.V. Tensor Train Decomposition on TensorFlow (T3F). J. Mach.

Learn. Res. 2020, 21, 1–7.
41. Garipov, T.; Podoprikhin, D.; Novikov, A.; Vetrov, D. Ultimate tensorization: Compressing convolutional and fc layers alike.

arXiv 2016, arXiv:1611.03214.
42. Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 9627–9636.
43. Shen, Z.; Shi, H.; Feris, R.; Cao, L.; Yan, S.; Liu, D.; Wang, X.; Xue, X.; Huang, T.S. Learning object detectors from scratch with

gated recurrent feature pyramids. arXiv 2017, arXiv:1712.00886.
44. Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659.
45. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 6569–6578.
46. Law, H.; Teng, Y.; Russakovsky, O.; Deng, J. Cornernet-lite: Efficient keypoint based object detection. arXiv 2019, arXiv:1904.08900.
47. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
48. Jocher, G.; Stoken, A.; Chaurasia, A.; Borovec, J.; Kwon, Y.; Michael, K.; Liu, C.; Fang, J.; Abhiram, V.; Chaurasia, A.; et al.

ultralytics/yolov5: V6.0—YOLOv5n ‘Nano’ Models, Roboflow Integration, TensorFlow Export, OpenCV DNN Support. Zenodo.
2021. Available online: https://zenodo.org/record/5563715 (accessed on 31 August 2022).

49. Helali, A.; Ameur, H.; Górriz, J.; Ramírez, J.; Maaref, H. Hardware implementation of real-time pedestrian detection system.
Neural Comput. Appl. 2020, 32, 12859–12871. [CrossRef]

50. Ding, C.; Wang, S.; Liu, N.; Xu, K.; Wang, Y.; Liang, Y. REQ-YOLO. In Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, 24–26 February 2019. [CrossRef]

https://zenodo.org/record/4418161
http://dx.doi.org/10.1214/14-BA934
http://dx.doi.org/10.1109/TPAMI.2015.2392756
http://dx.doi.org/10.1016/j.sigpro.2021.108240
http://dx.doi.org/10.1137/090752286
https://zenodo.org/record/5563715
http://dx.doi.org/10.1007/s00521-020-04731-y
http://dx.doi.org/10.1145/3289602.3293904

	Introduction
	Related Work
	Object Detection
	Tensor Decomposition Methods

	Autonomous Binarized Focal Loss Enhanced Model Compression Algorithm (ABFLMC)
	TT-Convolutional Layer in the Model YOLOV5
	Design of ABFLMC

	Overall Hardware Architecture of ABFLMC-YOLOV5
	Experiment and Results
	Experiment Setup
	Ablation Study and Comparison with State of Art Models
	Hardware Evaluation

	Conclusions
	References

