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Abstract: The present article describes the unsteady flow of a couple stress via a ternary hybrid
nanofluid on a stretching surface with porous media. The nanofluid exhibits important properties
for increasing heat transmission, and it is widely used in manufacturing and industrial applications.
The basic similarity equations have been discovered to accommodate both stretching/shrinking
surfaces. Ternary hybrid nanofluid is a colloidal combination of three types of microspheres: Al2O3,
single wall carbon nanotubes, and graphene. For investigating spherical, cylindrical, and platelet
nanoparticles, the governing partial differential equations are converted into ordinary differential
equations, expending appropriate transformations. The analytical solution can then be carried out
using various forms of nanoparticles, such as spherical, cylindrical, and platelet, to obtain the solution
domain. Heat transfer is used in an electrically conducting fluid and also including thermal radiation,
as calculated with the Biot number. The focus of the present effort is the evaluation of the flow of
ternary hybrid nanofluid over a porous media via thermal radiation, with couple stress, using an
analytical process. For various physical parameters, the velocity and temperature conditions are
shown graphically.

Keywords: couple stress; thermal radiation; ternary hybrid nanofluid; stagnation point; heat transfer;
Biot number

1. Introduction

The authors investigated the stretching sheet problem by examining its importance
and applicability in industrial processes such as polymer extrusion, paper production, metal
cooling, and glass blowing, among others [1]. The pioneering work on the surface stretching
problem is by Sakiadis [2,3]. Crane [4] takes up the problem of the stretched surface, where
the Newtonian flow is linearly changing from the slit. Later, several studies were conducted
on the stretching sheet problem with several boundary conditions. In view of stream and
water surface is investigated by Gu et al. [5]. The thermal conductivity and dynamic
viscosity have calculated as these possibilities, the impact of mass transfer and energy
properties concerning the air by Esfe et al. [6] using a hybrid nanofluid. Bhattacharyya
et al. [7] studied the properties of hydrodynamic heat transport. Chamkha et al. [8] found
that heat transfer across the dynamics of a hybrid nanofluid is higher than that of an
alumina-water nanofluid, but lower than that of a copper-water nanofluid. Mahdavi
et al. [9] investigated a fluid flow and heat transfer analysis of nanofluid jet cooling on
a hot surface with various roughnesses. MHD nanofluid flow with suction, as well as
magnetohydrodynamics a nanofluid flow in natural convection with a porous term, was
studied by Benos et al. [10]. Besides these mixture, hybrid nanofluids are defined as fluids
containing two types of nanoparticles. A hybrid nanofluid is a specific type of fluid that
has superior thermal conductivity to either nanofluids or base fluids.
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Anusha et al. [11,12] investigated a hybrid nanofluid that included both transpiration
and radiation. Sharifpur et al. [13] conducted an experimental investigation and devel-
oped a model for evaluating the thermal conductivity of α-Al2O3-glycerol nanofluids. In
industrial settings, such as in the acceleration of sheets, where liquid cooling is crucial to
achieving the desired result, the temperature distribution impacted by thermal radiation is
highly significant. This type of flow problem can be seen in engineering applications such
as extrusion operations, metal spinning, dye casting of metals, and polymer manufacture,
where the maximum temperature and difference prediction should be controlled. This
study has attracted the interest of many researchers due to the numerous exciting industrial
and everyday applications of shear-thinning fluids. Wall paint, printing ink, nail polish,
whipped cream, ketchup, and engine oil are a few examples of these. Shear thinning fluid,
also known as pseudo-plastic fluid, is thought to exhibit characteristics of both plastic and
Newtonian fluid. The more tension that is applied to a shear-thinning fluid, the more freely
the fluid flows. This quality makes it a beneficial trait for products such as paint, oils, and
cream [14–16].

According to a study by Zhang et al. [17] on thermal diffusivity and thermal con-
ductivity, if a colloidal mixture of various nanofluids is generated by water conveying
cylindrical and spherical nanoparticles, the normalized thermal conductivity of the cylin-
drical nanoparticles increases. Furthermore, water transporting CNT nanoparticles has a
far higher thermal conductivity than nanofluids carrying spherical nanoparticles. Wakif
et al. [18] explored the internal heating of spatially homogeneous and non-uniform nanoflu-
ids. Narayana et al. [19] studied an unstable MHD nanofluid subjected to non-uniform
heat generation and absorption. Many equations have been proposed for to nanofluid
fluid movement across porous media. The formal structure of issues regarding a porous
medium was suggested by Darcy and Brinkmann [20,21]. Anuar et al. [22] studied the
heat transfer of carbon nanotubes over an exponentially stretching/shrinking sheet using
suction and the slip effect. Anwar et al. [23] investigated the unsteady MHD flow of Jeffery
fluid flow using wall velocity and Newtonian fluid. The fluid flow and heat transfer of
carbon nanotubes, along with a flat plate with a Navier slip boundary, were investigated
by Khan et al. [24]. Shalini et al. [25] studied the unsteady MHD chemically reacting mixed
convection nanofluid flow past an inclined pour stretching sheet, using the slip effect,
as well as a variable thermal radiation and heat source The MHD flow of a Jeffery fluid
with mixed convection on a porous medium was investigated by Yana et al. [26] using
a radiative heat flux stretching/shrinking surface. Stokes is recognized for developing
the concepts and equations for pair stress fluid flows, which is another important point
to make. The governing equations are provided for an incompressible pair stress fluid
flow with conservative body forces. Some insights regarding these ideas can be found in
refs. [27,28].

The current work is an examination of ternary hybrid nanofluid flow under the
major effects of a couple stress parameters, radiation, and transpiration, as seen in the
above-mentioned studies. Constitutive law is one of the main ideas at work here; it is the
relationship between the forces imposed on that substance and the resulting deformation
at a microscopic level. It also has to do with how much strain a body is experiencing in
relation to how much stress the material is under. A porous medium is used to stretch the
fluid. Researchers are interested in conducting a stretching sheet experiment with a porous
medium because fluid flow with a porous medium has several industrial applications.
In addition, the current situation is an example of a couple stress with a porous media
challenge. By using the appropriate similarity variables, the governing equations of the
supplied PDEs are mapped into ODEs. The solution domain is then obtained by solving
the ODEs analytically. The solution is achieved with the use of the incomplete gamma
function regarding the heat transfer, which is induced by a stretching sheet with a linear
velocity variation from the slit, with mass suction included. Throughout the equation,
solid volume fractions of the three distinct nanoparticle structures are employed. In fact,
there are few studies in the literature that cover so many aspects of this technique. These
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insights could be used in the development of industrial procedures for the creation of the
best product. The novelty of the present work explains the flow of couple stress fluids,
especially unsteady flow, with three types of different nanoparticles; thus, we extract the
results on the basis of the analytical method. This work motivated researchers to conduct
more studies on stretching sheet problems with the porous medium in the presence of
ternary nanofluids, since there are many equations and derivations available to explain the
porous medium and thermal radiation.

2. Physical Model and Formulations

The current study considers a couple stress fluid flow over a porous stretching sheet
under the influence of radiation and mass transpiration. In the present work, we use
non-Newtonian coupling. Moreover, it should be noted that the water containing spherical
aluminum oxide, cylindrical single wall CNT, and platelet graphene nanoparticles, as
shown in Figure 1, is transported. Table 1 shows the thermal characteristics of these three
nanofluids. The following formula is used to calculate the unstable flow stream velocity
far enough from the sheet U∞ = − U0x

1−γt , suppose that Uw and Vw are the wall movement
speeds, so the standard absorption speed is taken into account. The exterior free stream
velocity at the wall is calculated as follows Uw = λU0x

1−γt , where, λ represents the constant,
and λ > 0 the sustaining flow, if λ < 0 be in conflict with the flow λ = 0.
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Table 1. Thermophysical properties of different nanoparticles.

Thermophysical
Properties Base Fluid Aluminum Oxide

(Al2O3)
Single-Wall

CNT
Graphene

(G) Shape

1 ρ
(
kg/m3) 997.1 3970 8933 2200 Spherical

2 Cp (J/kg K) 4179 765 385 790 Cylindrical

3 κ (W/m K) 0.613 40 401 5000 Platelet
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Under these considerations, the continuity of the Navier–Stokes equation can be
written as:

∂u
∂x

+
∂v
∂y

= 0 (1)

ρtn f

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂P

∂x
+ µtn f

(
∂2u
∂x2 +

∂2u
∂y2

)
−

µtn f

K
(u∞ − u)− η0

∂4u
∂y4 (2)

ρtn f

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= −∂P

∂y
+ µtn f

(
∂2v
∂x2 +

∂2v
∂y2

)
(3)

(ρCP)tn f

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
= κtn f

(
∂2T
∂x2 +

∂2T
∂y2

)
− ∂qr

∂y
(4)

Note that Equation (2) includes extra terms that provide a model beyond the standard
Newtonian fluid, which are common for non-Newtonian fluids. In particular, the bihar-
monic term proportional to η0 represents the connection between materials considering the
couple stress. In addition, the imposed boundary conditions are as follows:

u(x, 0, t) = λU0x
1−γt , v(x, 0, t) = Vw(x, t), −κ f

∂T
∂y = h(Tw − T∞) at y = 0,

u(x, ∞, t) = − U0x
1−γt , θ(∞) = 0. as y→ ∞.

(5)

The dimensionless variables are easier to locate via the similarity transformation.

ψ(x, y, t) = x

√
ν f U0

1− γt
f (η), θ(η) =

(T − Tw)

(Tw − T∞)
, η = y

√
U0

ν f (1− γt)
, (6)

The adopted similarity functions are as below:

u =
U0x

1− γt
fη(η), v = −

√
ν f U0

1− γt
f (η). (7)

As a result, the velocity of the wall transpiration increases vw(x, 0, t) =
√

U0ν f
1−γt f (0).

The boundary layer hypothesis is used in the momentum and energy equations, which
are two-dimensional equations. The thermal boundary conditions for two altered situations
will be explained advanced. By conjecturing two similarity equations.

Λ f v − A1 f ′′′ − A2

[
f f ′′ − f ′2 + 1− β

(
f +

1
2

η f ′′ − 1
)]
− A1 Da−1(1− f ′

)
= 0, (8)

(A4 + NR)θ′′ + c3Pr
(

f − βη

2

)
θ′ = 0. (9)

The modified boundary conditions are:

f ′ = λ, f (0) = VC, θ′ = −Bi(1− θ(0)) as y = 0,
f ′ = −1, θ(∞)→ 0 at y→ ∞.

(10)

The various physical parameters are as follows:

Λ = U0η0
(1−γt)ν f ρ f

Couple stress, Pr =
ν f
α f

, Prandtl number, Da−1 =
µ f (1−γt)

Kρ f U0
Porous

media, NR = 16σ∗T∞
3

3k∗κ f
Thermal radiation [29,30], λ = − Uw

U∞
, λ > 0 Stretching sheet λ < 0

is shrinking sheet parameters.
The quantities of ternary hybrid nanofluid are given below:
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φ = φ1 + φ2 + φ3

µtn f =
µn f1

φ1+µn f2
φ2+µn f3

φ3
φ

κtn f =
κn f1

φ1+κn f2
φ2+κn f3

φ3
φ

ρtn f = (1− φ1 − φ2 − φ3)ρb f + φ1ρsp1 + φ2ρsp2 + φ3ρsp3

(ρCP)tn f = (1− φ1 − φ2 − φ3)(ρCP)b f + φ1(ρCP)sp1
+ φ2(ρCP)sp2

+ φ3(ρCP)sp3

(11)

Suganthi and Rajan et al. [31] discovered that the motion of solid particles in solid–liquid
dispersion is dependent on particle form. Non-spherical particles have more motion and
fluid flow resistance than spherical particles.

The number of spherical nanoparticles is determined by:

B1 =
µn f1
µb f

= 1 + 2.5φ + 6.2φ2

B4 =
κn f1
κb f

=
κsp1+2κb f−2φ(κb f−κsp1)
κsp1+2κb f +φ(κb f−κsp1)

(12)

the quantities of cylindrical nanoparticles are given by:

B2 =
µn f2
µb f

= 1 + 3.5φ + 904.4φ2

B5 =
κn f2
κb f

=
κsp2+3.9κb f−3.9φ(κb f−κsp2)

κsp2+3.9κb f +φ(κb f−κsp2)

(13)

the quantities of platelet nanoparticles are given by

B3 =
µn f3
µb f

= 1 + 37.1φ + 612.6φ2

B5 =
κn f3
κb f

=
κsp3+4.7κb f−4.7φ(κb f−κsp3)

κsp3+4.7κb f +φ(κb f−κsp3)

(14)

To make further analysis easier, the following substitutions can be made, as follows:

A1 = B1φ1 + B2φ2 + B3φ3

A2 = 1− φ1 − φ2 − φ3 + φ1
ρsp1
ρb f

+ φ2
ρsp2
ρb f

+ φ3
ρsp3
ρb f

A3 = B4φ1 + B5φ2 + B6φ3

A4 = 1− φ1 − φ2 − φ3 + φ1
(ρCp)sp1
(ρCp)b f

+ φ2
(ρCp)sp2
(ρCp)b f

+ φ3
(ρCp)sp3
(ρCp)b f

(15)

2.1. Solution of Pressure Gradient

Its assets show that the pressure gradient ∂P
∂y is a consequence of t and y, as determined

by the velocity elements, and Equation (4) is sovereign by x, namely, ∂P
∂y = F(t, y) and

P =
∫

F(t, y) dy + G(t, x) somewhere G(t, x) denotes the integration constant. ∂P
∂x =

∂G(t,x)
∂x , which would be independent of y and remains equal inside the boundary layer and

could be deduced in the free stream. Compute the x-momentum to the free stream with
u = U∞ and ∂p/∂x

− 1
ρ

∂P
∂x

= (1− β)
ε2U0

2x

(1− γt)2 , (16)

The velocity acceleration/deceleration feature is shown by β, where β = γ
U0

is the un-
steadiness parameter. When β > 0, wall velocities accelerate, β < 0, the wall decelerates,
β = 0 steady state, and p0 is integration constant.

1
ρ f

(P0 − P) =
A2

2
(1− β)

U0
2x2

(1− γt)2 + A2

∫
∂v
∂t

dy + A2
v2

2
− A1ν f

∂v
∂y

, (17)
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2.2. Solution of Momentum and Energy Equation

In order to determine the momentum equation, an additional similarity variable
F(η) = f (η) + η is brought into the system, and the resultant governing equation is:

−ΛFv + A1F′′′ + A2

(
FF′′ − 4F′ − F′2

)
+ A1Da−1F′ = 0 (18)

In addition, the specified governing boundary conditions are transformed into:

F(0) = VC, F′ = λ + 1, at η = 0,
F′ = 0, as η → ∞.

(19)

In the boundary conditions, we get solution p + q = VC, q = − (λ−1)
α and:

F(η) = VC +
λ− 1

α
[1− exp(−αη)] (20)

Apply the assumed solution to Equation (20) into Equation (18) to obtain the exponent
α value as:

Λα4 − A1α2 + A2VCα +
(

A2λ + 3A2 − A1Da−1
)
= 0 (21)

Then we obtain the solution:

f (η) = η + VC +
λ− 1

α
[1− exp(−αη)] (22)

2.3. Solution of Heat Transfer

The heat transfer equation can be modified through the use of a significant non-
dimensional temperature as:

θ(η) =
(T − Tw)

(Tw − T∞)
(23)

We propose new variable ξ that satisfies the correlation coefficients to determine the
exact solution of the temperature Equation (9) for the stretching/shrinking sheet.

ξ = (1− λ)
Pr
α2 e−αη . (24)

Substituting F(η) and Equation (24) in Equation (9) yields the subsequent:

(A4 + NR) ξθ′′ +

(
(A4 + NR)− A3Pr

(
1 +

4A2 + A1Γ
α2

)
+ A3ξ

)
θ′ = 0 (25)

The boundary conditions reduces to:

(1− λ)
Pr
α

θ′
(
(1− λ)

Pr
α2

)
= −Bi

(
1− θ

(
(1− λ)

Pr
α2

))
, θ(∞) = 0. (26)

The singular point of the transformation (25) is ξ = 0. As a result, the Frobenius
method is used to analyze the power solutions of Equation (25):

θ(ξ) =
∞

∑
r=0

ar ξn+r. (27)

After derivative of the first and second order Equation (27) w. r. t. ξ and upon
combining the above-mentioned θ′ and θ′′ expressions, Equation (25) is defined as:

ξ (A4 + NR)
∞

∑
r=0

(n + r) (n + r− 1)ar ξn+r−2 +

(
(A4 + NR)− A3Pr

(
1 +

4
α2

)
+ A3ξ

) ∞

∑
r=0

(n + r) ar ξn+r−1 = 0 . (28)
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here applying the recurrence relation and the following values of n = 0, n = 1− k1
k2

respectively:

ar = − ε3(n + r− 1)
(n + r)[c2(n + r− 1) + c1]

ar−1 (29)

where:

k2 = (A4 + NR), and k1 = (A4 + NR)− A3 Pr
(
−Λα2 + A1 +

4A2 + A1Γ
α2 A2

)
The solution of Equation (28) is simplified as follows using this recurrence relation, as

well as the variables of n.

θ(ξ) = C1C0 + C2C0

(
1− k1

k2

)
(−A3)

−(1− k1
k2
)
[

Γ
(

1− k1

k2
, 0
)
− Γ

(
1− k1

k2
, −ξ A3

)]
. (30)

Finding the values of C1 and C2, we get:

C1 = 0,

C2 = Bi

c0

(
1− k1

k2

)
(−A3)

k1
k2
−1

{
α
(
−(λ− 1)A3

Pr
α2

)1− k1
k2 exp

(
(λ− 1)A3

Pr
α2

)
+

Bi Γ
(

1− k1
k2

, 0
)
− Bi Γ

(
1− k1

k2
,−(λ− 1)A3

Pr
α2

)}−1

The conjecture in terms of η is given by substituting the C1 and C2 values in Equation (30)
and the incomplete gamma function defined.

θ(η) =
Bi Γ

(
1− k1

k2
, 0
)
− Bi Γ

(
1− k1

k2
,−(λ− 1)A3

Pr
α2(A4+NR)

e−αη
)

{
α
(
−(λ− 1)A3

Pr
α2

)1− k1
k2 exp

(
(λ− 1)A3

Pr
α2

)
+ Bi Γ

(
1− k1

k2
, 0
)
− BiΓ

(
1− k1

k2
,− (λ−1)

(A4+NR)
A3

Pr
α2

)} (31)

3. Results and Discussion

The current study examines a ternary hybrid nanofluid flow towards a porous stretch-
ing surface using water as the base fluid. To analyze the current situation analytically,
the volume fraction of aluminum oxide, single wall CNT, and graphene nanoparticles are
all included in the equation. The current problem’s ODEs were derived from controlling
PDEs with similar variables that were solved analytically to provide the solution domain.
The solution domain can be used to investigate solution domain, axial velocity, and heat
transfer. The results of the current effort can then be examined using various physical
characteristics and graphical arrangements. In this unsteady case, the porous medium pa-
rameter and thermal radiation play a major role in the stretching sheet problems. The fluid
flow due to the porous medium is applicable in many industrial applications, such as the
geophysical and allied areas. The results of three different nanoparticles can be examined in
the present analysis; these ternary nanoparticles exhibit better thermal efficiency than that
of normal nanofluids. Moreover, the couple stress fluid parameter is used to characterize
the non-Newtonian fluid behavior.

Figure 2 depict the impact of solution domain α on mass transpiration Vc with various
values of couple stress parameters for the stretching sheet. In this graph, we can see the
results of four roots α1, α2, α3 and α4. α1, α2 are were found on the x-axis, whereas α3, α4
were on the positive y-axis. These four roots are completely contrary to one another. For
the roots α1, and α4, it can be seen that the solution domain is greater for higher values
of couple stress. However, when the couple stress parameter values increase in the roots
α2, and α3, then the solution domain decreases. The results of a modeling of dispersion
water with three different types of nanoparticles are water-Al2O3/single wall carbon
nanotubes/graphene when Pr = 6.27 and φ1 = φ2 = φ3 = 0.1 and the other parameters
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remain constant. Similar effects apply in Figure 3 for different parameters, such as the
inverse Darcy number.
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Figure 4 depicts the impact of solution domain α on λ with various values of the couple
stress parameter. In this graph, we can see the results of the four roots α1, α2, α3 and α4.
α1, α2 were found on the x-axis, whereas α3, α4 were on the positive y-axis. These four
roots are completely contrary to one another. For the roots α1, and α4 it can be seen that
solution domain is greater for higher values of couple stress. However, when the couple
stress parameter values increase in the roots α2, and α3 then the solution domain decrease.
Figure 5 represents the effect of f (η) on η for different values of the couple stress parameter
Λ for the stretching surface, keeping other parameters constant. When couple stress
parameter Λ increases, the thermal boundary decreases. In fact, the force and impact of
the boundary conditions override the couple stress parameter Λ in the case of stretching
sheets. An increase in the value of the couple stress parameter Λ causes a comparable
rise in the axial velocity profiles in the case of both porous stretching and shrinking. The
boundary layer becomes thinner when non-Newtonian viscoelastic shear stress occurs.
Additionally, the boundary layer is smaller when suction, as opposed to injection, is utilized.
Figure 6 represents the effect of f (η) on η for different values of the inverse Darcy number
for stretching surface, keeping the other parameters constant. When the Darcy number
increases, the thermal boundary decreases. The inverse Darcy number, as previously stated,
is an attractive body force whose projection on the x-axis is situated in the opposite direction
of x. Therefore, a higher inverse Darcy number value will result in more resistance to the
axial velocity, thus reducing it. On the other hand, for a stretching sheet, the magnetic field
and the imposed boundary condition are both in the same direction and will reinforce one
another. Figure 7 represents the effect of fη(η) on η for different values of couple stress
parameter Λ for the stretching surface, keeping other parameters constant. When couple
stress parameter Λ increases, the thermal boundary decreases. Figure 8 represents the
effect of fη(η) on η for different values of mass transpiration Vc for the stretching surface,
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keeping other parameters constant. When mass transpiration Vc increases, the thermal
boundary decreases. The noticed increase in influence is due to the dimensionless number’s
simple index of the ratio of thermal resistances within the fluid, and at its surface, the mass
transpiration is only significant close to the wall. Figure 9 represents the effect of fη(η) on
η for different values of λ for the stretching surface, keeping the other parameters constant.
When λ increases, thermal boundary increases. Figure 10 represents the effect of fη(η) on
η for different values of the Darcy number for the stretching surface, keeping the other
parameters constant. When the Darcy number increases, the thermal boundary increases.
In fact, the BC’s power and influence are more significant while stretching a sheet, unlike
the results for the fluids. Similar results are obtained by increasing the size of the Darcy
number. Axial velocity profiles in the case of both mass transpiration parameters and
stretching/shrinking increase. The dividing mass transpiration in the stretching/shrinking
sheet causes the layer to narrow.
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Figure 11 represents the effect of fη(η) on η for different values of volume fraction
φ1 for the stretching surface, keeping the other parameters constant. When φ1 increases,
the thermal boundary increases. The ternary hybrid nanoparticles within the nanofluid
increase as the volume fraction of the nanoparticles increases, allowing for an increased
area for improved heat conduction. As can be seen in Figure 11, this raises the velocity
of the nanofluid. Figure 12 shows the impact of θ(η) on η for various values of Λ for the
stretching surface. θ(η) decreases with an increase the value of Λ, and it is observed that
the boundary layer thickness also reduces in the stretching surface. Figure 13 indicates the
impact of θ(η) on η for various values of the Biot number for the stretching case. Here, it
seen that θ(η) decreases as the value of the Biot number increases. As a result, the Biot
number enhances the thermal diffusivity of a nanofluid for rising quantities of Bi. The
nanofluids are increase in the efficiency of the Bi as the temperature rises. The performance
of nanofluids is affected by both the drop in particle volume fraction and the increase in
temperature in the flow pattern. Figure 14 show the temperature distribution θ(η) versus
the similarity variable η for various values of the mass transpiration Vc for the stretching
surface. This means that the thickness of the thermal boundary layer under suction is
thinner than under blowing. Figure 15 show the temperature distribution θ(η) versus
the similarity variable η for various values of the thermal radiation NR for the stretching
surface. Thermal radiation, therefore, increases the thermal diffusivity of nanofluids; for
emerging radiation parameter values, heat will be added to the regime, and temperatures
will rise as a result. A fluid temperature greater than both the wall temperature and the
surrounding ambient temperature is technically possible, as was mentioned for the heat
transmission of flows over a stretching sheet. Here, we have discussed the effect of forced
flow over a stretching sheet; we now look at heat transport in the presence of radiation.
The effect of heat conductivity is amplified by the radiation. Radiation has the effect of
dampening or enhancing heat transmission in a linear manner. Figure 16a,b show the
streamline flow patterns for suction and injection situations, respectively. For suction and
injection scenarios, we look at different line patterns. The streamline flow pattern for the
stretched boundaries is shown in Figure 16a,b for varied levels of mass transpiration Vc
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while other parameters remain constant. When wall suction occurs at specific locations, as
predicted by the physical theory, the flow field becomes regularized. On the other hand,
blowing (flow injection) eliminates the streamline in the circular shape. Figure 17 indicates
the effect of the skin friction coefficient on the stretching/shrinking surface λ as a function
of couple stress Λ, respectively. Here, it is noticed that the couple stress parameter is the
reciprocal of thickness decreasing of the boundary layer occurs via the same process. While
skin friction is linearly proportional to the thickness of the boundary layer, it is estimated
to have an inverse proportionality λ, as depicted in Figure 17. In addition, upward pulling
couple stress parameters will draw fluid toward the negative y direction and reduce skin
friction. The thickness of the boundary layer will decrease when the suction parameter,
which measures the strength of wall suction, is increased, and as a result, the gradient of
the velocity on the wall will also increase. This impact will enhance skin friction, as shown
in Figure 17. Figure 18 shows the effect of the skin friction coefficient on couple stress Λ as
a function of the stretching/shrinking surface λ, respectively. Here, it should be noted that
the process of the decrease of the boundary layer’s thickness and the stretching/shrinking
surface parameter are the same. Skin friction is thought to have an inverse relationship
with boundary layer thickness, as shown in Figure 18, even though the two are linearly
proportional λ. Additionally, fluid will be drawn toward the negative y direction, and
the skin friction will be decreased by the upward pulling couple stress parameters. The
suction parameter, which gauges the strength of the wall suction, causes a reduction in the
thickness of the boundary layer, which causes an increase in the gradient of velocity on the
wall. The increase in skin friction caused by this collision is depicted in Figure 18.
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Figure 16. Pattern of streamline flows for (a) suction and (b) injection cases.
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4. Conclusions

The present study examines a ternary hybrid nanofluid flow towards a porous stretch-
ing surface using water as the base fluid. The current problem’s ODEs were derived by
controlling PDEs with similar variables that were solved analytically to provide the solution
domain. The solution domain can be used to investigate the solution domain, axial velocity,
and heat transfer. Some comparisons of our results are given in Table 2. The results of the
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current effort can then be analyzed using various physical characteristics and graphical
arrangements.

Table 2. Comparing the results.

Related Works by Other
Authors Fluids Methods Momentum Equation

Manjunatha et al. [14],
Theoretical Study of Convective

Heat Transfer in Ternary
Nanofluid Flowing past a

Stretching Sheet

Non-Newtonian Numerical method
u ux + v uy = νthn f uyy +

σthn f B2
0

ρthn f
u,

MHD, ternary hybrid nanofluid with
stretching sheet

Enran et al. [15],
Dynamics of Tri-Hybrid

Nanoparticles in the Rheology of
Pseudo-Plastic Liquid with

Dufour and Soret Effects

Non-Newtonian Numerical method

u ∂u
∂x + v ∂u

∂y =
µthn f
ρthn f

∂
∂x

(∣∣∣ ∂u
∂y

∣∣∣m−1
∂u
∂y

)
− µthn f

ρthn f K FDu− FD

(ks)
1
2

u2

+gα(T − T∞) + gβ(C− C∞),
porous medium with mixed convection

Saleem et al. [16],
Insight into the Motion of Water

Conveying Three Kinds of
Nanoparticles on a Horizontal

Surface: Significance of
Thermo-Migration and Brownian
Motion of Different Nanoparticles

Non-Newtonian Numerical method u ux + v uy = νthn f uyy

present work Non-Newtonian Analytical method

ρtn f

(
∂u
∂t + u ∂u

∂x + v ∂u
∂y

)
= − ∂P

∂x

+µtn f

(
∂2u
∂x2 +

∂2u
∂y2

)
− µtn f

K (u∞ − u)− η0
∂4u
∂y4

couple stress of fluid, unsteady case, porous
medium, and ternary hybrid nanofluid

The values of α1 and α2 increase as the value of Λ increases, while the values of α3 and
α4 decrease as the value of Λ for the stretching condition is increased.

The values of α1 and α2 increase as the value of λ increases, while the values of α3 and
α4 decrease as the value of λ is increased.

f (η) decreases when the value of Λ and Da−1 increase.
fη(η) decreases when the value of Λ and Vc increase, but fη(η) increases when the

value of Da−1.
θ(η) decreases when the value of Λ, Bi, Vc, and NR increase, for the stretching case.
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Nomenclature

Symboles Descriptions S. I. Units
A1 to A4 ternary nanofluid constants (-)
B1 to B4 constants (-)
Bi Biot number (-)
Da−1 inverse Darcy number (-)
fη(η) axial velocity (-)
F(η) f (η) + η transverse velocity (-)
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Symboles Descriptions S. I. Units
G(t, x) integration constant (-)
h coefficient of heat transfer (-)
K permeability (-)
k∗ mean absorption coefficient (m−2)
NR radiation parameter (-)
P pressure (Nm−2)
Pr Prandtl number (-)
qr heat flux (Wm−2)
T temperature (K)
Tw temperature at wall (K)
T∞ temperature from field (K)
t time (s)
Uw velocity at wall (ms−1)
U∞ unsteady free stream velocity (ms−1)
U0 constant (-)
(u, v) velocities along x and y direction (ms−1)
Vw wall transpiration velocity (ms−1)
Vc mass transpiration (-)
Greek Symbols
α solution domain (-)
β unsteadiness parameter (-)
γ constant (-)
η0 materials for the couple stress fluid (-)
φ1, φ2, and φ3 solid volume fractions for three different nanoparticles (-)
λ stretching/shrinking sheet (-)
Λ couple stress parameter (-)
µ dynamic viscosity of fluid (Kg m−1 s−1)
κ thermal conductivity (m2s−1)
ν kinematic viscosity (m2s−1)
θ(η) temperature profile (-)
σ∗ Stefan–Boltzmann constant (W m−2K−4)
ρ density (Kg m−3)
Γ incomplete gamma function (-)
ψ(x, y, t) stream function (-)
Subscripts
w wall (-)
∞ far away from the sheet (-)
f base fluid (-)
tn f ternary hybrid nanofluid (-)
Abbreviations
B. Cs boundary conditions (-)
ODE ordinary differential equations (-)
PDE partial differential equations (-)

References
1. Mohammadi, A.; Ahmadi, M.H.; Bidi, M.; Joda, F.; Valero, A.; Uson, S. Exergy Analysis of a Combined Cooling, Heating and

Power System Integrated with Wind Turbine and Compressed Air Energy Storage System. Energy Convers. Manag. 2017, 131,
69–78. [CrossRef]

2. Sakiadis, B.C. Boundary-Layer Behavior on Continuous Solid Surfaces: I. Boundary-Layer Equations for Two-Dimensional and
Axisymmetric Flow. AIChE J. 1961, 7, 26–28. [CrossRef]

3. Sakiadis, B.C. Boundary-Layer Behavior on Continuous Solid Surfaces: II. The Boundary Layer on a Continuous Flat Surface.
AiChE J. 1961, 7, 221–225. [CrossRef]

4. Crane, L.J. Flow Past a Stretching Plate. Z. Angew. Math. Phys. ZAMP 1970, 21, 645–647. [CrossRef]
5. Gu, L.D.; Min, J.C.; Tang, Y.C. Effects of Mass Transfer on Heat and Mass Transfer Characteristics Between Water Surface and

Airstream. Int. J. Heat Mass Transf. 2018, 122, 1093–1102. [CrossRef]
6. Esfe, M.H.; Arani, A.A.A.; Rezaie, M.; Yan, W.-M.; Karimipour, A. Experimental Determination of Thermal Conductivity and

Dynamic Viscosity of Ag–Mgo/Water Hybrid Nanofluid. Int. Commun. Heat Mass Transf. 2015, 66, 189–195. [CrossRef]

http://doi.org/10.1016/j.enconman.2016.11.003
http://doi.org/10.1002/aic.690070108
http://doi.org/10.1002/aic.690070211
http://doi.org/10.1007/BF01587695
http://doi.org/10.1016/j.ijheatmasstransfer.2018.02.061
http://doi.org/10.1016/j.icheatmasstransfer.2015.06.003


Micromachines 2022, 13, 1694 21 of 21

7. Bhattacharyya, S.; Khan, A.I.; Kumar Maity, D.; Pradhan, S.; Bera, A. Hydrodynamics and Heat Transfer of Turbulent Flow
Around a Rhombus Cylinder. Chem. Eng. Trans. 2017, 62, 373–378. [CrossRef]

8. Chamkha, A.J.; Yassen, R.; Ismael, M.A.; Rashad, A.; Salah, T.; Nabwey, H.A. MHD Free Convection of Localized Heat Source/Sink
in Hybrid Nanofluid-Filled Square Cavity. J. Nanofluids 2020, 9, 1–12. [CrossRef]

9. Mahdavi, M.; Sharifpur, M.; Meyer, J.P. Fluid Flow and Heat Transfer Analysis of Nanofluid Jet Cooling on A Hot Surface with
Various Roughness. Int. Commun. Heat Mass Transf. 2020, 118, 104842. [CrossRef]

10. Benos, L.T.; Polychronopoulos, N.D.; Mahabaleshwar, U.S.; Lorenzini, G.; Sarris, I.E. Thermal and flow investigation of MHD
natural convection in a nanofluid-saturated porous enclosure: An asymptotic analysis. J. Therm. Anal. 2019, 143, 751–765.
[CrossRef]

11. Anusha, T.; Huang, H.N.; Mahabaleshwar, U.S. Two Dimensional Unsteady Stagnation Point Flow of Casson Hybrid Nanofluid
Over a Permeable Flat Surface and Heat Transfer Analysis with Radiation. J. Taiwan Inst. Chem. Eng. 2021, 127, 79–91. [CrossRef]

12. Anusha, T.; Mahabaleshwar, U.S.; Sheikhnejad, Y. An MHD of Nanofluid Flow Over a Porous Stretching/Shrinking Plate with
Mass Transpiration and Brinkman Ratio. Transp. Porous Media 2021, 142, 333–352. [CrossRef]

13. Sharifpur, M.; Tshimanga, N.; Meyer, J.P.; Manca, O. Experimental Investigation and Model Development for Thermal Conductiv-
ity of A-Al2O3-Glycerol Nanofluids. Int. Commun. Heat Mass Transf. 2017, 85, 12–22. [CrossRef]

14. Hou, E.; Wang, F.; Nazir, U.; Sohail, M.; Jabbar, N.; Thounthong, P. Dynamics of Tri-Hybrid Nanoparticles in the Rheology of
Pseudo-Plastic Liquid with Dufour and Soret Effects. Micromachines 2022, 13, 201. [CrossRef] [PubMed]

15. Saleem, S.; Animasaun, I.L.; Yook, S.J.; Al-Mdallal, Q.M.; Shah, N.A.; Faisal, M. Insight into the Motion of Water Conveying Three
Kinds of Nanoparticles Shapes on A Horizontal Surface: Significance of Thermo-Migration and Brownian Motion of Different
Nanoparticles. Surf. Interfaces 2022, 30, 101854. [CrossRef]

16. Zhang, X.; Gu, H.; Fujii, M. Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and
Cylindrical Nanoparticles. Exp. Therm. Fluid Sci. 2007, 31, 593–599. [CrossRef]

17. Manjunatha, S.; Puneeth, V.; Gireesha, B.J.; Chamkha, A.J. Theoretical Study of Convective Heat Transfer in Ternary Nanofluid
flowing past a Stretching Sheet. J. Appl. Comput. Mech. 2022, 8, 1279–1286. [CrossRef]

18. Wakif, A.; Boulahia, Z.; Sehaqui, R. Numerical Study of the Onset of Convection in a Newtonian Nanofluid Layer with Spatially
Uniform and Non Uniform Internal Heating. J. Nanofluids 2017, 6, 136–148. [CrossRef]

19. Narayana, P.V.S.; Akshit, S.M.; Ghori, J.; Venkateswarlu, B. Thermal Radiation Effects on an Unsteady MHD Nanofluid Flow
Over a Stretching Sheet with Non-Uniform Heat Source/Sink. J. Nanofluids 2017, 6, 899–907. [CrossRef]

20. Truesdell, C. Sulla Basi Della Thermomechanical. Rend. Lincei 1957, 22a, 158–166.
21. Truesdell, C. Sulla Basi Della Thermomechanical. Rend. Lincei 1957, 22b, 33–38.
22. Anuar, N.S.; Bachok, N.; Arifin, N.M.; Rosali, H. Mixed Convection Flow and Heat Transfer of Carbon Nanotubes Over an

Exponentially Stretching/Shrinking Sheet with Suction and Slip Effect. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 59, 232–242.
23. Anwar, T.; Kumam, P.; Asifa; Khan, I.; Thounthong, P. Generalized Unsteady MHD Natural Convective Flow of Jeffery Model

with Ramped Wall Velocity and Newtonian Heating; A Caputo-Fabrizio Approach. Chin. J. Phys. 2020, 68, 849–865. [CrossRef]
24. Khan, W.A.; Khan, Z.H.; Rahi, M. Fluid Flow and Heat Transfer of Carbon Nanotubes Along a Flat Plate with Navier Slip

Boundary. Appl. Nanosci. 2013, 4, 633–641. [CrossRef]
25. Jain, S.; Parmar, A. Unsteady MHD Chemically Reacting Mixed Convection Nano-Fluids Flow Past an Inclined Pours Stretching

Sheet with Slip Effect and Variable Thermal Radiation and Heat Source. Mater. Today Proc. 2018, 5, 6297–6312. [CrossRef]
26. Yan, S.R.; Izadi, M.; Sheremet, M.A.; Pop, I.; Oztop, H.F.; Afrand, M. Inclined Lorentz Force Impact on Convective-Radiative Heat

Exchange of Micropolar Nanofluid Inside a Porous Enclosure with Tilted Elliptical Heater. Int. Commun. Heat Mass Transf. 2020,
117, 104762. [CrossRef]

27. Joseph, S.P. Some Exact Solutions for Incompressible Couple Stress Fluid Flows. Malaya J. Mat. 2020, 1, 648–652. [CrossRef]
28. Baranovskii, E.; Burmasheva, N.; Prosviryakov, E. Exact Solutions to the Navier–Stokes Equations with Couple Stresses. Symmetry

2021, 13, 1355. [CrossRef]
29. Rosseland, S. Astrophysik and Atomtheoretische Grundlagen; Springer: Berlin/Heidelberg, Germany, 1931.
30. Sneha, K.N.; Mahabaleshwar, U.S.; Bennacer, R.; Ganaoui, M.E. Darcy Brinkman Equations for Hybrid Dusty Nanofluid Flow

with Heat Transfer and Mass Transpiration. Computation 2021, 9, 118. [CrossRef]
31. Suganthi, K.; Rajan, K. Metal oxide nanofluids: Review of Formulation, Thermo-Physical Properties, Mechanisms, and Heat

Transfer Performance. Renew. Sustain. Energy Rev. 2017, 76, 226–255. [CrossRef]

http://doi.org/10.3303/CET1762063
http://doi.org/10.1166/jon.2020.1726
http://doi.org/10.1016/j.icheatmasstransfer.2020.104842
http://doi.org/10.1007/s10973-019-09165-w
http://doi.org/10.1016/j.jtice.2021.08.014
http://doi.org/10.1007/s11242-021-01695-y
http://doi.org/10.1016/j.icheatmasstransfer.2017.04.001
http://doi.org/10.3390/mi13020201
http://www.ncbi.nlm.nih.gov/pubmed/35208325
http://doi.org/10.1016/j.surfin.2022.101854
http://doi.org/10.1016/j.expthermflusci.2006.06.009
http://doi.org/10.22055/JACM.2021.37698.3067
http://doi.org/10.1166/jon.2017.1293
http://doi.org/10.1166/jon.2017.1374
http://doi.org/10.1016/j.cjph.2020.10.018
http://doi.org/10.1007/s13204-013-0242-9
http://doi.org/10.1016/j.matpr.2017.12.239
http://doi.org/10.1016/j.icheatmasstransfer.2020.104762
http://doi.org/10.26637/MJM0S20/0123
http://doi.org/10.3390/sym13081355
http://doi.org/10.3390/computation9110118
http://doi.org/10.1016/j.rser.2017.03.043

	Introduction 
	Physical Model and Formulations 
	Solution of Pressure Gradient 
	Solution of Momentum and Energy Equation 
	Solution of Heat Transfer 

	Results and Discussion 
	Conclusions 
	References

