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Abstract: A cylindrical resonator gyroscope is a kind of Coriolis gyroscope, which measures angular
velocity or angle via processing of the standing wave. The symmetry of a cylindrical resonator is
destroyed by different degrees of geometric nonuniformity and structural damage in the machining
process. The uneven mass distribution caused by the asymmetry of the resonator can be expressed in
the form of a Fourier series. The first three harmonics will reduce the anti-interference ability of the
resonator to the external vibration, as well as increase the angular random walk and zero-bias drift of
the gyroscope. In this paper, the frequency split of different modes caused by the first three harmonic
errors and the displacement of the center of the cylindrical resonator bottom plate are obtained by
simulation, and the relationship between them is explored. The experimental results on five fused
silica cylindrical resonators are consistent with the simulation, confirming the linear relationship
between the n = 1 frequency split and second harmonic error. A method for evaluating the first three
harmonic errors of fused silica cylindrical resonators is provided.
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1. Introduction

An inertial navigation system is an autonomous navigation system that does not
rely on external information [1]. A gyroscope is the key device of inertial navigation
system, which directly determines the cost and performance of an inertial navigation
system. A Coriolis vibratory gyroscope measures the angular velocity or angle via the
processing of the standing waves, the representatives of which includes the hemispherical
resonator gyroscope (HRG), the cylindrical resonator gyroscope (CRG), and the tuning fork
gyroscope [2]. Compared with mechanical rotor gyroscopes and optical gyroscopes, the
cylindrical resonator gyroscope has several advantages. Firstly, it has no wear element,
which guarantees a long life. In addition, due to the highly symmetric structure, the CRG
has outstanding characteristics of a large operating temperature range and insensitivity to
overload. Moreover, because of its low cost, small size, high precision, and good stability,
CRG is very suitable for medium- to high-precision applications such as stabilization
systems for various platforms, remotely operated vehicles, and automated underwater
vehicles [3].

The cylindrical resonator is the core component of a cylindrical resonator gyroscope,
whose quality has a crucial impact on the performance of the CRG. The performance of
the resonator can be improved by optimizing the resonator structure, using appropriate
materials, and improving the manufacturing technology [4–7]. Metal materials have
been widely used in resonator manufacturing for their low cost and easy processing [8,9].
However, the internal damping of metals is usually too high to realize high-Q resonators.
Fused silica material is an important material for high-performance resonator gyroscopes
because of its low internal damping, small coefficient of thermal expansion, and high
isotropy, despite it requiring complex processing technology and higher manufacturing
costs compared to metal materials [5,9,10].
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The actual resonator as-fabricated usually has defects of geometrical nonuniformity
and structural damage. These defects can be equivalent to the nonuniform distribution of
the resonator mass which is defined as unbalanced mass [11]. The unbalanced mass can be
expressed in the form of a Fourier series [12]. The harmonic error is the error component
of the unbalanced mass under different series in terms of the sine and cosine. The fourth
harmonic error leads to the originally equal frequency of the n = 2 mode splitting into
a different two. The first three harmonics lead to the uneven damping distribution and
increase the sensitivity of the resonator to external vibration. The external random vibration
increases the angular random walk of the gyroscope, and the external harmonic vibration
increases the drift of the gyroscope, resulting in a significant decline in the accuracy and the
vibration immunity of the gyroscope [13–16]. Therefore, reducing the first four harmonic
errors is an important task in the manufacturing process of the CRG, which is of great
significance to improve the accuracy and the environment immunity of the CRG.

Studies on the fourth harmonic are quite intensive; however, due to the complexity in
both theoretical aspects and practical experimental aspects, studies on the first three har-
monic errors are rare [17–21]. Hanhwa Corp disclosed a force-measuring device for mass
unevenness measurement of a hemispherical resonator [22]. Lopatin et al. from Russia pro-
posed a measurement method to detect the first three harmonic errors of the hemispherical
resonator by measuring the vibration displacement of the hemisphere resonator shell [23].
Bodunov and others evaluated the first three harmonic errors by measuring the vibration
of the external stem with piezoelectric sensors [24]. This study aims to reveal and verify the
relationship between the harmonic errors and frequency split of the cylindrical resonator
and the center displacement of the bottom surface of the resonator stem through simulation
and experiments, and to propose a method for identifying the first three harmonic errors of
the cylindrical resonator.

In this article, the vibrational characteristics of cylindrical resonators with the first
three harmonic errors are studied through theoretical analysis, simulation, and experiment.
Firstly, a mathematical model of a resonator with unbalanced mass is established. Then,
we create a finite element model through Comsol to investigate the frequency split and
the displacement of the stem center. The relationship between the frequency split in
n = 1 mode and the center displacement of the bottom surface of the cylindrical resonator
with the second harmonic error is obtained through analyzing the simulation results. Lastly,
experiments on five fused silica cylindrical resonators are conducted. The experimental
results are consistent with the simulation results. For the second harmonic error, it can be
reflected by frequency split in n = 1 mode and can also be reflected by the vibration of the
resonator stem in n = 2 mode.

2. Mathematical Model

The resonator is considered as a thin elastic ring that vibrates only in its own plane,
and a ring model with unbalanced mass is established as shown in Figure 1. The axial
length of the ring is L, the mean radius of the ring is R, and ϕi is the central angle where
the unbalanced mass mi is distributed.

The unbalanced mass has an impact on the natural frequency and mode position of
the ring. The natural frequency of the imperfect ring with mass point can be expressed as
follows [25]:

f 2
n1,n2

= f 2
n0

/1 + ∑
i

mi
M0
± α2

n − 1
M0(α2

n + 1)

√√√√(∑
i

mi cos 2nϕi

)2

+

(
∑

i
mi sin 2nϕi

)2
 , (1)

where fn1, fn2 is the natural frequency of the n-th mode of the resonator with uneven mass,
fn0 is the vibration frequency of the perfect resonator, M0 is the mass of the perfect resonator,
and αn is the amplitude ratio of the radial and the tangential vibration.



Micromachines 2022, 13, 1679 3 of 12Micromachines 2022, 13, x FOR PEER REVIEW 3 of 13 
 

 

 

Figure 1. The ring with unbalanced mass. 

The unbalanced mass has an impact on the natural frequency and mode position of 

the ring. The natural frequency of the imperfect ring with mass point can be expressed 

as follows [25]: 

1 2 0

2 22
2

, 2
0 0

2 1
1 cos 2 sin 2

( 1)
i n

n n i i i
i in

n i
i

f
m

f m n m n
M M


 



 
−     = +  +   

 +    
 

   , (1) 

where fn1, fn2 is the natural frequency of the n-th mode of the resonator with uneven 

mass, fn0 is the vibration frequency of the perfect resonator, M0 is the mass of the perfect 

resonator, and αn is the amplitude ratio of the radial and the tangential vibration. 

As shown in Figure 2, the resonator has two vibration modes, forming two eigen-

axes. The angle of these two eigenaxes is 45° in n = 2 mode. When the resonator vibrates 

along one of the eigenaxes, its eigen vibration frequency will reach the maximum and 

minimum. The difference between the two eigen frequencies is frequency split. The fre-

quency split ∆fn of the n-th mode can be calculated using Equation (1) [14]. 

( )
( )

0

2 2 2

1 2 2

0

1
cos 2 sin 2

1

n n

n n n i i

n

i
i

i
i

f
f f f m n m n

M


 



−    
 == − +  

+    
  . (2) 

 

Figure 2. Schematic diagram of resonator vibration. AA, BB are the two eigenaxes. fn1, fn2 are the 

natural frequency of the resonator. 

When analyzing the influence of resonator mass defect, we can introduce the un-

balanced mass by the uneven distribution of the resonator density ρ in the central angle 

using a Fourier series [12]: 

( ) ( )0
1

cos
i i

i

k     


=

= + − , (3) 

where k is the harmonic number of the resonator mass distribution, ρ0 is the density of 

the perfect resonator, and ρi is the i-th harmonic error of the resonator density. With the 

Figure 1. The ring with unbalanced mass.

As shown in Figure 2, the resonator has two vibration modes, forming two eigen-axes.
The angle of these two eigenaxes is 45◦ in n = 2 mode. When the resonator vibrates along
one of the eigenaxes, its eigen vibration frequency will reach the maximum and minimum.
The difference between the two eigen frequencies is frequency split. The frequency split
∆fn of the n-th mode can be calculated using Equation (1) [14].

∆ fn = fn1 − fn2 =
fn0

(
α2

n − 1
)

M0(α2
n + 1)

√√√√(∑
i

mi cos 2nϕi

)2

+

(
∑

i
mi sin 2nϕi

)2

. (2)
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Figure 2. Schematic diagram of resonator vibration. AA, BB are the two eigenaxes. fn1, fn2 are the
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When analyzing the influence of resonator mass defect, we can introduce the unbal-
anced mass by the uneven distribution of the resonator density ρ in the central angle using
a Fourier series [12]:

ρ(ϕ) = ρ0 +
∞

∑
i=1

ρi cos(kϕ− ϕi), (3)

where k is the harmonic number of the resonator mass distribution, ρ0 is the density of
the perfect resonator, and ρi is the i-th harmonic error of the resonator density. With the
increase in the number of unbalanced mass points, the mass defects can be expressed in the
integral form. Equation (2) can be rewritten as the following form:

∆ fn = fn1 − fn2 =
fn0 R

(
α2

n − 1
)

M0(α2
n + 1)

√(∫ 2π

0
ρ(ϕ) cos 2nϕdϕ

)2

+

(∫ 2π

0
ρ(ϕ) sin 2nϕdϕ

)2

. (4)
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Substitute the harmonic error expression into the equation of the frequency split
mentioned above; the relationship between frequency split in n = 1 mode and uneven
density ρ2 can be expressed as

∆ f1 =
f10R

(
α2

1 − 1
)
|ρ2|π

M0
(
α2

1 + 1
) . (5)

The first three harmonics cause the vibration of the center of mass. The reaction force at
the stem when an imperfect resonator vibrates at the n = 2 mode can be an be approximately
written as the following expression through integration [26]:

Fx = 0.25aω2[3Vρ1 cos(2θ − ϕ1) + Vρ3 cos(2θ − 3ϕ3)] sin ωt
Fy = 0.25aω2[3Vρ1 sin(2θ − ϕ1)−Vρ3 sin(2θ − 3ϕ3)] sin ωt
Fz = 0.5aω2Vρ2 cos(2θ − 2ϕ2) sin ωt

(6)

where a and ω is the amplitude and angular frequency of the imperfect resonator, V is the
volume of the resonator, and ϕi=1,2,3 are the azimuth angles of the i-th mass defects.

According to Equations (5) and (6), it can be obtained that the transverse vibration is
equivalent to applying excitation along the direction of the first and third harmonic errors.
The longitudinal vibration results in the standing wave locating on the second harmonic.
A larger second harmonic results in a more longitudinal displacement of the stem. The
maximum value of longitudinal vibration displacement and the mode frequency split in
n = 1 mode are both linearly related to the second harmonic. Therefore, when the frequency
split in n = 1 mode is larger, the maximum value of the longitudinal displacement of the
resonator stem is also larger.

3. Simulations
3.1. Establish the Resonator Model

Firstly, a perfect resonator without defects is established. The structure of the cylindri-
cal fused silica resonator in this paper is shown in Figure 3. In order to make the simulation
model as close to the experiments as possible, three constraints of contact at the outer
surface of the cylindrical resonator stem are added. The material parameters are shown in
Table 1.
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Figure 3. Structural diagram of cylindrical resonator with fixtures and the cylindrical coordinate system.

Table 1. Materials of the simulation model.

Young’s Modulus
(GPa) Poisson’s Ratio Density (kg/m3)

Resonator 71.7 0.17 2203
Fixture 90 0.32 8500

A fixed constraint is applied on the outer cylindrical surface of the fixture. Next, the
grid model of the cylindrical resonator is elaborately meshed. During the establishment of
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the finite element models, factors such as grid size, uniformity, and distribution density
have great impact on the results of the simulation. The frequency split of the perfect
resonator in n = 2 mode is reduced through proper grid division, such that the resonator
can be considered as an ideal resonator without defects. As shown in Figure 4, the grid
model includes 1,222,141 free tetrahedron elements. The computation time usually takes
5 min.
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Figure 4. Grid model of the cylindrical resonator.

According to Equation (2), the uneven mass of the resonator can be expressed in the
form of a Fourier series. Assuming the geometry of the resonator is perfect, the uneven
mass can be equivalent to the nonuniformity of density. The distribution of imperfect
density on resonator with the first three harmonics is shown in Figure 5. The nonuniform
density distribution period is 2π, π, and 2π/3, respectively.
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Figure 5. The distribution of the first three nonuniform densities: (a) the first harmonic error; (b) the
second harmonic error; (c) the third harmonic error.

3.2. Relationships between the First Three Harmonic Errors and the Frequency Splits

The influence of the first three harmonics on the frequency split of n = 1, 2, 3 modes
is independently studied in this section. As shown in Figure 6, the influence of the first
harmonic error on the frequency split of the n = 1 mode is much greater than that of the
n = 2 and n = 3 modes. The frequency split of the n = 1 mode is approximately proportional
to the square of the first harmonic error, and its relationship is obtained by parameter
estimation using the least square method. The frequency splits of the n = 2 and the
n = 3 mode increase slightly with the growth the of the first harmonic error. The frequency
split of the n = 1, 2, 3 modes are 20.72 mHz, 14.89 mHz, and 6.30 mHz, respectively, when
the first harmonic error is 10 kg/m3.
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The influence of the second harmonic error on the frequency split is shown in Figure 7.
With the increase in the second harmonic error, the frequency split of the n = 1 mode
increases rapidly, and the frequency splits in the n = 2 and n = 3 modes are only slightly
changed. The frequency split of the n = 1 mode is approximately linear with the second
harmonic error. The frequency split of the n = 1 mode is 12.45 mHz when the second
harmonic error is 20 kg/m3. From the fitting results, the frequency split of the n = 1 mode
is proportional to the second harmonic, which is consistent with the theoretical formula.
In addition, although the first harmonic can also cause an increase in the n = 1 frequency
split, its contribution is far less than the second harmonic. It is still in line with the
theoretical model.
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Figure 7. The influence of the second harmonic ρ2 on the frequency split of n = 1, 2, 3 modes.

The variation of the frequency split of the n = 1, 2, 3 modes with varied amount
of the third harmonic error is shown in Figure 8. The influence of the third harmonic
error on the frequency split of the n = 3 mode is greater than that on the n = 1 and the
n = 2 modes. In general, the third harmonic error has little influence on the frequency split
of the n = 1, 2, 3 modes. The variation of the frequency split is 2.2 mHz when the coefficient
of the third harmonic error increase from 0 kg/m3 to 20 kg/m3
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3.3. Relationships between the Displacement of the Center of the Bottom Plate and the First Three
Harmonic Errors

The influence of the first three harmonic errors on the displacement of the center of the
cylindrical resonator bottom plate is studied in this section. Simulations on the imperfect
resonator have been conducted to investigate the characteristics of the vibration of the
bottom plate center. The resonator is excited with the same magnitude of force at the same
angle. The excitation force is determined by actual experimental experience. The resonator
vibrates at the natural frequency of the n = 2 mode. The displacement of the bottom plate
center is extracted by the analysis of the frequency domain.

As shown in Figure 9, the relationship between the harmonic errors and the displace-
ment of the bottom center is obtained. With the increase in the first and third harmonic
errors, the displacement of the bottom center also increases. The total displacement of the
center point of bottom plate and displacement components of the XOY plane increase more
obviously, while the displacement component along the Z direction is almost unchanged.
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cylindrical resonator bottom plate: (a) ρ1; (b) ρ2; (c) ρ3.

With the increase in the second harmonic error from 0 to 9 kg/m3, the displacement
components of the XOY plane remain unchanged. On the other hand, the displacement
component in the Z direction and the total displacement of the bottom plate center increase
significantly. Moreover, when the second harmonic error continues to increase to 20 kg/m3,
the displacement of concern decreases. According to the theoretical model, the first and
third harmonic errors lead to the transverse vibration of the bottom plate, and the second
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harmonic error leads to the longitudinal vibration of the bottom plate. The results of the
simulation are consistent with theory.

However, in practice, the measurement system, manufacturing imperfections, Q factor
difference among different resonators, etc. will cause variation in absolute displacement
of the resonator and, consequently, the variation in the displacement of the center of the
resonator bottom. Therefore, it is necessary to remove the impact of the total displacement
caused. The maximum displacement of the resonator under the n = 2 mode is about 500 nm,
which is reasonably small compared with the size of the resonator. Therefore, the vibration
of the cylindrical resonator can be regarded as a linear system, allowing us to calculate the
relative displacement of the bottom center of the cylindrical resonator. the coefficient of
harmonic displacement η is defined as

η =
Dc

Dmax
, (7)

where Dc is the displacement of the center of the bottom surface, and Dmax is the maximum
displacement of the bottom surface.

As shown in Figure 10, η increases as the first three harmonic errors grow. The
coefficient η in the XOY plane increased linearly with first and three harmonic errors, and
the coefficient η along the Z direction increased linearly with the second harmonic error.
The coefficient of harmonic vibration η represents the relevant displacement under different
first three harmonic errors. Therefore, it can be used to weigh the degree the harmonic
errors for resonators with different structures under different measurement conditions.
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4. Experiments

In this section, experiments are conducted on five fused silica cylindrical resonators
machined with the same processing parameters. These resonators were chemically etched
in NH4F2 solution. This operation can effectively remove the subsurface damage layer
such as micro-cracks and scratches generated during the processing of resonators. The
experimental set up is shown in Figure 11. The acoustic source excites the cylindrical
resonator to the n = 2 wineglass mode, and the laser Doppler vibrometer (PSV-500, Polytec,
Waldbronn, Germany) acquires the vibration information, which is then processed by the
Polytec software. The fixture is used to fix these experimental resonators. These resonators
are fixed with the same clamping condition. The position of the laser Doppler vibrometer
is adjusted so that the laser emitted can be shot toward the center of the resonator bottom
plate along the normal direction of the bottom surface of the cylindrical resonator. This
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operation is to ensure the displacement of the measurement of the center of the bottom in
the Z direction of the bottom.
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Firstly, the frequency split of the cylindrical resonator in n = 1 mode and its natural
frequency in working mode are obtained using a frequency sweeping operation. Similarly,
because the displacement of the cylindrical resonator is reasonable small in the actual
experiment, we can regard it as a linear system. Therefore, the resonator is excited with the
natural frequency of the resonator. The vibration rates vc and vmax are obtained during the
excitation. Similarly, the coefficient of harmonic vibration can be defined as

γ =
vc

vmax
, (8)

where vc is the rate at the center of the resonator, and vmax is the rate at the maximum rate
point on the bottom of the resonator.

There are 691 points set on the surface of the bottom plate. The result of the points
scanning of one resonator is shown in Figure 12. The two points marked in the figure are
the center point of the resonator and the point of the maximum rate.
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The relationship between the frequency split of cylindrical resonator in n = 1 mode and
the relative velocity of its bottom center is obtained through experiments. Table 2 shows
the experimental data of five resonators. The unbalance mass distribution of resonators is
different, resulting in different vibration states of resonators. The vibration frequency and
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bottom displacement of resonators may be significantly different. It can be seen from the
experimental results that the coefficient of harmonic vibration and the frequency split of
the resonator under n = 1 mode still conform to the linear law.

Table 2. Vibration frequency, frequency split under n = 1 mode, and coefficient of harmonic vibration
of experimental resonators.

Resonator
Number

Vibration
Frequency (Hz)

Frequency
Under n = 1 Mode (Hz)

Frequency
Split Under n = 1 (Hz)

vmax
(µm/s)

vc
(µm/s) Γ (10−3)

1 8078.748 3102.380 3104.907 2.527 968.2 2.858 2.95
2 8119.080 3129.590 3132.642 3.052 1167 3.535 3.029
3 8104.285 3071.240 3071.923 0.683 1278 2.710 2.12
4 8095.251 3110.010 3110.754 0.753 1176 2.618 2.226
5 8166.211 3397.705 3398.059 0.354 1156.9 2.418 2.09

As Figure 13 shows, the second harmonic error has a linear relationship with the
frequency split of the resonator in n = 1 mode. It is consistent with the simulation results.
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5. Discussion

In summary, the vibration characteristics of the cylindrical resonator with the first
three harmonic errors were studied in this paper. Through the finite element analysis,
with the increase in harmonic errors, the frequency split of the cylindrical resonator in
n = 1, 2, and 3 mode also increased on different levels. Among them, although the first har-
monic error had a quadratic function relationship with the frequency split of the resonator
in n = 1 mode; its effect was two orders of magnitude smaller than that of the second har-
monic error. It was shown that the second harmonic error had a linear relationship with the
frequency split of the resonator in n = 1 mode, while the third harmonic error had almost no
impact. Therefore, it is proposed that the frequency split of the n = 1 mode can be regarded
as a direct character to assess the second harmonic error of the cylindrical resonator.

On the other hand, with the increase in the first three harmonics, the displacement
of the bottom center in the n = 2 mode increased. Simulation results showed that the
displacement in the XOY plane was mainly caused by the first and the third harmonic
errors, while the displacement along the Z direction was mainly caused by the second
harmonic error. To eliminate the influence of the excitation conditions, different frequency
and damping characteristics, etc., a relative displacement ratio η was introduced. It was
shown that the second harmonic error had a linear relationship with η. In addition, the
simulation showed a linear relationship between the frequency split of the resonator in the
n = 1 mode and the relative displacement of its bottom center in the n = 2 mode.
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In this paper, experimental results of five different cylindrical resonators were reported
and found to be in line with the finite element simulation results. The results showed that
the second harmonic error can be indirectly characterized by measuring the bottom center
displacement of the cylindrical resonator, which makes it possible to quickly measure the
first three harmonic errors of the cylindrical resonator.

Author Contributions: Conceptualization, C.L. and Y.T.; methodology, C.L.; software, C.L. and J.L.;
validation, C.L.; formal analysis, C.L.; investigation, C.L.; resources, K.Y. and H.L.; data curation,
C.L.; writing—original draft preparation, C.L.; writing—review and editing, Y.T.; visualization, C.L.;
supervision, Y.P. and S.J.; project administration, K.Y. and Y.P.; funding acquisition, H.L. All authors
have read and agreed to the published version of the manuscript.
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