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Abstract: Currently, many small target localization methods based on a magnetic gradient tensor
have problems, such as complex solution processes, poor stability, and multiple solutions. This
paper proposes an optimization method based on the Euler deconvolution localization method to
solve these problems. In a simulation, the Euler deconvolution method, an improved method of
the Euler deconvolution method and our proposed method are analyzed under noise conditions.
These three methods are evaluated in the field with complex magnetic interference in an experiment.
The simulations show that the accuracy of the proposed method is higher than that of the improved
Euler deconvolution method and is slightly lower for noisy conditions. The experimental results
show that the proposed method is more precise and accurate than the Euler deconvolution and
enhanced methods.

Keywords: magnetic gradient tensor; noise; absolute error; accuracy

1. Introduction

The term “tensor” was first proposed in 1846 and widely accepted by 1915. With
the introduction of tensors in the magnetic detection field, magnetic gradient tensors
have become the primary detection data used in the field of modern magnetic detection.
Detection accuracy has significantly improved because a magnetic gradient tensor is not
affected by the geomagnetic field [1]. As technology has developed, magnetic detection
technology has been widely used in the military and the medical fields, as well as terrain
exploration and other fields [2-9].

The purpose of magnetic field detection is to locate a target more accurately. Many
experts and scholars have carried out research in this area. Hu et al. used a magnetic field
vector and magnetic gradient tensor to obtain the underwater multi-target positioning
method [10]. Based on a magnetic dipole model, Zhi et al. derived a new localization
method, using the geometric invariants of tensors [11] that had good stability. Yin et al.
proposed a ferromagnetic target localization and a recognition method based on the ro-
tation invariants [12]. Nara et al. proposed a new localization formula using the Euler
deconvolution [13]. This method could obtain an accurate localization result in real-time.
However, the method was greatly affected by the background field. Currently, the localiza-
tion method proposed by Nara et al. is the simplest to solve the process. Many experts and
scholars have improved upon this formula.

Based on the localization method proposed by Nara, Yin et al. took the derivative
of both sides of the formula so that measuring the magnetic field vector was unneces-
sary [14]. However, the high-order magnetic gradient tensor used is easily affected by
noise. Wang et al. proposed a method for high-order magnetic gradient tensors with
higher stability, given the poor stability of high-order magnetic gradient tensors [15]. Their
results showed that this method could effectively improve the stability of high-order ten-
sors. Wang et al. enhanced the stability of magnetic gradient tensor data based on Nara’s
method [16]. The localization error of this method was smaller under complex magnetic
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interference conditions. Xu et al. used the difference between two points to approximate
the magnetic gradient tensor [17]. This method avoided measuring three components of
the magnetic field. However, the forward difference method was used to approximate the
tensors, which increased the error of the localization method.

Based on the method proposed by Xu et al., this paper presents a way to locate a
small target using a three-point magnetic gradient tensor. The proposed method avoids
measuring the three components of a magnetic field and reduces the error caused by the
forward difference method.

The structure of this paper is as follows: Section 2 introduces the definition of a
magnetic gradient tensor. Section 3 introduces the localization method’s specific formula
and two other localization methods. Section 4 describes how the magnetic dipole is used as
the model, and the simulation is carried out under noisy conditions. The absolute error
and the RMSE (the root-mean-square-error) are used to evaluate the localization results.
The results show that the error of this proposed method is low. Section 5 describes how
experiments are conducted to verify the accuracy by comparing the localization results,
the absolute error, and the RMSE (the root-mean-square-error). Section 6 summarizes
the paper.

2. The Basic Theory

When the detection distance is much larger than the magnetic anomaly source, the
magnetic anomaly source can be simplified as a magnetic dipole [16]. When a magnetic
dipole is used as the magnetic anomaly source, the three components of the magnetic field
can be expressed as follows:

Bom {3@.7)7 - ﬂ
T

R R?
3x2-R?>  3xy 3xz My 1)
= 155 3xy  3y?—R? 3yz ny,
3xz 3yz 322 -R? ms

where ¥ represents the relative displacement vector. R = ‘7‘ and p is the vacuum permeability.

The magnetic gradient tensor represents the three components of the magnetic field
along the three orthogonal directions in space. Usually, the X-axis, Y-axis, and Z-axis in the
Cartesian coordinate system are selected, as shown in Equation (2):

% Bix By By
G=|g|[Bx By Bz]=|Byx By By @
E BZX Bzy BZZ

The magnetic field generated by a magnetic target is stable in space. There is no dis-
placement or conduction current near the magnetic anomaly source and the environmental
field is a passive static magnetic field. In this case, according to Maxwell’s equation [15],
curl B=0and divB=0:

_ 9By | 9By | 9B, _
{V°B—ax+y+az—0 ©

Iy
VxB=0

By combining Equations (1)—(3), the relationship between the components of the
magnetic gradient tensor can be obtained:

tr(G) = Byx + Byy + B =0
Byy = Byx
4
sz = Bzx ( )
Byz — Bzy
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Through Equations (3) and (4), Equation (2) can be simplified as follows:
Bxx Bxy BXZ
G = |Bxy By By (5)
B Byz —Bxx — Byy

According to Equation (5), only five of the nine components of the magnetic gradient
tensor matrix are independent. According to Equations (1) and (2), the specific calculation
formulas of the five independent components can be obtained:

(;1—7) (5rirj—R2(5i/) —Rz(rimj-&-rjmi)

-3
Bij = = Y

0i#j . . ©)
(51‘]‘ = 1,i :]. (1,] = 1,2,3)

where 1, 2, and 3 represent x, y, and z, respectively.

3. Localization Method

By using the Euler deconvolution formula, Nara et al. proposed the localization
method for a magnetic target [13], as shown below:

Byx Bxy By, X By
Bxy BW Byz y| =-3 By (7)
Bz Byz B.:] |z B,

According to Equation (7), the relative displacement vector can be obtained:

1

X Byx Bxy By, - By
y| =-3|Bxy By By By ®)
Z By Byz B, B,

The proposed method by Nara et al. is the simplest localization method for solving the
process. Since the right side of the equation requires specific data of the three components
of the magnetic field, this method will interfere with the background.

Xu et al. used the difference of two points to replace the three components of the
magnetic field and reduce the influence of the background:

X1 —
[1/1] = —(G2 — G1) N (Gy + 3Gy )dr )
Z1

where G; and G; represent the magnetic gradient tensor matrices of the first and second

points and Z’ is the relative displacement vector from the second to the first point.

Although this method avoids having to measure three components of the mag-
netic field, the use of the forward difference method leads to a more significant error
in the method.

The method proposed in this paper is an improvement of the above two methods. The
proposed method is as follows: the coordinates of points A, B, and C are known as: (x4, ya,
za), (xB, ¥yB, zB), (xC, Yc, z¢c). Point C is the midpoint of the line between point A and point
B. A schematic diagram of the model is shown below (Figure 1):
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Figure 1. Schematic diagram of the localization method.

The magnetic gradient tensors of points A and B are obtained via measurement. The
magnetic gradient tensor of point C is obtained with the central difference method. The
position of the magnetic dipole can be finally obtained with the tensor relationship of the
magnetic gradient of three points and Equation (7), and it is not necessary to measure the

— —
three-component value of the magnetic field. RA (xra, Yra, zZra) and RB (Xrp, YRB, ZRB)
represent the relative displacement vectors.

XRB XRa + Ax
YrB| = |YRA + DY (10)
ZRB Zra + Az
According to Equation (8):
Bxxa  Bxya Bxza| [xRra Bxa
Byya Byya Byza| |yra| = —3|Bya (11)
Byza ByzA B.za ZRA B.a
ByxB BxyB ByzB | |XRA + DX Byg
BxyB ByyB ByzB YrRa T+ Ay| = -3 ByB (12)
Byzp Byzp Bzp| [ZrA + Az B

By subtracting Equations (11) and (12) and using the central difference method, the
following formula can be obtained:

XRA Ax
(Ga—Gp) |yra| = (G + Gc) | Ay (13)
ZRA Az

—
The relative position vector RA can be determined by multiplying both sides of this
equation by the (G4 — Gp) inverse:

XRA Ax
yra| = (Ga—Gp) | (Gg +Gc) | Ay (14)
ZRA Az
XR XRA XA
YR| = |YrRA| — |VYA (15)
ZR ZRA ZA

According to Equation (14), at least one of the three variables Ax, Ay, and Az should
not be equal to zero. To reduce the influence of the noise, rotation error, and other errors, a
single course measurement is usually carried out so that only one variable changes and
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the other two variables remain unchanged. The errors caused by the localization method
proposed by Xu et al. and this paper are explained in Section 4.

4. Simulation

The primary purpose of this section is to describe the testing of the stability and
accuracy with the noise. Compared with the results of the other two localization methods,
the advantages of the proposed localization method are preliminarily verified. A magnetic
dipole is used as a magnetic anomaly source for simulation. The background field is
assumed to be a uniform magnetic field. The position coordinate of the magnetic dipole
is (3 m, 1 m, 0 m). The detection route is from (1 m, 5 m, 0.1 m) to (8.8 m, 5 m, 0.1 m).
The horizontal distance between each measurement is 0.2 m. A schematic diagram of
the magnetic dipole and detection route is shown in Figure 2. We refer to Equation (8)
as method 1 and Equation (9) as method 2, and the method proposed in this paper is
named method 3.

M Magnetic dipole

+  Detection route

)
o o
o o ©°
S ® =

Z coordinate(m
o
®

2

Y coordinate(m) 0 o X coordinate(m)

Figure 2. Schematic diagram of magnetic dipole and detection route.

The sensor array structure is shown in Figure 3:

2 (b--»
A iZ’“
O
+2h

>

N

Figure 3. Sensor array.
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The value of each component of the magnetic gradient tensor used in the simulation
is obtained from Equation (16). The baseline distance is 4 h = 0.4 m. According to the
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precision required in different situations, we set the maximum allowable error to 0.1 m,
0.15m, and 0.2 m. The mean absolute error and the RMSE (the root-mean-square-error) are
used to analyze the reliability of the various localization methods. The scheme is adopted
for the two cases (A) and (B).

(A) The magnetic moments of the magnetic dipole are m (50 A-m?,30 A-m?, 10 A-m?).
Gaussian white noise with a signal-to-noise ratio of 62 dB is added to the measured
magnetic field. By comparing the errors of the magnetic gradient tensor, the accuracy of
methods 2 and 3 can be compared, as shown in Figure 4.

The principal formula of the forward difference method is shown in Equation (17). For
contrast, the main formula is illustrated in Equation (18).

/ _f(X+AX)—f(X) Ax 17
flay = TEEBI IO By 17)

_ flx4Ax) — flx—Ax)  (Ax)?

fl(x) = AL ST AL ORI (18)
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Figure 4. Cont.
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Magnetic gradient tensor component Bxz (nT)

T T
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method 2
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Figure 4. Components of the magnetic gradient tensor.
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(B) The magnetic moments of the magnetic dipole are m (50 A'm?, 30 A-m?, 10 A-m?).
Gaussian white noise with a signal-to-noise ratio of 62 dB is added to the measured
magnetic field. The localization results are shown in Figure 5.

1

N

(a) Measurement results of x

4

5
System on the x-axis (m)

~

»+++++++++++++++++++++++++++++—‘—++ﬁ+

\

[ [
| |
+  Maximum permissible error: 0.2m | #
+  Minimum permissible error: -0.2m [+ + + + + + + + + + + + + + + + H‘+++++++‘ F—
|
|
|
|

(b) Measurement results of y

5
System on the x-axis (m)

~

f+++++++++++++++++++++++/Y+++/»/¢\+++++++/+++

|

N L

[
A

|

/
+N/+++\/+++++++++

+\4/++++++

3.3
32
€
§)
© 3.1+ - -
£
2
5 _
Q
o | \/\/\
2 7
5 0
X
c
S
3
Q29
ko)
j=d
S
£ +  Maximum permissible error: 0.2m
2284 + Minimum permissible error: -0.2m
2 Maximum permissible error: 0.15m
= Minimum permissible error: -0.15m
Maximum permissible error: 0.1m
27 Minimum permissible error: -0.1m
’ Real value of x
method 1
method 2
method 3
26
1 2 3
23 .
22
€
2
© 2.1
£
2
[=}
Q
8
2
é 2
ES
c
S
2
819+
®
=4
8
°
218
& Maximum permissible error: 0.15m
= Minimum permissible error: -0.15m
Maximum permissible error: 0.1m
17 Minimum permissible error: -0.1m
Real value of y
method 1
method 2
method 3
1.6
1 2 3
06 .
04
€
2
T 0.2
£
2
I
Q
8
E oA
50
N
c
S
2
Q02+ + + + 4+ + 4+t + A+
T
=
s
g +  Maximum permissible error: 0.2m
2 .04 + Minimum permissible error: -0.2m
% Maximum permissible error: 0.15m
= Minimum permissible error: -0.15m
Maximum permissible error: 0.1m
06 Minimum permissible error: -0.1m
Real value of z
method 1
method 2
method 3
-0.8
1 2 3

(c) Measurement results of z

5
System on the x-axis (m)

6

Figure 5. Localization result diagram with 62 dB Gaussian white noise.
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The localization data for the above two experiments are analyzed using the MAE
(mean absolute error) and the RMSE. The calculation results are shown in Tables 1 and 2.
The calculation formula of RMSE is shown in Equation (19). The MAE formula is shown
in Equation (20), where #; is the coordinate estimate, 7,; is the actual value, and N is the
number of the point.

N
Erms = | L (1r — 16)°/N (19)
i=1
N
Mag =Y (7 — 1) /N (20)

i=1

Table 1. Mean absolute error of the localization results for each component.

Mean Absolute Error (m)

Method

X Y Z
method 1 2.5036 x 104 —4.5075 x 10~4 0.0086
method 2 —0.00291 0.0402 —0.0089
method 3 —0.0112 —1.7783 x 10~4 —0.0054

Table 2. RMSE of the localization results for each component.

Method X Y z
method 1 0.0235 0.0220 0.0371
method 2 0.1117 0.1168 0.2003
method 3 0.1024 0.1095 0.1994

Figure 4 shows the results of the approximate measurement of the five magnetic
gradient tensor components with the forward difference method and the central difference
method. It can be seen from Figure 4 that the error of the magnetic gradient tensor calculated
with the central difference method is smaller than that obtained with the forward difference
method. This also verifies the correctness of Equations (17) and (18).

It can be seen from Figure 5 that the localization error of method 1 is smaller. The error
of the localization results of each measurement point in method 1 is mostly within 0.1 m.
The error of the localization results of each measurement point of method 3 is smaller than
that of method 2. The localization errors of methods 2 and 3 at each measurement point
are mostly within 0.2 m. As shown in Tables 1 and 2, with only noise interference, method
3 is more accurate than method 2, but slightly less accurate than method 1. Method 3 is
more accurate than method 2 because method 2 uses the forward difference method to ap-
proximate the magnetic gradient tensor, while method 3 uses the central difference method
to solve the magnetic gradient tensor. Method 3 is slightly less accurate than method 1
because more points are used, leading to larger errors in solving the inverse matrix.

The above conclusion is the simulation for the condition of simple noise. During
measurement, due to the existence of the geomagnetic field and various complex interfer-
ences, the three components of the magnetic dipole’s own magnetic field are submerged,
resulting in measurement errors. In order to verify whether method 1 becomes larger in an
experiment and whether the error of the method proposed in this paper is still small, an
experiment is carried out.

5. Experiment

To verify the accuracy of the localization results using the proposed method under
complex magnetic interference conditions, the following experiments are carried out:

The detection process is described below.
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This detection process is described in Figure 6. The detection device is shown in
Figure 7. The device consists of four three-axis fluxgate sensors and a nonmagnetic chassis.
The operating temperature range of the sensor is —40~70 °C. The measurement range of the
sensor is 70,000 nt. The maximum resolution of the sensor is 0.01 nt. The baseline distance
is 0.4 m.

Data
acquisition

Y

Data
Transmission

Y

Data
Processing

!

Localization

Y

Conclusion

Figure 6. Detection flowchart.

Figure 7. Magnetic gradient tensor detection device.

When the magnetic anomaly source is detected, the sensor transmits the data to the
data acquisition card through the data transmission line, and the data is processed by the
information processing terminal. The results are obtained according to the corresponding
algorithm. The flowchart is shown in the following figure.

The experimental site is a cement road surface with complex magnetic interference.
As in the simulation, we refer to Equation (8) as method 1 and Equation (9) as method 2,
and the method proposed in this paper is called method 3.
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A cylindrical magnet with a bottom diameter of 0.02 m and a height of 0.02 m is the
magnetic anomaly source for detection. The detection path is from (—0.6 m, 0.8 m, 0.6 m)
to (0.5 m, 0.8 m, 0.6 m) and the distance between detection points is 0.1 m. Cylindrical
magnets are placed at (0.05 m, 0.4 m, 0.52 m). Unlike the simple noise conditions in the
simulation, the interference in the field experiment is complex, and the localization error
increases. This section describes how we study the reliability of the localization results of
the three methods with the allowable errors of 0.5 m and 0.7 m. The localization results are
shown in Figure 8. The absolute error diagram of each point is shown in Figure 9. There
are twelve measuring points shown in Figure 8. Table 3 shows the error measured for each
point. The RMSE of the localization results is shown in Table 4. The acceptance probability
is used to evaluate the localization results of various methods. The results are shown in
Tables 5 and 6.

80 T T T T

+  Real value of x
method 1

method 2
60 method 3 b

Magnetic target position x-axis coordinate(m)

80 I I I I I
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

System on the x-axis (m)

(a) Measurement results of x

25 T T T T

+  Real value of y
method 1
method 2
method 3

Magnetic target position y-axis coordinate(m)

5 1 1 1 1 1
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

System on the x-axis (m)

(b) Measurement results of y

Figure 8. Cont.
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Magnetic target position z-axis coordinate(m)
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method 2 -
method 3

0.4 0.2 0
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(c) Measurement results of z

Figure 8. Localization result diagram.
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Figure 9. Absolute error of the localization result.

Table 3. The absolute error of the localization results of each component.

Method 1 Method 2 Method 3

Sets X (m) Y (m) Z (m) X (m) Y (m) Z (m) X (m) Y (m) Z (m)
1 —11.7927 1.8625 —2.6758 —0.9852 —0.1208 —0.2911 0.1531 —0.4555 —0.0901
2 78.1653 —22.7930 4.8900 —0.5452 —0.2214 —0.1194 —5.2043 0.4403 —0.4885
3 —8.5264 2.3832 —0.9387 1.8135 —0.5309 0.0114 —0.4386 —0.2244 —0.1963
4 3.4051 —0.0306 0.2861 0.6430 —0.3781 —0.0284 0.4566 —0.3412 —0.1297
5 —6.1177 —0.4957 —0.7971 0.2428 —2.0167 1.9977 —0.0568 —0.3159 —-0.1711
6 —70.6470 5.3333 —7.8377 —1.1601 —0.3289 —0.1962 —0.0905 —0.3785 —0.0391
7 —36.6464 0.1855 —1.6782 —1.3265 0.0166 —0.4725 1.7255 —1.4845 0.5409
8 52.5325 —0.9614 4.4035 —1.4856 —0.2676 —0.4592 —1.4613 —0.2707 —0.4745
9 —4.5710 —1.4868 —1.3525 0.1489 —1.2822 —0.6792 —0.3275 0.0209 0.4761
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Table 3. Cont.
S Method 1 Method 2 Method 3
ets
X (m) Y (m) Z (m) X (m) Y (m) Z (m) X (m) Y (m) Z (m)
10 —14.6448 —2.6086 —3.0219 —1.2083 —0.4735 —0.2534 1.5386 —0.1843 0.0900
11 8.5505 —0.0691 1.6672 1.8666 0.1320 0.3830 0.4270 —0.0781 0.1500
12 19.5017 2.3970 6.8638 —0.8735 —1.1424 —1.2102 0.0138 —0.0249 0.6206
Table 4. RMSE of usable points.
X (m) Y (m) Z (m)
method 1 127.0947 23.9393 13.3102
method 2 4.0090 2.8155 2.5886
method 3 5.9406 1.7691 1.2220
Table 5. Analysis of usable points (maximum error: 0.5 m).
Method 1 Method 2 Method 3
X Y z X Y z X Y z
Number of 0 4 1 2 8 9 8 1 10
acceptable points
Acceptable probabilities 0 33.3% 8.3% 16.7% 66.7% 75% 66.7% 91.7% 83.3%
Table 6. Analysis of usable points (maximum error: 0.7 m).
Method 1 Method 2 Method 3
X Y z X Y z X Y z
Number of 0 5 1 4 9 10 8 1 12
acceptable points
Acceptable probabilities 0 41.7% 8.3% 33.3% 75.0% 83.3% 66.7% 91.7% 100.0%

It can be seen from Figure 8 that the error of method 3 is smaller than those of method 1
and method 2 under the condition of complex magnetic interference. The error of method
1 with a smaller error in the simulation becomes larger sharply in the condition. The
reason for this is that its localization method needs to measure three components of the
geomagnetic field, but there are errors in the measurement of the three components of the
geomagnetic field under complex magnetic interference conditions.

Figure 9 and Table 3 give the absolute error of each point. It can be seen from the
chart that the overall error of method 3 is smaller. It can be determined from Tables 5 and 6
that the localization result of method 3 is more reliable with the premise of error ranges
of 0.5 m and 0.7 m. Table 4 shows the deviation between the localization results of the
three methods and the true value. The results show that the deviation of the third method
is smaller.

From the above figures and tables, the following conclusions can be drawn:

(1) The accuracy of method 1 is worse than those of method 2 and method 3 under
complex magnetic interference conditions;

(2) The accuracy of method 3 is higher than that of method 2;

(38) The accuracy of method 3 is higher than that of method 2, which also proves the
correctness of Equations (17) and (18). It is also proved that using the central difference
method to measure the magnetic gradient tensor makes the data error smaller.
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6. Conclusions

In this paper, a small object localization method based on a magnetic gradient tensor is
proposed. The three components of the magnetic field to be measured are transformed into
the magnetic gradient tensor matrix at the midpoint using the center difference method
to reduce the interference of the background field. The algorithm is simple and does not
involve time-consuming methods, such as iteration, which makes the method discussed in
this paper real-time. Simulation results show the reliability of the proposed method only
under noise interference. The experimental results show that this method is superior to the
other two localization methods under complex magnetic interference conditions. In practice,
complex magnetic interference often leads to measurement errors. Complex magnetic
interference includes the geomagnetic field, magnetic field of surrounding ferromagnetic
objects, the noise of the instrument itself, etc. Determining how to reduce the influence of
such interference and get real-time positioning results is the purpose of this research. In the
next step, the work of this research will be continued, and the influence of complex magnetic
interference will be reduced by changing the measurement method of the magnetic gradient
tensor, optimizing the instrument calibration, and upgrading the noise reduction algorithm.
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