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Abstract: Triboelectric nanogenerators can convert wave energy into the electrical energy required
by ocean sensors, but the problem of the low electrical output performance of triboelectric nanogen-
erators has always been a concern. In this paper, an annular triboelectric nanogenerator (A-TENG)
composed of an annular outer shell and an inner ball is proposed to improve the electrical output
performance of the triboelectric nanogenerator by optimizing the structural parameters and wave
parameters. Using the control variables, the effects of structural parameters (structure size, number
of electrodes, electrode spacing, inner ball diameter, and number of inner balls) and wave parameters
(wave frequency and wave amplitude) on the electrical output performance of the A-TENG were
studied by combining COMSOL simulation and experimental research. The experimental results
show that increasing the diameter and number of inner spheres can improve the open-circuit voltage
between electrodes; the multi-electrode structure can improve the electron transfer rate and efficiently
collect wave energy in all directions; and within the range of fixed sea conditions, there is an optimal
annular size, which has the advantages of good electrical output performance and small size. The
electrical output performance of the A-TENG can be greatly improved by optimizing the structural
parameters. There are optimal wave parameters, such that the A-TENG can maximize the ocean
wave energy conversion. This low-cost, long-life, efficient, and reliable energy harvesting system is
ideal for powering ocean sensors.

Keywords: annular triboelectric nanogenerator; energy harvesters; self-powered sensors;
multi-directional efficient harvesting; output performance optimization

1. Introduction

In the era of rapid development of the Internet of Things, the demand for sensors is
increasing. Therefore, research on sustainable, long-lasting energy harvesters for powering
sensors is increasingly important [1]. Energy harvesting technology is also being widely
studied, in most cases, the energy harvester mainly uses one of the environmental energy
sources to generate electricity, such as mechanical energy, i.e., body movement, machine
vibration, wind, water waves, etc. [2–6]. Because different environments have different
energy sources available for energy harvesting, energy harvesters suitable for each energy
source must be developed [7]. The intelligent construction of marine information requires
unmanned aerial vehicles, such as buoys, unmanned boats, and underwater gliders, and is
also inseparable from a large number of sensors as monitoring methods. At present, most
of the power supply methods of ocean sensors are battery power supply, solar cell power
supply, and wire-connected power supply, which have shortcomings, such as short life,
large volume, high maintenance cost, and harm to the environment, and cannot meet the
continuous supply demand [8–11]. Therefore, the power supply problem of ocean sensors
has always been a concern. The ocean is a huge treasure house of energy, covering about
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70 percent of Earth’s surface. The energy obtained from the ocean is called blue energy,
which is inexhaustible and convenient [12], and the wave energy in it has not been well
developed or utilized. Wave energy has the advantages of wide distribution, high energy
density, renewability, and pollution-free. Converting wave energy into electrical energy
can be a good power supply for ocean sensors. As a traditional method of wave energy
conversion and transmission, electromagnetic generators need a stable and high operating
frequency (50–60 Hz) to obtain an effective output [13,14] and have the disadvantages of
high cost and complex structure. Most of the domestic oceans are quiet sea areas, and wave
energy has the characteristics of low frequency, irregularity, low amplitude, and random
direction of flow. Therefore, electromagnetic generators have obvious limitations in the
acquisition of low-frequency waves [15–17].

In 2012, academician Wang Zhonglin proposed a new way of generating electricity,
triboelectric nanogenerators (TENGs). A TENG is a new type of energy conversion device
that converts mechanical energy into electrical energy based on the principle of combining
triboelectric electrification and electrostatic induction [18]. TENGs use Maxwell’s dis-
placement current as the driving force [1,19] and are the fourth recognized high-efficiency
environmental mechanical energy harvesting power generation technology after electro-
magnetic induction [20], piezoelectric [21] generators, and electrostatic [22] generators. In
2019, Li et al. [23] conducted a more detailed quantitative analysis of the four working
modes of TENGs by establishing a theoretical analysis model and verified the consistency
of the results of the analysis models with finite element analysis, providing a theoretical
basis for the structural design. TENGs show great advantages in low-frequency wave
energy harvesting with the advantages of light weight, low cost, simple structure, clean,
and pollution-free [24–26]. The output power density of a TENG is proportional to the
square of its triboelectric surface charge density since the open-circuit voltage and short-
circuit current are proportional to it at the same time [27,28]. In 2022, Zheng et al. [29].
improved the electrical output performance by studying the quantitative energy conversion
analysis of triboelectric nanogenerators and also promoted the development of energy
conversion efficiency theory. The theoretical energy conversion efficiency of TENG is
as high as 85 percent, while in practical applications, the actual output performance of
TENGs is much lower than this value. Therefore, the improvement of the electrical output
performance of TENGs has always been a concern.

In this paper, a triboelectric nanogenerator with an annular multi-electrode structure is
proposed. The working mode adopts the independent layer mode, the independent friction
layer adopts nylon (nylon) balls, the other friction layer adopts polytetrafluoroethylene
(PTFE) film, and the electrode adopts copper (Cu) foil tape. In order to improve the
electrical output performance of the A-TENG, the effects of its structure size, electrode
number and spacing, inner ball diameter and amount on the electrical output performance
of triboelectric nanogenerators were comprehensively studied. In addition, the influence
of different wave frequencies and amplitudes on the electrical output performance of the
triboelectric nanogenerator was also studied. For random and irregular waves and harsh
marine environmental conditions, annular triboelectric nanogenerators may be one of the
most suitable triboelectric nanogenerators for harvesting wave energy.

2. Theoretical Model and Working Principle

In this paper, an annular triboelectric nanogenerator (A-TENG) is designed that can
efficiently collect low-frequency wave energy in all directions. The structure of the A-TENG
is shown in Figure 1a. Here, we can see the arrangement of the copper foil tape, the
copper foil tape with polytetrafluoroethylene (PTFE) film attached to the surface, and the
nylon balls placed inside. When moving under the action of waves, the nylon balls inside
the annulus roll back and forth between the electrodes inside the annular to provide an
alternating current for the external load. The rolling design greatly reduces the energy
loss caused by friction and improves energy conversion efficiency. In order to improve
the electrical output performance of TENGs, a multi-electrode structure is adopted so
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that the movement period of the nylon ball inside the annulus is short, and the charge-
transfer frequency is high, which increases the number of cycles of energy conversion.
The short-circuit current is significantly improved, and the charge transfer frequency is
improved. The annular structure can achieve high-efficiency acquisition of wave energy in
any direction. The outer diameter of the annulus is 70 mm, the inner diameter is 35 mm,
and the diameter of the nylon ball is 28 mm. Figure 1b shows the cross-sectional view of
the fabricated A-TENG.

Figure 1. Structure, working principle, and potential distribution of the device based on an annular-
shaped triboelectric nanogenerator (A-TENG). (a) Schematic diagram of the structure of the A-TENG.
(b) Photo of the physical section of the fabricated A-TENG. (c) The working principle of the A-TENG
in the working mode. (d) The potential distribution at different rolling angles.

The working principle is based on the triboelectric effect [19]. When the ball rolls close
to the inner wall of the annular shell, it causes a constant change in the space potential,
and a potential difference is generated between the different copper electrodes so that
an alternating current signal is generated in the wires connecting the different copper
electrodes, and conversion of the mechanical energy to electrical energy is realized. The
working principle of TENGs is shown in Figure 1c. nylon balls and PTFE film are used
as dielectric friction materials, and copper foil tape is used as a sensing electrode. Under
the action of the wave force, the nylon ball starts to roll freely inside the annulus. After
multiple cycles of rubbing with PTFE film, the nylon ball becomes positively charged, and
the PTFE film is charged with the same negative charge. In the initial state, nylon balls are
located above Electrode 1. Due to electrostatic induction, electrons are transferred from
Electrode 2 to Electrode 1. Electrode 1 is negatively charged to shield the positive charge of
nylon, and the other electrodes are positively charged to shield the negative charge of PTFE.
When the ball rolls from Electrode 1 to Electrode 2, due to electrostatic induction, negative
charges flow from Electrode 1 to Electrode 2 through an external load, thereby generating a
current; when the ball rolls to the position as shown by Electrode 2, all negative charges
from Electrode 1 are transferred to Electrode 2. When the ball moves from Electrode 2 to
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Electrode 3, the charges flow in the opposite direction, generating a current of opposite
polarity. Therefore, a current peak appears every two adjacent electrodes. As the nylon
ball moves backward, back and forth between Electrode 1 and Electrode 2, the current also
flows. An external load is connected between two adjacent electrodes, and the generation
of the potential difference drives electrons to flow between the electrodes. Based on this
fundamental relationship, the A-TENG can generate a large open-circuit voltage due to the
relatively small inherent capacitance C.

Voc =
Qsc
C

(1)

The short-circuit current Isc not only depends on the TENG’s intrinsic parameter dQsc
dx

but also on the external motion speed v as seen below:

Isc =
dQsc

dt
=

dQsc
dx

dx
dt

=
dQsc

dx
v (2)

In the above equation, Voc means the open-circuit voltage, Qsc means the short-circuit
charge, C means the capacitance, and Isc means the short-circuit current.

Figure 1d shows the potential distributions between two adjacent electrodes in differ-
ent states on a two-dimensional plane. It can be seen that the change in the spatial position
of the nylon charged ball relative to the torus shell results in a time-varying spatial potential
distribution, which causes the potential difference between the two adjacent Electrodes 1
and 2 in the torus shell. This drives current to flow in the external circuit.

3. Electrical Output Performance of a Single Triboelectric Nanogenerator
3.1. Influence of Structural Parameters on Electrical Output Performance

Considering the effect of the structural parameters of the A-TENG on the electrical
output performance. According to the different sizes of the annulus when it is moved by
the wave force, the displacement and the swing angle are different, and the influence on
the electrical output performance of the triboelectric nanogenerator is also different. The
influence of the swing angles of annuli of different sizes under the action of waves on the
electrical output performance was studied under fixed sea conditions. Using COMSOL
software to establish a two-dimensional model for fluid–structure interaction simulation
analysis, the displacement of the triboelectric nanogenerator under the action of a regular
sine wave was simulated. The displacements corresponding to the annular triboelectric
nanogenerators at different wave frequencies and flow rates were analyzed [30,31]. The
motion of a rigid body under waves can be decomposed into six degrees of freedom,
namely, surge, sway, heave, roll, pitch, and yaw. This simulation starts from one of the
degrees of freedom: roll. The coordinate system of the A-TENG is shown in Figure 2a. The
displacement of the annulus is positive with the positive direction of the z-axis; the positive
direction of the x-axis is the forward direction of the wave, R is the outer radius of the
annulus, and r is the inner diameter of the annulus. Figure 2b shows the plane coordinate
system of the A-TENG. Take point A on the annulus for research. When the annulus floats
horizontally on the wave surface, the line connecting point A to the fixed point O coincides
with the x-axis of the horizontal plane. When the annulus is affected by the wave and starts
to move, the displacement of point A in both the x- and y-directions changes, and then
the line connecting point A to the fixed point O forms an angle with the horizontal x-axis,
that is, the swing angle of the annulus. The displacement in the x- and y-directions can be
calculated using the tangent function. In this paper, there are four independent variables:
horizontal flow velocity, vertical flow velocity, frequency, and annular size, and orthogonal
tables are designed for the four levels of these four independent variables. The swing
angle influences a dimensional annular triboelectric nanogenerator. Since A-TENG will be
applied to harvest wave energy in China’s Bohai Sea, the independent variable parameters
are set according to the Bohai sea conditions [32]. The specific parameter values are shown
in Table 1 below.



Micromachines 2022, 13, 1619 5 of 11

Table 1. The parameter values of the four independent variables.

Horizontal Velocity Vx (m/s) Vertical Velocity Vy (m/s) Frequency f (Hz) Ring Size S (Major * Minor
Radii/mm)

0.1 0.25 0.5 30 * 15
0.2 0.5 1 50 * 25
0.3 0.75 1.5 70 * 35
0.4 1 2 90 * 45

Figure 2. (a) The coordinate system of the A-TENG. (b) The plane coordinate system of the A-TENG.
(c) The contour plot of the estimated marginal mean value of the annular swing angle corresponding
to different levels of the four variables. (d) The error bar of the swing angle plot (standard error).

Table 2 shows the results of the orthogonal multivariate analysis of the variance. As
can be seen from Table 2, the significance of the horizontal flow velocity Vx is 0.036, the
significance of the vertical flow velocity A is 0.157, the significance of the frequency f
is 0.04, and the significance of the size S is 0.038. As specified in orthogonal ANOVA,
a significance of less than 0.05 indicates that we are 0.995 confident in the result. It is
concluded that the four variables have a significant influence on the swing angle of the
annulus. Figure 2c is a contour plot of the estimated marginal mean values of annular
swing angles corresponding to the four independent variables at different levels. The four
line graphs show the influence trend of each independent variable on the swing angle of the
annulus. It can be seen from the graph that, with the increase in the horizontal flow velocity
Vx, the estimated marginal average value of the swing angle increases and reaches the
maximum at Vx4; as the vertical flow velocity Vy increases, the estimated marginal mean
value of the swing angle increases and reaches the maximum at Vy4; with the increase in
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the frequency f, the estimated marginal mean value of the swing angle gradually decreases
and reaches the maximum at f1; as the annular size S increases, the estimated marginal
mean of the swing angle changes continuously and reaches a maximum at S3. An optimal
combination of Vx4Vy4f1S3, which maximizes the swing angle of the A-TENG, can be
obtained in which the horizontal flow velocity Vx is 0.4 m/s, the vertical flow velocity A is
0.4 m/s, the frequency f is 0.5 Hz, and the size is S3, i.e., the outer radius of the annulus
is 70 mm, and the inner diameter is 35 mm. Figure 2d shows the error bar of the swing
angle. It can also be seen more clearly from the figure that the mean value of the swing
angle is the largest in the 16th group, which corresponds to the best combination of the
four independent variables of Vx4Vy4f1S3, which includes a horizontal flow velocity Vx of
0.4 m/s, a vertical flow velocity A of 0.4 m/s, a frequency f of 0.5 Hz, and size of S3, i.e.,
the outer radius of the annulus is 70 mm, and the inner diameter is 35 mm.

Table 2. Results of orthogonal multivariate ANOVA.

Origin Type III Sum of
Squares

Degrees of
Freedom Mean Square F Salience

Corrected model 3.066 a 12 0.255 10.086 0.041
Intercept 4.965 1 4.965 196.013 0.001

Vx 1.525 3 40.508 20.063 0.017
Vy 0.889 3 0.296 11.7 0.037
f 0.316 3 0.105 4.156 0.136
A 0.336 3 0.112 4.425 0.127

Error 0.076 3 0.025
Total 8.107 16

Corrected total 3.142 15
a. R-square = 0.937
(Adjusted R-square

= 0.686)

It is concluded that in this fixed sea state, the annular swing angle reaches the maxi-
mum value when the size is S3. As the swing angle of the annular triboelectric nanogenera-
tor increases, the centrifugal force and rolling speed of the nylon balls inside the annulus
improve, which increases the contact and friction between the nylon balls and the PTFE
film. With the enhancement of contact and friction between the nylon balls and the PTFE
film, the triboelectric effect enhances, the frictional contact area increases, and the electrical
output performance improves. This simulation determined that there is an optimal annular
size within the range of fixed sea conditions that maximizes the swing angle of the A-TENG
when it is moved by wave force, thereby improving the electrical output performance of the
triboelectric nanogenerator. Moreover, compared with the larger size A-TENG, this optimal
annular size has the advantages of better electrical output performance and smaller size.

After determining the size of the annular structure, the effect of nylon balls of different
diameters and quantities on the electrical output performance of the A-TENG was studied
by using the control variables (changing the multi-factor problems into multiple single-
factor problems and changing only one of the factors so as to study the influence of this
factor on things, to study them separately, and, finally, to solve them comprehensively.) to
observe the open-circuit voltage between two adjacent electrodes when nylon rolls over
them. The diameters d of the nylon balls are selected as 1.4 cm, 2.1 cm, and 2.8 cm, as shown
in Figure 3a. With the increase in the diameter of the ball, the open-circuit voltage gradually
improves. As the number of balls n increases from one to three, the open-circuit voltage
also improves, as shown in Figure 3b. This is because the increase in the diameter and
quantity of small balls not only increases the frictional contact area between the nylon ball
and the PTFE film but also improves the total amount of positive charges on the surface of
the small ball, which increases the degree of influence on the space potential and improves
the open-circuit voltage between two adjacent electrodes [33]. The diameter of the ball is
close to the inner diameter of the annulus, which can constrain the trajectory of the ball so
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that the ball rolls along the inner wall of the annulus all the time, thereby reducing back
and forth collisions with both sides of the inner wall of the annulus.

Figure 3. (a) Open-circuit voltage for different nylon ball diameters. (b) Open-circuit voltage for
different quantities of nylon balls. (c) Open-circuit voltage for different electrode spacings. (d) Open-
circuit voltage for different amounts of electrodes.

The voltage is output by the electrodes, so the arrangement position of the electrodes
has an important influence on the voltage. Therefore, the effect of electrode spacing and
quantity on the electrical output performance of the A-TENG was studied. When the rolling
position of the nylon ball changes, the electrode voltage changes, so the middle position of
each electrode is selected to study the open-circuit voltage between two adjacent electrodes.
Taking the electrode width as the standard, the electrode spacing is selected to be 0.5, 1, and
1.5 times the electrode width. As shown in Figure 3c, the open-circuit voltage between two
adjacent electrodes improves with an increase in the electrode spacing. The inner electrode
of the annular adopts a grid electrode structure. The non-grid electrode type of TENG
needs the displacement of the entire plate length to make the induced charge complete
one movement, while the grid electrode type of TENG only needs a displacement of a
unit length to completely transport the induced charge, which greatly improves the energy
conversion efficiency. The displacement of the cell length, in turn, enables the recirculation
of the induced charge. Therefore, in the unidirectional sliding process over the entire length
of the TENG, the charge can be induced (2N − 1) times in total, where N is the number of
grid electrode units. For calculation of the contact area during the sliding process of the
two surfaces inside the grid electrode TENG, the following equation is the total amount
of induced charges generated during a single sliding process of the grid electrode TENG
along the entire length:

Q = Nq′ + | − q′(N − 1)|+ q′(N − 1) + . . . + | − q′|+ q′ (3)

= Nq′ + 2q′
N−1

∑
i=1

id (4)

=
(2q′N)N

2
(5)

The maximum total amount of the induced charges generated by the non-grid elec-
trode TENG with the same length is 2q

′
N. The formula shows that the total amount of the

short-circuit-induced charge improves linearly with the increase in grid electrode density.
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Because the ball and the copper electrode carry different kinds of charges, the potential
difference between the two adjacent Copper Electrodes 1 and 2 reaches the maximum
value when the ball is located at a certain position on the surface of Copper Electrode 1 or
2. When the number of copper electrodes is small, it means that the area of each copper
electrode is large. When the small ball is located at a certain position on the surface of
Copper Electrode 1, it will only significantly change the local potential of the small ball
on the surface of Copper Electrode 1. However, most of the other positions of Copper
Electrode 1 are still far away from the ball, so the overall potential of Copper Electrode 1
is not greatly affected by the ball, so the potential difference between Copper Electrodes
1 and 2 is small; when the number of copper electrodes is large, it means that the area of
each copper electrode is very small, so the positions of Copper Electrodes 1 and 2 are very
close. When the small ball is located at a certain position on Copper Electrode 1, Copper
Electrode 2 is also very close to the small ball, so the potential difference between 1 and 2 is
also smaller. Therefore, if the area of each copper electrode is too large or too small, the
potential difference between two adjacent electrodes reduces.

In the annular structure, the electrode area is proportional to the electrode width, and
the electrode width is the same as the electrode spacing. Select the number of electrodes
N = 4, 8, and 12, and observe the open-circuit voltage between two adjacent electrodes, as
shown in Figure 3d. It was observed that with the increase in the number of electrodes,
the open-circuit voltage gradually decreased. The open-circuit voltage was the largest
with four electrodes, but the slope of the open-circuit voltage was small; when there are
eight electrodes, the open-circuit voltage is relatively reduced. When there are twelve
electrodes, the open-circuit voltage is the smallest. The slope of the open-circuit voltage
between adjacent copper electrodes is large and it is the same when there are eight and
twelve electrodes. The slope refers to the improvement of the open-circuit voltage. A
relatively large slope can ensure better charge transfer efficiency and device performance of
triboelectric nanogenerators, and there is such a relationship between every two adjacent
copper electrodes. At the same time, the multi-electrode structure inside the annulus can
make the movement direction of the inner nylon balls always consistent with the electrode
direction and improve the capture efficiency of wave energy.

3.2. Influence of Wave Parameters on Electrical Output Performance

Controlled wave excitation in a single favorable direction is not possible in a typical
irregular ocean due to constantly changing conditions and wave characteristics. The
motion of the A-TENG under the action of wave force is shown in Figure 4a, which can be
decomposed into six degrees of freedom, namely, heave, surge, sway, yaw, pitch, and roll.
In the best case, all of the kinetic energy of the generating unit is absorbed. Axisymmetric
geometry has often been studied before because it absorbs energy independent of wave
direction. For axisymmetric oscillating bodies, since there is no restoring force in the three
directions of heave, sway, and yaw, the degrees of freedom in these three directions need
to be restricted. There are restoring forces in the three directions of roll that can force the
oscillating body to return to the equilibrium position [34]. The A-TENG is an axisymmetric
structure. In order to study the dynamic characteristics of the A-TENG, a wave simulation
platform is designed and built in this paper. The physical map and the schematic diagram
of the platform structure are shown in Figure 4b. The motion state of the A-TENG under
the three degrees of freedom of heave, pitch, and roll can be simulated. The frequency
range of the simulated wave is 0.5–2.5 Hz, and the simulated wave amplitude is 60–120 mm.
A single A-TENG was fixed on a wave simulation platform to study the effects of wave
frequency and amplitude on the electrical output performance of the A-TENG.

Figure 4c,d shows the open-circuit voltages generated by the motion of the A-TENG
at different frequencies and different amplitudes under the heave degree of freedom. Using
the control variables, the fixed amplitude is 120 mm, and it is found that the open-circuit
voltage first improves and then reduces with the increase in frequency. Moreover, the
maximum output is reached at a frequency of 1.5 Hz. When the frequency increases,
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the swing amplitude of the annulus remains unchanged by the wave motion, and the
swing angular velocity increases, which improves the centrifugal force and rolling speed
of the nylon ball, increasing the contact and friction with the PTFE film and the frictional
electrification effect. The contact surface charge density increases, and the open-circuit
voltage and the amount of transferred charge improve. The fixed frequency is 1.5 Hz. With
the increase in wave amplitude, the open-circuit voltage gradually improves and reaches
the maximum value when the amplitude is 120 mm.

Figure 4. (a) Six degrees of freedom of the A-TENG under wave force (1. surge, 2. sway, 3. heave,
4. roll, 5. pitch, 6. yaw). (b) Schematic diagram of experimental platform and platform structure
(1. glass platform, 2. connecting structure, 3. two electric push rods, 4. push rod base, 5. linear
module slide table and slide rail, 6. master control platform). (c,d) Open-circuit voltage at different
wave frequencies and different wave amplitudes under heave degrees of freedom.

3.3. Results and Disscussion

In this chapter, the electrical output performance of the A-TENG is verified and
experimentally tested from two aspects of structural parameters and wave parameters
through simulation and experiment. Firstly, the influence of structural parameters on the
electrical output performance of the A-TENG was studied by simulation, including the
diameter and number of nylon spheres, the distance and number of electrodes, and the size
of the annulus. When the diameter and number of nylon beads increase, the total amount
of positive charges on the nylon surface improves, and the nylon beads have a significant
impact on the space potential, which improves the open-circuit voltage between electrodes;
when the electrode spacing is too large or too small, the rolling of nylon balls has little effect
on the space potential of adjacent electrodes and reduces the potential difference between
adjacent electrodes. The multi-electrode structure can improve the electron transfer rate
and efficiently collect wave energy in all directions. The optimal structural parameters were
finally determined, namely, the diameter of nylon beads was 28 mm, the quantity was three,
the number of electrodes was eight, the electrode spacing was the same as the electrode
width, and the annular size was 70 mm in outer diameter and 35 mm in inner diameter.
Second, the effects of wave parameters on the electrical output performance of the A-TENG,
including wave frequency and amplitude, were tested using a wave simulation platform.
In the range of fixed wave parameters, with the increase in frequency, the open-circuit
voltage of the A-TENG improved first and then reduced; with the increase in amplitude,
the open-circuit voltage of the A-TENG improved. When the wave frequency is 1.5 Hz,
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and the amplitude is 120 mm, the open-circuit voltage of the triboelectric nanogenerator
reaches the maximum value, and the maximum output electric energy is reached.

4. Conclusions

In conclusion, this paper proposes a novel triboelectric nanogenerator with an annular-
shaped multi-electrode structure that can effectively harvest a large amount of wave energy.
This structural design is suitable for the application of wave energy collection and has the
following four key advantages: First, the design of the annular structure can flexibly and
efficiently collect wave energy in any direction of motion, including up and down, left and
right swing, and rotation motions. It is not easy to overturn on the sea surface and work
continuously and stably. Secondly, the inner electrodes of the annular are arranged in a
multi-electrode structure, which increases the frequency with which the charged ball rolls
over the electrodes, improves the charge transfer efficiency, and improves the electrical
output performance. Third, the selection of the optimal size ensures that the annular-
shaped multi-electrode triboelectric nanogenerator can collect more wave energy within a
fixed sea state range, which greatly improves the electrical output performance and has
the advantage of small size. Finally, when multiple TENGs are integrated into a network
through a series or parallel (Network), this can effectively collect a large amount of blue
energy from the ocean. The “blue energy dream” will be realized in the near future. In
this study, the optimized design of the diameter and number of rolling balls, the electrode
structure, and the annular size was completed, and the electrical output of the A-TENG
in motion in three degrees of freedom was analyzed. The results show that this structural
optimization design can effectively improve electrical output performance. The A-TENG
achieves the best electrical output performance when the fixed wave frequency is 1.5 Hz and
the amplitude is 120 mm. This research greatly improves the electrical output performance
of the TENG, which is of great significance in developing a system that can collect a large
amount of low-frequency wave energy, and has made significant contributions in the fields
of marine monitoring and the power supply of marine micro-devices.
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