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Abstract: A plasmonic refractive index sensor based on surface plasmon polaritons (SPPs) that
consist of metal–insulator–metal (MIM) waveguides and a whistle-shaped cavity is proposed. The
transmission properties were simulated numerically by using the finite element method. The Fano
resonance phenomenon can be observed in their transmission spectra, which is due to the coupling
of SPPs between the transmission along the clockwise and anticlockwise directions. The refractive
index-sensing properties based on the Fano resonance were investigated by changing the refractive
index of the insulator of the MIM waveguide. Modulation of the structural parameters on the Fano
resonance and the optics transmission properties of the coupled structure of two MIM waveguides
with a whistle-shaped cavity were designed and evaluated. The results of this study will help in the
design of new photonic devices and micro-sensors with high sensitivity, and can serve as a guide for
future application of this structure.

Keywords: plasmonic; refractive index sensor; finite element method; Fano resonance; metal–
insulator–mental

1. Introduction

Surface plasmon polaritons (SPPs) have the capability of overcoming the diffraction
limit due to their energy evanescently confining in the perpendicular direction of the metal–
insulator interference [1–3]. SPPs have been widely used in surface-enhanced Raman
scattering, imaging, solar cells, sensors, optical filters [4–10], and so on. Recently, another
new type of surface plasmon, Tamm plasmon modes in the metal-PhC cavity, has shown
excellent performance in gas sensors and refractive index sensors due to its sensitivity
to the environment and strong localization [11–13]. For the application of manipulating
SPPs in chip-scale integration, metal–insulator–metal (MIM) waveguides are an excellent
subwavelength photonic device [14,15]. A plasmonic interferometric biosensor based on
MIM waveguides for phase-sensitive biomolecular analysis has been proposed [16]. SPP
photonic devices based on MIM waveguides have received increasing attention, such as
all-optical switches, sensors, and slow light devices [17–19].

Recently, the Fano resonance phenomenon was observed in the MIM waveguide-
coupled resonator system [20,21]. It was first discovered by Fano Ugo, and has an asym-
metric line profile due to the interference between a narrow discrete resonance and a
broad spectral line or continuum [22–24]. Fano resonance, as a weak coupling and inter-
ference phenomenon, has a unique line shape, which provides a promising pathway to
achieve ultrahigh sensitivity sensors, lasing, all-optical switching, and nonlinear and slow
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light [25–31]. Biosensors and chemical sensors based on Fano resonance have attracted
much attention from researchers due to their extreme sensitivity to changes in structural pa-
rameters and the surrounding dielectrics [32,33]. These sensors exhibit good performance
in terms of sensitivity and figure of merit (FOM) [34,35]. To achieve ultrahigh sensitivity,
these structures and parameters need to be optimized. Therefore, the way in which to
optimize the MIM waveguide-coupled resonator system to obtain a plasmonic coupled
system with a Fano line shape is a key issue for designing high-sensitivity plasmonic
sensors.

In this study, a whistle-shaped plasmonic structure composed of one whistle-shaped
cavity and an MIM waveguide was designed to obtain high-sensitivity sensors based on
Fano resonance. The transmission properties and magnetic field distributions of the whistle-
shaped structures were simulated using the finite element method (FEM). The effects of the
structural parameters of the whistle-shaped structure on the transmission spectrum were
investigated. The refractive index sensitivity and the FOM of the whistle-shaped structure
were explored. A derived plasmonic structure composed of a double whistle-shaped
coupled structure was designed and evaluated. The sensitivity of the derived structure was
examined.

2. Structure Model and Analytical Method

As shown in Figure 1a, the 2D schematic of the proposed plasmonic structure is
composed of a whistle-shaped cavity and an MIM waveguide. The whistle-shaped cavity
was composed of the input MIM waveguide on-interval and a ring cavity. As shown in
Figure 1, the blue and white parts denote Ag (εm) and air (εs), respectively. The widths w of
these MIM waveguides were fixed at 50 nm to support the only fundamental transverse
magnetic (TM0) in the MIM waveguides. The length of the output MIM waveguide is L,
and the gap between the output MIM waveguide and the ring cavity is d1. The inner and
outer radii of the ring cavity in the whistle-shaped structure are represented by r1 and r3,
and the center radius of the ring cavity is r2 = (r1 + r3)/2. The red vertical dashed line
passes through the center of the ring cavity and is defined as the reference line.
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Figure 1. (a) Two-dimensional schematic for the MIM waveguides coupled with a whistle-shaped
cavity. (b) The calculated and experimental values of the real and imaginary parts of the permittivity
of silver.

The frequency-dependent complex relative permittivity ε(v) of silver is characterized
by the modified Debye–Drude dispersion mode [36,37] as follows:

ε(v) =
ε∞ + (εs − ε∞)

1 + ivτ
+

σ

ivε0
(1)

where ε∞ = 3.8344 is the infinite frequency permittivity, εs = −9530.5 represents the static
permittivity, σ = 1.1486 × 107 S/m is the conductivity, and τ = 7.35 × 10−15 s is the
relaxation time. Figure 1b shows the real part and the image part of the experiment value
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and modified value using the Debye–Drude model for the silver relative permittivity. The
theory mode is in good agreement with the experimental data.

The transmission properties of the single whistle-shaped structure and the double
whistle-shaped coupled derived structure were investigated using FEM with perfectly
matched layer-absorbing boundary conditions. The transmittance is defined as T = |S21|2,
where S21 is the transmittance of the MIM waveguide [38].

For MIM waveguides, only the fundamental transverse magnetic (TM0) mode can be
supported, and its dispersion relation is expressed as [39]:

tanh(κw) = −2κpα/(κ2 + p2α2) (2)

where κ and w are the perpendicular core wave vector and the insulator width of the MIM
waveguide, respectively. The symbols in Equation (1) are defined as p = εin/εm and α =
[k0

2(εin − εm) + κ]1/2, where εin and εm are the dielectric constants of the insulator and the
metal, respectively; k0 = 2π/λ0 is the free space wave vector; κ can be solved from Equation
(1) using the iterative method. Thus, the effective index neff of the MIM waveguide can be
defined as neff = (εm + (κ/k0)2)1/2. The wavelength of SPPs, λspp, can be expressed as λspp
= λ0/Re (neff), where Re (neff) is the real part of neff.

3. Results and Discussions

Figure 2a shows the transmission spectrum of the whistle-shaped MIM waveguide
system with s = 30 nm, w = 50 nm, d = 10 nm, and r2 = 145 nm. As shown in Figure 2a, three
asymmetrical profile peaks (0.645, 1.15, and 1.24 µm) can be observed in the transmission
spectrum, which are regarded as the Fano resonance. The transmittance shows an unusual
variation with the increase in wavelength from 1.15 to 1.24 µm; in particular, a steep slope
curve can be observed in the transmission spectrum at the range of 1.225–1.24 µm. The Hz
field distributions at λ = 0.645, 1.15, 1.225, and 1.24 mm were simulated and are displayed
in Figure 2b–e to understand the physical mechanism of the asymmetrical profile peaks
of the proposed structure. Steady stand wave modes can be observed, and the black
arrows represent the time-average power flow distributions in the Hz field distribution
graphs. For λ = 0.645 µm, Re(neff) = 1.4435, and λspp = 0.4468 µm, so the number of
wave nodes can be calculated by 2πr2/λspp = 2. As shown in Figure 2b, two wave nodes
were formed in the Hz field distribution, and the time-average power flow distributions
show an anticlockwise mode in the ring cavity. Most of the SPPs’ energy was limited
in the whistle-shaped cavity, and part of the SPPs’ energy was coupled into the output
waveguide, so a peak was formed in the transmission spectrum, as shown in Figure 2a. For
λ = 1.24 µm, the Fano resonance was caused by the interference between the anticlockwise
mode and the clockwise mode. The Hz field distribution (Figure 2e) is similar to Figure 2d
(λ2 = 1.225 µm), but the SPPs’ energy could be coupled into the output waveguide and a
resonance peak is formed in the transmission spectrum for λ1 = 1.24 µm. For λ2 = 1.225 µm,
the SPPs’ energy was not coupled into the output waveguide. The time-average power
flows show that an anticlockwise mode occurred. For λ3 = 1.15 µm, the Hz field distribution
was mainly distributed in the whistle-shaped cavity, and part of SPPs was coupled into the
output waveguide. The time-average power flows show a clockwise mode. Thus, the Fano
resonance was due to the coupling between the anticlockwise and clockwise modes. For
λ4 = 0.645 µm, the Hz field distribution reveals that a second-order vibration mode was
formed in the whistle-shaped cavity, which was a new vibration mode. The time-average
power flows show an anticlockwise mode.

The transmission spectra were simulated by replacing the air of the MIM waveguide
system with different refractive index media (n = 1, 1.33, 1.34, and 1.35), which are shown in
Figure 3a, to investigate the effect of refractive index n on the transmission properties of the
whistle-shaped MIM waveguide system. As shown in Figure 3a, the Fano resonance peak
red shifted with the increase in n, and another new resonance peak can be observed at the
short wavelength range when n was larger than 1.33. The radius r2 of the whistle-shaped
cavity was fixed because the neff value in the MIM waveguide-coupled whistle-shaped
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cavity decreased with the increase in n, and the number of modes increased. Therefore, a
peak can be observed at the near short wave (0.60–0.7 µm) in the transmission spectra. We
calculated the shift of the Fano resonance peaks (I and II) with the refractive index change.
The sensitivity fitting curves of peaks I and II are shown in Figure 3b. The sensitivity of peak
I is S1 = δλ/δn = 600 nm/RIU, and the sensitivity of peak II is S2 = δλ/δn = 1229 nm/RIU.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 9 
 

 

 
Figure 2. (a) Transmission spectra of the MIM waveguide-coupled whistle-shaped cavity; (b) con-
tour profiles of the normalized Hz field distributions of the MIM waveguide whistle-shaped cavity: 
(b) λ = 0.645 mm, (c) λ = 1.15 mm, (d) λ = 1.225 mm, and (e) λ = 1.24 mm. 

The transmission spectra were simulated by replacing the air of the MIM waveguide 
system with different refractive index media (n = 1, 1.33, 1.34, and 1.35), which are shown 
in Figure 3a, to investigate the effect of refractive index n on the transmission properties 
of the whistle-shaped MIM waveguide system. As shown in Figure 3a, the Fano resonance 
peak red shifted with the increase in n, and another new resonance peak can be observed 
at the short wavelength range when n was larger than 1.33. The radius r2 of the whistle-
shaped cavity was fixed because the neff value in the MIM waveguide-coupled whistle-
shaped cavity decreased with the increase in n, and the number of modes increased. 
Therefore, a peak can be observed at the near short wave (0.60–0.7 μm) in the transmission 
spectra. We calculated the shift of the Fano resonance peaks (I and II) with the refractive 
index change. The sensitivity fitting curves of peaks I and II are shown in Figure 3b. The 
sensitivity of peak I is S1 = δλ/δn = 600 nm/RIU, and the sensitivity of peak II is S2 = δλ/δn 
= 1229 nm/RIU. 

 
Figure 3. (a) Transmission spectra of the MIM waveguide-coupled whistle-shaped cavity with 
changing n; (b) shift of the Fano resonance peak as a function of the refractive index change δn. 

r1 was varied from 130 to 170 nm at intervals of 10 nm with n = 1, w = 50 nm, and L = 
530 nm to study the effect of the different radii of the ring cavity on the Fano resonance of 
the MIM waveguide. With the increasing radius r2 of the ring cavity, red shifts of the 
transmission spectrum and decreases in the transmittances of the Fano resonance peak 
can be observed in Figure 4a. Figure 4b shows the transmission spectrum with different 
coupled distances d between the top waveguide and the whistle-shaped ring cavity, and 
the other parameters were fixed as n = 1, r1 = 150 nm, r3 = 100 nm, and d1 = 10 nm. From 
the transmission spectrum, the Fano resonance peak appears to be blue-shifted, but this 
was actually caused by the Fano resonance peak widening as d1 increased, and the trans-
mittances decreased with the increase in d1. In contrast, the Fano resonance valley hardly 

Figure 2. (a) Transmission spectra of the MIM waveguide-coupled whistle-shaped cavity; (b) contour
profiles of the normalized Hz field distributions of the MIM waveguide whistle-shaped cavity:
(b) λ = 0.645 mm, (c) λ = 1.15 mm, (d) λ = 1.225 mm, and (e) λ = 1.24 mm.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 9 
 

 

 
Figure 2. (a) Transmission spectra of the MIM waveguide-coupled whistle-shaped cavity; (b) con-
tour profiles of the normalized Hz field distributions of the MIM waveguide whistle-shaped cavity: 
(b) λ = 0.645 mm, (c) λ = 1.15 mm, (d) λ = 1.225 mm, and (e) λ = 1.24 mm. 

The transmission spectra were simulated by replacing the air of the MIM waveguide 
system with different refractive index media (n = 1, 1.33, 1.34, and 1.35), which are shown 
in Figure 3a, to investigate the effect of refractive index n on the transmission properties 
of the whistle-shaped MIM waveguide system. As shown in Figure 3a, the Fano resonance 
peak red shifted with the increase in n, and another new resonance peak can be observed 
at the short wavelength range when n was larger than 1.33. The radius r2 of the whistle-
shaped cavity was fixed because the neff value in the MIM waveguide-coupled whistle-
shaped cavity decreased with the increase in n, and the number of modes increased. 
Therefore, a peak can be observed at the near short wave (0.60–0.7 μm) in the transmission 
spectra. We calculated the shift of the Fano resonance peaks (I and II) with the refractive 
index change. The sensitivity fitting curves of peaks I and II are shown in Figure 3b. The 
sensitivity of peak I is S1 = δλ/δn = 600 nm/RIU, and the sensitivity of peak II is S2 = δλ/δn 
= 1229 nm/RIU. 

 
Figure 3. (a) Transmission spectra of the MIM waveguide-coupled whistle-shaped cavity with 
changing n; (b) shift of the Fano resonance peak as a function of the refractive index change δn. 

r1 was varied from 130 to 170 nm at intervals of 10 nm with n = 1, w = 50 nm, and L = 
530 nm to study the effect of the different radii of the ring cavity on the Fano resonance of 
the MIM waveguide. With the increasing radius r2 of the ring cavity, red shifts of the 
transmission spectrum and decreases in the transmittances of the Fano resonance peak 
can be observed in Figure 4a. Figure 4b shows the transmission spectrum with different 
coupled distances d between the top waveguide and the whistle-shaped ring cavity, and 
the other parameters were fixed as n = 1, r1 = 150 nm, r3 = 100 nm, and d1 = 10 nm. From 
the transmission spectrum, the Fano resonance peak appears to be blue-shifted, but this 
was actually caused by the Fano resonance peak widening as d1 increased, and the trans-
mittances decreased with the increase in d1. In contrast, the Fano resonance valley hardly 

Figure 3. (a) Transmission spectra of the MIM waveguide-coupled whistle-shaped cavity with
changing n; (b) shift of the Fano resonance peak as a function of the refractive index change δn.

r1 was varied from 130 to 170 nm at intervals of 10 nm with n = 1, w = 50 nm, and
L = 530 nm to study the effect of the different radii of the ring cavity on the Fano resonance
of the MIM waveguide. With the increasing radius r2 of the ring cavity, red shifts of the
transmission spectrum and decreases in the transmittances of the Fano resonance peak
can be observed in Figure 4a. Figure 4b shows the transmission spectrum with different
coupled distances d between the top waveguide and the whistle-shaped ring cavity, and
the other parameters were fixed as n = 1, r1 = 150 nm, r3 = 100 nm, and d1 = 10 nm.
From the transmission spectrum, the Fano resonance peak appears to be blue-shifted,
but this was actually caused by the Fano resonance peak widening as d1 increased, and
the transmittances decreased with the increase in d1. In contrast, the Fano resonance
valley hardly shifted with as d1 increased, which was dependent on the length of the
whistle-shaped ring cavity.

In this section, we investigate the derivative structure, MIM waveguide-coupled
whistle-shaped cavity, and the proposed structure, as shown in Figure 5a. Figure 5b
shows the transmission spectrum of the proposed MIM waveguide-coupled double whistle-
shaped cavity, and the structural parameters were fixed at n = 1, R2 = r2 = 125 nm, and
d2 = 10 nm. Although the transmission spectrum is similar to the MIM waveguide-coupled
single-whisper cavity, another new peak emerged in the transmission spectrum. FR2 was
unremarkable and FR1 and FR2 were extremely close when R2 = r2. The Hz field distri-
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butions at λ1 = 1.09 mm, λ2 = 1.06 mm, λ3 = 1.05 mm, λ4 = 1.045 mm, and λ5 = 0.995 mm
are displayed in Figure 5c. For λ1 = 1.09 mm, the phase of the Hz field distribution in
the bottom and top whistle-shaped cavities was opposite, and the output waveguide was
located at the position of the strong negative time-averaged power flow, so the SPPs’ energy
could be passed from the output waveguide. For λ2 = 1.06 mm, the Hz field distribution
in the bottom and top whistle-shaped cavities was symmetric on the vertical axis. The
output waveguide was located at the position joint between the positive and negative
time-averaged power flows, so few SPPs’ energy could be passed. For λ3 = 1.05 mm, the
strong Hz field distribution concentrated in the bottom whistle-shaped cavity, and few
SPPs’ energy were coupled into the top whistle-shaped cavity. The output waveguide was
located in the abdominal of the negative time-averaged power flow, so the SPPs’ energy
could be passed to the output waveguide. For λ4 = 1.045 mm, the Hz field distribution
in the bottom and top whistle-shaped cavities was located on the horizontal axis. For
λ5 = 0.995 mm, the strong Hz field was mainly distributed in the bottom whistle-shaped
cavity, and few SPPs’ energy were coupled into the top whistle-shaped cavity.
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The value of R2 changed and was varied from 130 to 170 nm at intervals of 10 nm, with
r1 = 150 nm and d2 = 10 nm, to further investigate the effect of the top whisper cavity on
the Fano resonance. A remarkable double Fano resonance was found in the transmission
spectra, as shown in Figure 6a. With the increase in R2, an obvious red shift can be observed
in the transmission spectra. The locations of the FR2 peak’s red shift with the increase in R2
and the transmittance of FR2 first showed decreases and then increases. When R2 = r2, the
transmittance was minimal, and with an increasing R2, new FR3 peaks can be observed in
the transmission spectra for R2 = 135 nm. From Figure 6b, FR1 seems to be blue-shifted,
but this was actually due to a decrease in the peak width of FR1 with the increase in the
distance (d2) between the ring cavity from 5 to 25 nm when the values of R2 and r2 were
fixed as 125 nm. The transmittance of FR2 decreased, but FR2 experienced no shift with as
d2 increased. When d2 = 25 nm, the peak of FR2 disappeared in the transmission spectra.
With an increasing d2, FR3 was blue-shifted and the transmittance decreased. Figure 6c
shows the transmittance spectrum when changing its refractive index n (n = 1, 1.33, 1.34,
and 1.35) of the proposed double whisper cavities, and the other parameters were fixed as
d2 = 10 nm, r2 = 125 nm, and R2 = 115 nm. The Fano resonance exhibited a red shift with the
increase in the refractive index n, and the sensitivities of 1.057 µm/RIU and 0.969 µm/RIU
were obtained at λ1(FR1) and λ2(FR2).
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due to the coupling of SPPs in the whistle-shaped cavity between the transmission along
the clockwise and anticlockwise directions. Refractive index-sensing based on the Fano
resonance was investigated by changing the refractive index of the insulator of the MIM
waveguide. The results showed that a maximum sensitivity of 1229 RIU/nm was obtained.
Compared to the single MIM waveguide-coupled whistle-shaped cavity, the double MIM
with whistle-shaped cavity structure exhibited multi-Fano resonance. The refractive index
sensor’s sensitivity was smaller than that of the single MIM waveguide-coupled whistle-
shaped cavity. The results of this study will help in the design of new photonic devices and
microsensors with high sensitivity.
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