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Abstract: Exosomes are lipid-bilayer enclosed vesicles with diameters of 30–150 nm, which play a
pivotal role in cell communication by transporting their cargoes such as proteins, lipids, and genetic
materials. In recent years, exosomes have been under intense investigation, as they show great
promise in numerous areas, especially as bio-markers in liquid biopsies. However, due to the high
heterogeneity and the nano size of exosomes, the separation of exosomes is not easy. This review will
deliver an outline of the conventional methods and the microfluidic-based technologies for exosome
separation. Particular attention is devoted to microfluidic devices, highlighting the efficiency of
exosome isolation by these methods. Additionally, this review will introduce advances made in the
integrated microfluidics technologies that enable the separation and analysis of exosomes.

Keywords: exosomes; extra-cellular vesicle; microfluidics; isolation; detection

1. Introduction

Exosomes were first identified in sheep reticulocytes in 1983 and named “exosome”
by Johnstone in 1987 [1]. Although they were initially considered to be the waste exuded
by cells, they have now become a key field for research, as various pieces of research
have shown that exosomes play a pivotal role in cell communication [1–3]. Exosomes are
one subset of extra-cellular vesicles (EVs), which are mainly divided into three subtypes,
cell microvesicles (MVs), apoptotic vesicles, and exosomes, based on their differences in
size and origin [4,5]. Exosomes can provide a variety of bioactive molecules to recipient
cells and reflect the information of their cell origin, as shown in Figure 1 [6–8]. There
are some studies that have shown that exosomes secreted by various of cancers express
different levels of proteins. For example, Jakobsen et al. found that lung-cancer-cell-derived
exosomes can highly express CD91 and epidermal growth factor receptor (EGFR) [9].
Melo et al. reported glypican-1 (GPC1) specifically enriched in exosomes from the patients
with pancreatic cancer [10].

Exosomes are lipid-bilayer enclosed vesicles with a diameter of 30–150 nm, which
can be released by most cells and be found in several biofluid types such as blood, urine,
bile, saliva, and breast milk [2,11]. Meanwhile, exosomes have the following characteristics.
First, exosomes are abundant in biological body fluids. Second, exosomes are secreted by
most living cells. Third, exosomes are relatively stable because of their lipid bilayer [2,12].
Therefore, exosomes are advantageous in liquid biopsies based on the above characteris-
tics [13]. However, due to the high heterogeneity and the nano size of exosomes, the relative
research and application of exosomes has been limited [14]. Although there are many meth-
ods for the isolation and detection of exosomes, most of these methods require expensive
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instruments and reagents and are very time consuming [15,16]. This review will deliver
an outline of the conventional methods and the microfluidic-based technologies for exo-
somes separation (Figure 2), along with their strengths and weaknesses. Meanwhile, most
reviews pay more attention to the technology of microfluidic, not focus on the efficiency of
exosome isolation. In order to evaluate the methods objectively, we summarized the yield
and purity of the exosomes isolated from each method. Further, with the development of
microfluidic technology in recent years, several integrated microfluidic technologies have
been developed for the separation and analysis of exosomes.
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ding of endosomal membranes. Finally, exosomes are released by the fusion of MVBs with the
plasma membrane.
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2. Conventional Exosome Isolation Methods

In this section, several conventional exosome-separation methods will be introduced,
including their working principles, advantages, and disadvantages (Table 1).

Table 1. Conventional isolation method for exosomes.

Isolation Method Working Principle Advantages Disadvantages

Centrifugation Based on the size and density
of particles Low costs and high purity Time-consuming and requires

expensive instruments

Ultrafiltration
Based on the size of particles and

the pore size of the
nanomembrane

Simple operation and
fast procedure Membrane clogging easily

Size-Exclusion
Chromatography

Based on the size of particles and
the pore size of porous materials

Minimal damage of
exosomes and high purity

Time-consuming and
low efficiency

Polymer-Based Precipitation Based on the altering the
solubility of exosomes High efficiency Low purity

2.1. Ultracentrifugation (UC)

Ultracentrifugation is the most common method for the separation of exosomes and
is regarded as the gold standard [17,18]. The method is based on the differences in the
size and density between exosomes and other components. It can be classified into two
types: differential ultracentrifugation and density gradient ultracentrifugation. For dif-
ferential ultracentrifugation, the samples were first centrifuged at low speed (300× g) to
remove cellular debris, then the large vesicles, such as apoptotic bodies and microvesicles,
were removed under a higher speed centrifuge (<20,000× g), and finally the exosomes were
precipitated under the action of high centrifugal force (more than 100,000× g) [1]. Density
gradient centrifugation is a better separation technology based on ultracentrifugation [19].
Compared to differential ultracentrifugation, density gradient centrifugation uses a mini-
mum of two solutions with different densities. After centrifugation, particles of different
densities can be separated into similar density layers [20]. Sucrose and iodoxanol are the
most widely used solutions to produce continuous gradients [21,22]. However, although
it has a higher separation purity of exosomes than ultracentrifugation, density gradient
centrifugation is a more time-consuming method [23]. In addition, the structure and quality
of the collected exosomes may be affected by the repeated centrifugation and excessive
centrifugal force.

2.2. Ultrafiltration (UF)

Ultrafiltration is a simple separation method to separate different sized particles by
using membrane filters with appropriate pore sizes. Based on the fact that the size of an
exosome is in the range of 30–150 nm, nanomembranes with different molecular weight
cut-off (MWCO) are used to isolate exosomes from other particles [24]. Unfortunately,
the clogging of the filtering membrane can reduce the exosome isolation efficiency and
the lifetime of membranes [25]. There are two main types of ultrafiltration methods.
The first is dead-end filtration, where fluid passes perpendicularly through the membrane,
which will result in the rapid formation of filter cake and thus reduce the separation
efficiency. This method is rarely used alone. The second is tangential flow filtration (TFF),
where the fluid flows tangentially through the surface to avoid cake formation [26,27].
In addition, sequential ultrafiltration is another commonly used method. This approach is
divided into three steps of dead-end filtration, tangential-flow filtration, and track-etched
membrane filtration [28]. First, dead-end filtration is used to get rid of extra-cellular
vesicles with a diameter greater than 100 nm. Subsequently, TFF is used to remove free
proteins and other small particles. Finally, microvesicles are removed and exosomes can
be collected. Ultrafiltration is usually applied to isolate exosomes from large amounts
of liquid such as cell culture medium, as it does not require expensive equipment and
complex procedures [29].
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2.3. Size-Exclusion Chromatography (SEC)

Size-exclusion chromatography is a separation method that avoids exosome damage
as much as possible [30,31]. When the liquid sample passes through the column consisting
of porous beads, particles of different sizes have different flow rates; smaller particles
such as exosomes can enter pores and the elution speed is slow, while larger components
that cannot enter the pores are eluted earlier from the column [32]. This method allows
exosomes to be isolated with minimal external forces, thereby reducing the impact on
exosomes and maintaining the biological activities of the exosomes [31,33]. Importantly,
the exosomes isolated via this method have a high level of purity, which is conducive to
basic research and its clinical application [31]. In addition, this method has other merits,
including requiring low-sample volumes, the exosomes are easy to collect, and it is not
time or labor intensive [34,35].

2.4. Polymer-Based Precipitation

Polymer-based precipitation uses hydrophilic polymers such as polyethylene glycol
(PEG) to combine the water molecules surrounding the exosomes to form a hydrophobic
environment, which reduces the solubility of the exosomes and facilitates their precipita-
tion [36,37]. The sample is then centrifuged at a low speed to obtain EVs [38]. Compared
with the ultracentrifugation, this method can provide higher yields as well as avoid exces-
sive centrifugation, which can cause exosome damage [39]. A variety of commercial kits
used in polymer-based precipitation methods have been used to extract EVs. Tian et al. com-
pared the performance of popular commercial kits with EV preparation by UC and found
that the EVs extracted from the kits produced a higher yield but of a much lower purity [40].

3. Microfluidic-Based Technology for Exosome Isolation

Microfluidics is the science and technology of systems that manipulate small amounts
of fluids within microscale channels [41]. Microfluidics not only have the advantage
of reducing the consumption of samples and reagents and providing higher resolution
and sensitivity, but they also significantly reduce the analysis time and greatly improve
the analysis efficiency [42,43]. Due to the vast amounts of progress in microfabrication
technology through recent years, microfluidic technology has become a promising method
for exosome isolation [44]. Currently, microfluidic-based exosome-separation technologies
can be classified into two types: (I) physical property-based microfluidic for exosome
separation, (II) immunoaffinity-based microfluidic for exosome separation. In order to
evaluate the methods, the yield and purity of each method were summarized in Table 2.

Table 2. Microfluidic isolation methods for exosomes.

Method Advantages Disadvantages Reference Recovery/Yield Purity Time
Consuming

Filtration

High yield Time consuming ExoTIC [45]
Yield:

4~1000 fold
higher than UC

NA <3 h

Good at isolating
large samples

Complicated
manufacturing

process

Ciliated
micropillars [46] NA NA NA

DLD High resolution
Complicated

manufacturing
process

Nano-DLD
arrays [47] NA NA NA

Acoustic
microfluidic

High purity
Quick

separationBiocom-
patibility

Complicated
manufacturing

process

The acoustofluidic
platform [48] 82% 98% 20 min
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Table 2. Cont.

Method Advantages Disadvantages Reference Recovery/Yield Purity Time
Consuming

Dielectrophoretic Quick separation
The electric field may
affect the properties

of exosomes

ACE microarray
chip [49] NA NA <30 min

Viscoelastic
flow High purity With extra regents

Wavy
microchannel
structures [50]

>81% >92% NA

Immunoaffinity
based isolation

method

High specificity
and purity

the expensiveness of
antibodies

HBEXO-chip [51] 75% NA 20 min
Magnetic

nanoparticles [52] NA NA NA

Aptamer-based
exosome

isolation [53]
NA >72% NA

3.1. Physical Property-Based Microfluidics
3.1.1. Exosome Isolation by Filtration

The filtration method based on microfluidic chips is a relatively simple method,
which pays more attention to the design of the chip, including nanomembranes or
nanowires [45,46,54–57]. Based on the size of the exosomes, nanomembranes and nanowires
allow particles smaller than the pore size to enter while preventing larger particles from
entering. Davies RT et al. applied a microfluidic system using porous polymer monoliths
(PPMs) to isolate vesicles from whole blood [54]. The DC electrophoresis was employed
as a driving force to push particles through the filter and avoid clogging. With this con-
figuration, exosomes can be obtained from a 240 µL sample with a 2 µm min−1 flow
rate. In order to prevent the damage to exosomes from chemical and biological reactions,
Cho et al. proposed a separation system completely dependent on physical interactions [55].
Particles with different surface charges will move towards the anode or cathode under
electrophoretic conditions. Among them, exosomes and most proteins have a negative
surface charge, so they will move towards the anode and a nanomembrane with 30 nm
pores is used to preclude the passage of the exosomes. However, as exosomes accumulate
on the membrane, if the membrane cannot be cleaned in time, the separation efficiency
may be reduced. Additionally, the attached exosomes, when washed and collected by PBS,
may carry small proteins. Liu et al. designed a size-based isolation tool called Exosome
Total Isolation Chip (abbreviated as ExoTIC) [45]. ExoTIC is a modular platform that can
separate exosomes from various samples, including urine, plasma, and cell culture media.
ExoTIC enriched and purified EVs using a filter, which can wash out the free proteins
and nucleic acids (Figure 3A). Compared with UC, the chip can isolate exosomes from
small volumes of blood (10–100 µL) with a yield 4 to 1000 times higher in <3 h. Obviously,
ExoTIC is an ideal clinical device for downstream point-of-care testing (POCT).

Another novel design is nanowires; Wang et al. fabricated a microfluidic device
composed of ciliated micropillars, which was formed into porous silicon nanowires [46].
The ciliated micropillars can preferentially trap exosomes and be dissolved in the PBS
buffer (Figure 3B). Further, Chen et al. presented a three-dimensional PDMS scaffold
chip device wrapped by ZnO nanowires [57]. The ZnO nanowire array provides a large
surface area for antibody fixation and generates a size exclusion-like effect for capturing
exosomes. However, despite the novelty of these designs, their structural complexity may
limit their application.
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3.1.2. Deterministic Lateral Displacement

Deterministic lateral displacement (DLD) is a size-based cell-classification technique,
which is composed of a set of ordered obstacle arrays (microcolumn array) [58]. Laminar
fluid interacts with the array to force particles or cells into a specific trajectory preset by
the device. When particles or cells below the critical diameter (Dc) follow the streamline
through the array gap, there is no net displacement from the original flow. When the
particles exceeding the Dc move laterally in the cross-order streamline, each row moves at a
predetermined angle of the micro-column offset distance [59]. Based on this principle, DLD
technology can separate particles with a high-resolution ratio. Wunsch et al. showed that
nano-DLD arrays can separate particles between 20 nm to 110 nm with a clear resolution
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ratio under the condition of diffusion and deterministic displacement competition at a
low Pe number [47]. However, due to the high hydrodynamic resistance of this device, a
pressure of more than 200 kPa is required to move the EV through the nanoparticle array.
Hattori et al. applied an electroosmotic flow (EOF) to drive the micro-nano fluid in the chip
to avoid excessive pressure; this method achieved continuous and precise separation with
throughputs of 450–950 µm/s. However, the collected sample was 50−400 nm in diameter
from its reservoir C, which is expected to collect exosomes. These results indicate that the
purity of exosomes collected by this device needs to be improved [60] (Figure 4).
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3.1.3. Acoustic-Wave-Based Microfluidic Devices

Acoustic microfluidic technology is a label-free exosome isolation technique by ap-
plying acoustic waves with high biocompatibility and repeatability [61–63]. During the
separation process, the particles in the fluid are subjected to acoustic radiation forces,
which are proportional to the volume of the particles. At the same time, when the particle
is affected by the acoustic radiation force, it will be affected by Stokes’s law, which is
proportional to the radius of the particle [64]. Therefore, larger particles are subjected to
greater acoustic forces that cause them to shift their orbits further. Based on this principle,
particles of different sizes can be separated. Lee et al. proposed an acoustic nano-filter
system using ultrasound standing waves for the continuous filtration of microvesicles
(MVs) [65]. By optimizing the design of interdigital transducers (IDT) and their underlying
electronics to produce a maximal acoustic force on MVs, this type of device achieved sepa-
ration yields > 90% and allowed for the isolation of exosomes from cell culture mediums
and erythrocyte-derived vesicles from stored blood units (Figure 5A). Wu et al. devel-
oped a unique exosome-separation technology that integrated acoustics and microfluidics,
including a cell-removal module and extracellular vesicle subgroup-separation module [48].
In the cell-removal module, larger blood components such as cell debris were removed to
obtain 110 nm particles. In the next module, exosomes could then be obtained from the
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extra-cellular vesicle mixture with a recovery rate and purity of 82.4% and 98.4% (Figure 5B).
This integrated system can separate exosomes from undiluted whole blood with a high
purity and as few operations as possible.
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3.1.4. Electrical-Field-Based Microfluidic Device

A variety of electrokinetic phenomena can be produced by applying AC voltage to
microelectrodes placed in a solution. Among them, dielectrophoretic (DEP) and elec-
trophoretic (EP) are mainly combined with microfluidics and used for exosome separa-
tion [49,54,55,66]. DEP describes the translational motion of neutral particles in an asym-
metrical electric field due to dielectric polarization. The dielectrophoretic force is related
to the particle size and the absolute permittivity. Ibsen et al. proposed an alternating-
current electrokinetic (ACE) microarray chip device to isolate exosomes from undiluted
plasma samples (30–50 µL) within 30 min [49]. In the isolation process, exosomes are
attracted to the high-field region around the ACE microelectrode, while cells and other
larger substances move to the low-field region. However, direct contact between exosomes
and microelectrodes may cause adverse effects on the exosomes. Shi et al. reported a
novel insulator-based dielectrophoretic (iDEP) device to rapidly isolate exosomes (within
20 min) from undiluted plasma and serum by applying a low electric field (~10 V cm−1)
direct current (DC) [66]. This device can induce a strong non-uniform electric field (E-field)
that creates a dielectrophoretic (DEP) force, which is balanced by two other electrokinetic
forces, including electroosmosis (EOF) and electrophoresis (EP) near the pipette tip region,
and thus it creates a trapping zone. In addition, Malekanfard et al. proposed the use of
low-frequency AC electric fields to generate an oscillatory electrokinetic flow for particles
focusing on a virtually “infinite” microchannel, which decreases the requirements for DC
iDEP pre-focusing particles into a tight stream [67] (Figure 6A).

EP is another technique based on the electrical properties for separating charged
particles. Generally, exosomes are captured using EP to drive particles through a nanomem-
brane. As mentioned in Section 3.1.1, Cho et al. proposed to separate exosomes by using
an electric field migration [55]. An electric field was applied to the dialysis membrane with
a pore size of 30 nm. Under the action of the electric field, proteins would migrate through
the membrane to the outside, and exosomes would be trapped on the membrane surface to
achieve separation and enrichment (Figure 6B).
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3.1.5. Viscoelastic Flow-Based Microfluidic Devices

Viscoelastic flow sorting is another label-free approach for exosome separation [68].
The separation is realized using the different elastic lift of particles with different particle
sizes in the solution [69,70]. Generally, exosomes do not receive enough viscoelasticity
because of their small size.

Liu et al. developed a microfluidic system for separation of exosomes from other larger
EVs in cell culture mediums or serums [71]. This microfluidic chip consists of two inlets
and three outlets. Samples and polyoxyethylene polymers (PEO) are, respectively, intro-
duced into inlet I and inlet II; the viscoelasticity applied to the exosomes was increased by
adding a small amount of biocompatible PEO to the medium (Figure 7A). As a result, larger
particles were collected at the middle outlet, while exosomes were collected at the two side
outlets. This method does not need complex or time-consuming operations and can finally
achieve high separation purity (>90%) and high recovery (80%) of exosomes. Additionally,
Zhou et al. showed a novel reverse wavy channel structure using viscoelastic flow for sort-
ing of exosomes [50]. The structure can generate periodically reversed Dean secondary flow,
which facilitates particle focusing compared with traditional straight channels (Figure 7B).
The exosome’s purity and recovery were obtained as 92% and 81%, respectively.
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3.2. Immunoaffinity Based Microfluidic

The immunoaffinity-based isolation method is based on the specific interactions of
antigens and antibodies [72,73]. Generally, antibodies that capture exosomes are usu-
ally immobilized on the surface of microfluidic devices or magnetic beads [51,52,74,75].
In addition, aptamers are small oligonucleotide sequences or short polypeptides, which
have been widely used as molecular probes [76]. Recently, there have been some studies
that have shown that aptamers can be used to capture exosomes [53,76–78]. The most
common biomarkers that exist on exosomes are tetraspanins, which mainly including CD9,
CD63, CD81, and CD147 [79,80].

Kanwar et al. developed a simple, low-cost microfluidic device (ExoChip) that can
be fabricated in polydimethylsiloxane (PDMS) and functionalized with antibodies against
CD63 for exosome isolation, quantification, and characterization [81]. Ten ExoChip experi-
ments were carried out on serum obtained from five patients with pancreatic cancer and
five healthy individuals, respectively. The results showed that the amounts of exosomes
captured by the cancer patients were more than twice that of the healthy individuals.
In order to prevent the interference of other non-specific exosomes and make the detection
result more accurate, Zhang et al. developed a microfluidic device HBEXO-Chip to isolate
exosomes of the pancreatic cancer target Glypican-1 (GPC1) antibody [51]. The expression
of GPC1 in pancreatic cancer is very high, and it is also involved in the proliferation and the
metastasis of tumor cells [82,83]. It was selected as a target for exosome capture. Moreover,
the microfluidic device employed a plurality of herringbone micromixers, which are benefi-
cial for increasing the binding of exosomes to specific antibodies (Figure 8A). As a result,
the device has 75% efficiency in capturing tumor-derived exosomes from plasma, as well as
four-fold increase in exosomes enrichment ratios when compared to conventional methods
due to its unique herringbone structure. 
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Figure 8. Microfluidic technology for exosome isolation based on immunoaffinity. (A) Schematic of
the structure of HBEXO-Chip for exosomes isolation. Reprinted with permission [51]. (B) Schematic
of microdevice used magnetic nanoparticles functionalized with antibodies for exosomes isolation.
Reprinted with permission [53].

Another common immunoaffinity-based method is using magnetic bead binding anti-
bodies to capture exosomes. Sancho-Albero et al. designed a microfluidic device to isolate
exosomes from whole blood using magnetic nanoparticles (Fe3O4NPs) functionalized with
anti-CD63 [52] (Figure 8B). Finally, approximately 2 × 1010 exosomes were captured from
PBS, FBS, and the whole blood in 500 µL. The use of antibodies can effectively capture high-
purity exosomes. However, due to the expensiveness of antibodies, and the difficulty of
separating antibodies and exosomes for the downstream application, Song et al. employed
aptamers to target exosomes CD63 [53]. They developed a magnetic bead-based system
using a CD63-1 aptamer for isolating exosomes from a cell culture medium. As a result,
over 8.37 × 108/mL exosomes were collected with over 72% purity.
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4. Integrated Microfluidic Techniques for Exosome Separation and Analysis

Integrated microfluidic techniques can reduce off-chip operations and save time, which
is beneficial to meet the needs of the rapid detection of exosomes in a large number of
clinical samples. Generally, integrated microfluidic techniques consist of two compartments,
including a separation zone and a detection zone. In this section, we will introduce several
common detection techniques.

4.1. Fluorescence Detection

Fluorescence occurs when a substance is irradiated by a certain wavelength of light,
and it emits light with a wavelength longer than the incident light for a short time.
Fluorescence detection is the most widely used detection technology. A common approach
is to use fluorescent antibodies to bind to the captured exosomes, and then characterize
the exosomes using fluorescence microscopy [84,85]. Lu et al. presented an integrated
microfluidic device termed ‘EXID system’ for the isolation and analysis of exosomes of
the PD-L1 expression [86]. The device consists of two components: the first part is for
exosome isolation and labelling, the magnetic beads were combined with anti-CD63 in the
serpentine-shaped channels, this structure can lengthen the flow path to stabilize liquid
flow and avoid bead clogging. The second part is used for the analysis of PD-L1 protein.
Exosomes labelled with a PD-L1 fluorescence probe are captured by micropillar arrays.
The result showed that 7 cell lines and 16 clinical samples were profiled with verified
expression levels of PD-L1. The system can isolate exosomes and quantify biomarkers in
less than 2 h, indicating a great potential for auxiliary diagnosis and individual therapy.
Yu et al. proposed a highly integrated microfluidic (ExoSD) chip for exosome isolation
and detection [74]. Similarly, this chip primarily incorporates two compartments: a separa-
tion zone and a detection zone. In the separation zone, a nickel (Ni) comb-like structure
was designed to enhance the magnetic flux density and the magnetic field gradient act-
ing on the immunomagnetic nanoparticles (IMNPs). IMNPs prepared by anti-CD63 can
specifically capture exosomes in the cell culture supernatant. Then, in the detection zone,
the fluorescent antibodies were injected in a proper order to combine to the surface anti-
gen of the exosomes. Lastly, the cancer-cell-derived exosomes can be detected with the
fluorescence signal in real time. In order to avoid sample preprocessing and solve the
problem of inaccurate disease diagnosis only based on quantitative exosome concentration,
Zhou et al. designed a microfluidic device termed a plasma separation and EV detection
(PS-ED) chip [87]. The device included two modules: a PS module and an ED module.
The PS module is composed of six looped microchannels, this design uses inertial force to
quickly separate plasma and reduce mechanical damage to blood cells. The ED module is
composed of four S shaped channels for exosome quantification and protein analysis based
on the ELISA assay. As a result, the cancer type can be accurately confirmed and verified
by clinical blood sample analysis.

4.2. Colorimetric Detection

The colorimetric method reflects the content of exosomes by judging the color change
and the depth of the solution [88]. This method has the characteristic of a simple operation.
It has a great potential in point-of-care testing (POCT) and clinical examination [89–91].
Chen et al. designed an integrated microfluidic system that is divided into three steps
to separate and quantify exosomes from whole blood [92]. In the third step, captured
exosomes were precisely quantified in an exosome quantification module, integrating mul-
tiple microchambers, micropumps, and microvalves via an enzyme-linked immunosorbent
assay (ELISA), with a tyramide signal amplification technique (TSA) to greatly enhance the
exosome-associated signals.

4.3. Surface Plasmon Resonance (SPR) Detection

SPR is a sensitive surface-analysis technique that detects changes in permittivity
caused by molecules adsorbing onto heavy metal films [93–95]. Microfluidic devices based
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on SPR detection usually use light to shoot into the chip with a fixed incident angle.
When the antibody on the chip captures exosomes, the refractive index will change, and the
reflection intensity will change. Zhu et al. used surface plasmon resonance imaging (SPRi)
combined with microfluidic chip used antibodies to capture exosomes from cell culture
supernatants (CCS) [94]. Wang et al. reported an aptamer-based SPR sensor for exosome
detection [96]. First, the Au film functionalized by captured DNA was used to capture
exosomes, and then the target exosomes were detected, and signals were amplified by the
aptamer/T30 linked AuNPs. Finally, the aptamer/T30 linked AuNPs could capture A30
coated AuNPs, and the target exosomes could be detected by the SPR, and their signal
amplified by the double AuNP.

4.4. Electrochemical Detection

Electrochemical detection is a low-cost and high-sensitivity detection method. During
the detection process, antibodies or aptamers are modified on the electrode, and, when exo-
somes specifically bind to them, electrical signals such as voltage, current, and resistance
will change [77,97–99]. Jeong et al. designed an integrated chip termed iMEX (integrated
magnetic-electrochemical exosome) for rapid exosome analyses [100]. After exosomes
were captured and labelled by magnetic beads, they were detected by electrochemical
sensing. The device has eight detection channels to detect exosomes sensitively from
10 µL of samples. Kashefi-Kheyrabadi et al. developed a detachable microfluidic device
using an electrochemical aptasensor (DeMEA) for highly sensitive, in situ quantification of
cancerous exosomes [101]. The DeMEA works by adding nanocomposite to the surface of
electrodes, then aptamers against an epithelial cell adhesion molecule were fixed on the
electrode surface to detect exosomes. The result indicated that the limit of detection (LOD)
was 17 exosomes/µL. In addition, the detachable structure can provide an opportunity for
exosome downstream analysis.

5. Conclusions

With the improvement in exosome research, it is recognized that exosomes are closely
related to many physiological activities and the occurrence and development of diseases.
Therefore, exosome isolation and analysis are very important for exosome-related research
and application. However, there are many limitations in traditional methods of exosome
isolation, such as expensive instruments and reagents and the consumption of a consider-
able amount of time. Compared with traditional methods, microfluidic technology has the
advantages of high efficiency and high sensitivity for exosome separation. In recent years,
with the rapid development of technology and further research, microfluidic technology
has achieved efficient separation, enrichment, and multi-information detection of exosomes
integrated into a single chip. This indicates that microfluidic chips have great potential in
clinical research, such as point-of-care testing.

In this review, in addition to introducing the traditional exosome-separation methods,
we also summarized the exosome-separation methods based on microfluidic technology
as well as their pros and cons. The immunoaffinity-based microfluidic method can isolate
exosomes with high purity. However, due to the high cost of antibodies, and the isolation
process making it easy to cause phenotypic changes to exosomes, which is not conducive
to downstream analysis, the microfluidic methods based on the physical characteristics
of exosomes may be a better choice. In addition, due to the small size of exosomes and
some particles being similar to their particle size, a single separation method is insufficient.
In conclusion, how to balance the relationship between the purity, recovery, and flux
of exosomes on microfluidic chips is a key issue. With the development of precision
manufacturing technology, a variety of exosome-separation methods integrated on a chip
and the integration of exosome separation and detection are perhaps helpful in solving
this problem.
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