SUPPORTING INFORMATION

Modular Micro Raman Reader instrument for fast SERS-based detection of
biomarkers.

Jamison Duckworth ! and Alexey V. Krasnoslobodtsev 12

1 Department of Physics, University of Nebraska Omaha, Omaha, NE 68182, USA
2 nDETKT, LLC.

o Ty M | Y

S

01dE0ZS N

|

Figure S1. Constructed micro Raman Reader instrument. (A) improved for automated measurements:
motorized x-y stage with 4 slide capability (concurrently). Components of the system: computer, stage
motion controller, joystick, microscope frame, X-y motorized piezo stage, optical path: objective (long
working distance), coupling, fiber optic cable, Raman spectrometer, laser (647 nm excitation). (B)
Detection chip layout with 48 addresses of individual samples. (C) scanning pattern on the wafer (left —
raster scan) and on an address (right — vector scan) — see section 1 below for details.

1. Movement Method

The algorithm for stage translation, which is the primary method for data acquisition, has
three basic parts: wafer movement, address movement, and inner address movement. The
program is designed for a maximum of 4 gold slides (or wafers) with similarly deposited samples
for analysis. The design was tailored for the MLS203 x-y motorized piezo stage from Thorlabs,
Inc. equipped with MLS203P10 Multi Slide Holder.

Wafer movement is the simplest one out of all in the code. Here a for loop with a
maximum value of 4 carries out the movement across the wafers due to the maximum number of
slides used. A button selection on the Graphical User Interface (GUI) of the LabView interface
sets the number value to true if selected. This is indicated by a green light on the button below
the selected wafer. If a slide is not selected it will remain false and will skip over that wafer
during the wafer movements iteration of that slide. This part of the GUI is shown at the bottom
left side of Figure S2.

Calibration Path
% Ci\Users\dsc161\Desktop\calibrate\.calibration.tbdt =

Folder Path
& C:\Users\dsc161\Desktop\Test saves

Take Dark
T Sk Pt M
2@ cirersen

Automated Movement | Individual Address |

Step Size
Auto-Calculate || User Defined
>
Horizontal step size Cluster
ul Horizontal
Vetical stepsize | Sddress Step
0 7, B
Horizontal
Address Step

Wafer Selection 2

Scan Size per Address

Scan Number Address r{mm)

s Jos
Wait Time
’:}1

‘X-Shw"t ¥-Shift
|06 . 035

Address Dimensions

Total # of Addresses
J 48
 Width

- —

7 Go Button
-
‘Wafer Button

Wafer Button 2

‘Wafer Button 3

=== &= == Eiug
L

Wafer Progress

Adress Progress

radius X element
0 0

Theta element Y element
0 0]

Tab Control

STOP

Estimated Time (sec)
0

X-axis Serial ~ X-Auxis MGL7Motor
o 94871768

\ SN: 94871769: V3.0.2()
%
Jog Travel
Home/Zero Homed Moving Stop Enable
H o L H B

Paosition Error Current Limit

@ Svichng o

THORIAGES W et @ Actve @ Error

Y-axis Serial ~ Y-Auxis MGL7Motor

Rev Hardware Limit Fwd Hardware

:J =R apt SN: 94871770: V3.0.2()
‘Srushiem; OC maotsr cortroler) ‘ . o
Jog Travel
Home/Zero Homed Moving Stop Enable
H e o H N
Pasition Error Current Limit Rev Hardware Limit Fwd Hardware

[Switching ®

THORIAES W et @ Atve @ Error

error out X
status code
< fo

source

:

pfPasition (mm)
0

error out ¥
status code
4 b

source

pfPosition 2 (mm)
0

Figure S2: GUI control for stage translation. Gold wafers are buttons, and the green lights will light up
when the buttons are toggled on.

After the movement to the selected wafer, the code then moves across each element of
the address. It is assumed that the wafers used are 25 x 75 x 1mm slides and that the addresses
are evenly distributed (in x and in y). This assumption allows for the automation of address
scanning. Referring to Figure S2, just above the wafer buttons is a recessed "Address
Dimensions" panel. Here, the user can choose the total number of addresses on the wafer and
how many span the width, labeled "Total \# of Addresses" and "Width" respectively. The width
is defined as the number of addresses across the shortest distance of the wafer.

Once entered, the code will send the values to a sub-routine for the inner wafer
movement. Here a for loop is used to make an array of values for the 2-dimensional stage to use.
This is depicted in Figure S3 with the number of addresses as the end value for the for loop and
the width working as a step counter (0's and 1's). A flip is needed to move back and forth for
every other row, which is located under the stepping method, and a horizontal shift is also
needed to move to the next row, which is under the flipping method. This resulting pattern is that
of a raster scan method. The array then gets passed to the stage along with a dwell time (in
Figure S2, labeled as "Wait Time").

Mumer of Addresses
Width X Run)
(colum X rows)

] |Getting 0's and l:unell |L|pwar|:| shif'tl 0,0,...01 {upward shift)
H | EFE
i o > > W
iz b |Flipping based on width| Flip from width
I3
-1 :;'1'-.- IE
1,1,..1,0 (herizental shift)

B> > =
B>

back and forth horizontal
(horizontal shift)

[f==
Li]

%
k

Figure S3: Address movement module. The code sends array to the x-y stage based on the address’s
width and maximum number.

Radius step size input
Address r{mm) input

Radius count from
Scan Mumber

Max is for edge of address
min is for edge of laser width Address radius
Mf‘:lx and 3 |> output (mm)
min ranges
Sted g 0.001 |> D bizsl Radius control
' ocutput
2 B3]

Max # of
ra;faljzmps [£> [Wiox = 3000 for
address diamter of 3mm

and laser radius of Snm

Figure S4: Radius control module.

Next, the inner address method is defined by mapping out concentric rings and relaying
them to the stage translation. This is done in two parts. First is the radius control, shown in
Figure S4, that calculates the address radius in millimeters and feeds it to the radius counter for
pattern manipulation (Figure S5).

Scan Number

iz Wait Time (ms)

bliz3

Radius (Get) i
-

o vz

Radius Theta Position

pha]

Theta/R

- 0 9 bzl | s

Theta ¥
Scans per radius (Aray) 'ﬁ@x ”ﬁlﬁ

Figure S5: Radius counter module. Inputs enter at top of page and passable outputs are at bottom of page.
The for loop is to keep the array order and the true/false conditional loop (inside the for loop) controls
whether there is circular movement or not. If the conditional loop is true, it is the final loop.

X

Figure S6: Triangle pattern for the concentric ring calculation. Red dot is the first scan. Cross
lines represent number of diameters out.

In Figure S5 is a hard-coded pattern for inner address pattern. That is to say that the
concentric ring calculation was done on paper and then made into LabView code. The method
here is to scan in laser diameter-unit increments for the radius for pattern progression. For the
first area there will be O diameter and only one scan. For the second area there are 6 places to
scan that correspond to six vertices on a regular hexagon. This is due to going a diameter away
from the first scan and repeating at a diameter-regular intervals around the first scan. The third
area goes out two diameter lengths from the center scan and will do this until it matches or
breaks 360 degrees. Once it matches or breaks that it will move onto the next concentric circle, 3
diameters out, and continue this pattern until either the desired number of scans are met or the
maximum address radius is equal to or less than the diameter away from the center scan. This
pattern results in a vector-scan method for concentric circles that are on the vertices of touching
isosceles triangles. For visualization see Figure S6.

After the code has moved the THORLABS stage to the appropriate wafer, then moved to
the appropriate address (Figure S3), and after the concentric spots have been imaged (Figure S4
and S5) the code returns to its value at the beginning of the inner address movement in order to
move to the next address. This is to prevent drifting. Then, after all the addresses have been
imaged with the inner address specifications, the code redirects the value for the next wafer and
repeats for the number of wafers selected. Lastly, once the pattern has been completed the
program will stop and return to home.

Thus, through a 3-step program this code acquires translation of a stage for data
acquisition. The first step being a simple shift for what wafer is desired, then into a raster-scan
for moving between addresses and ends in a vector-scan around a concentric circles that are
outlined by increasing isosceles triangles.

2. Control Method

The over-arching control for the code starts as a simple stage control. First, it is necessary
to get the stepper motor addresses and wire them so that LabView can pass data back and forth.
After this has been done the code continues into the main while loop that centers the stage,

passes data back and forth to the SpectraWiz software for Raman Spectroscopy analysis, and
execution of the above algorithm. Full while loop is depicted in Figure S7 (spans 3 pages).

Calbration Path

[CHECK THE DARK SPECTRA FLOWI]

e

=]) = - T
'.?_".J : ‘i‘tﬂ"w E> m_rb s %D
1 oexesm

e
e
MoveAbsolte
v D

[

b ichanD

Figure S7: (A) Control code 1/3

v — e ~}f

T K Default P

Ao ~H
.
—
) |
—_—
z e B
To
[z of Colurms] JFoider]
e rogress Ffarma a——| Lﬁ
. i
e BT
e - .
T 557 T] =
T O[]
] | e sadress (car] moverment] M ok 7] —
'_‘—D—| s 5 L N - T
) e ' T
= T
o= i LTy — MoveRelstvebs
— u IChanlD

Horrttsep s e e

blﬂ?l“ [o C

= AT

Vetical step i

Pasmetes] | | [

SL{5 = MG Thstor
3 IChaniD -

H

. NI . e

_— ¥ element

= 1 M
. ..%: O] | o

s] e e |

- B b Estmared Time (sec)
Total # of Addresees "D Eﬁﬁl

Figure S7: (B) Control code 2/3

e Wiove row-calumnn
into the side names
=T

< lowsr W R o

s tis s e the scar)

[Miove Back to center of sddress just scanned]

amor out¥
GG S MGThotor 5|
T

oveHome)
& MG TMater r TChanlD
Mlovefzatatet | [

TChanlD
=

[Oid code

Figure S7: (C) Control code 3/3

After data is collected and saved, a second program is used to analyze the data. First, a
file path has to be specified and the file parsed out into a resulting array of values. The code is
show in the two part picture below (Figure S8). From top half, left to right: file path and data
parsing, peak selecting, maximum height selection, smoothing function, and shoulder finding
methods. From bottom half, left to right: Lorentzian model for loop, matching the for of the main
peak to the Lorentzian by minimizing the standard deviation of the distances between the
Lorentzian and the main peak, flow data out to comparison graphs.

Figure S8: Data analysis program.

The resulting front-end control is depicted in Figure S9. This can either be used as a
single file observation of the peak or written as a sub-program for data analysis of a folder with
multiple files.

Window el EE
. fo- - - b . L 7 E~
; r Lor Back Misx

Scanl 0 time5000_180501105423 1 55M

pioto RN |

725 715 IS 7AW RS B A5

Figure S9: Conol panel of the analysis code.

In Figure S9, the left side are cutting and fitting graphs for visualization of what the code
is doing. Top left graph depicts the cut off relating to the interquartile range (green line). The
program searches around the specified peak and will fit data to the Lorentzian if, and only if, the
values are above the interquartile range. Once the interquartile range is crossed the code will end
its search. The bottom left graph will the print out the corresponding cut peak (white line) and its
derivative (red line).

On the right side of the two large graphs of Figure S9 are a matching Lorentzian to the
cut graph and the resulting data. The upper right graph prints out the best fit Lorentzian to the cut
data. This is done by a Procrustes method of matching corresponding x and y values of two
graphs and minimizing the standard deviation between the two. Once the Lorentzian form is
found it is then scaled to the cut data by the ratio of the main peak amplitudes. Once this is done
the Lorentzian is cut and printed out on the lower right graph in red. The green line is the
resulting subtraction, and the white line is the smoothed data. %0ne may notice that the green
line in the bottom right graph has a bump in it. This is due to the fitting of a continuous line to a
discrete data set and subtracting out the corresponding values. This implies that there is a small
shift between the data and the fit, but since the bump is consistently below the two side peaks of
Raman spectroscopy the approximation is acceptable. After the Lorentzian is found the max
value for the peak is the resultant intensity.

3. Acquisition

To acquire the image data, LabView was coupled with SpectraWiz code (provided by
StellarNet, Inc. — the manufacturer of Raman Spectrometer). SpectraWiz came with a pre-coded
program. The majority of that program was left unchanged, but it was necessary to change some
of that code in order to achieve the desired data. The following will be a description and
explanation of what was changed in the code.

Below, in Figure S11, is the extended code for the imaging program supplied by
SpectraWiz with the modifications for the automated Raman setup. It starts off by initiating the
starting files for the SpectraWiz device and passes them into a while loop for imaging purposes.
Upon start up the SpectraWiz program first initiates the user interface and then either creates or
retrieves spectrometer coefficients and application parameters. Once this is done part of the code
is passed to a "Daemon Loop™" that will cancel the program at any point in time and also pass the
code to imaging parameters, like dwell time. After that the code is then passed into a conditional
loop that will either scan, process data (save and write to file), busy (imaging), and exit.

tA v Operating Parameters |

-Iﬁ.ZS L

Tl Em —IR
¥ 13 T 32 ke

% i

TF TF

Figure S10: Integration time loop

Modifications were made at getting the dwell time and inside of the conditional loop. The
first modification was made to link the wait time of the stage control program to the SpectraWiz
program. The wait time control parameter was connected to the SpectraWiz program and then
wired up to the starting parameters. In Figure S10, the wait time is called "Integration Time"and
is measures in milliseconds. When unbundling the SpectraWiz control parameters, the time the
program collects data for is first and therefor at the top of the bundle. Here, the integration time

from the stage control was passed into the time auto-filled by SpectraWiz, which allows for the
user to control the scanning dwell time.

[Fame of Sp.

tra i inftalzation fie]

ocation of Spectraa

[EStliarhvet v-Spectaviz-ich sgu

ECiprogrem

[EStelartict Lv-Spectr

=)

[T manege the USa dences:

) Checkif sw.ni's USE section comespands to what
[Winciows has i it registry for nstalled Stellarblet devices.
(21 they carrespand, let ‘er rip

) ¥ not, remove the USE section from susini to force the
L8110 reciscover the devices currently connected. Prompt
e user to restart LabVIEW - ths ensuses the il is fully
lanlaaded,

4 ¥ the S8 section is found ta have been already removed,

[assume the user has abided by this reguest and cantinue.

Unloads the dil an emply of otherwse bogus path 1o th]
= -l nit used to load the i the firs place. Requires the whele structure be
lembesdded in s WHILE laop, state-mschin sbyle. Note that s nen-eror emor-chuster needs to be.

ired 1o the 48 on unlosd. The error clusterfrom the di's emor indicator must be wired %0 some-
ftning (even i the wire just tenminates on 3 wall o avoid 2 pop-up alerting the user 1o the bogus-
lpath ca

IMare info:
bl

[0 testing. it s found that the il may not be reliably unloaded by this trick however it 15
reiably unlcaded # LabVIEW is subsequently exited and restarted. (Thi
le Spectraliiz from the user's perspective.) O the other hand,
fthe ll being unreliobly unloaded even f LabVIEW i exited.

use thiz rick may result in

[Thisis anly an i while LIOVIEW
i oaded. Hence the b
Finey
aster » occumred. y
b Lat and restar it to be sure.
m

[Locstion of imadisnce com

Ci\program filey

B

I

Figure S11: (A) Modified SpectraWiz code 1/3.

True -]

‘Tometer Coefficients file] 1 @m
ornies Coerizsn] i P
® 2
hannel Cocffs & e | - T B |
Phasimon|

‘Cperating Parameters il
[E]
Cursoring .o bor i
n
|

Jperating
perating o » A Dperating Parameters)
[~

Integration Tame (ms)

! 5 ’ —
] e
2l

B Mode Selection

£nsation files (SWn.ich)]
Stellartiet Spe:

. [m—
=" Talee
etch (or create) spectrometer coefficients and
pplication operstion persmeters. Store in ML files: g
tigns in parallel for -
(i
o,

[Urinitisiaations. Do il these first, then commence execution]
Isliohons, Dol these fre,then [t HpAab Conirol [}

—
Bl vscale Scalerr]

[(2N Crete and Log o T Sees Log e
[Eeperieies]

]

Tloap implements 1-based ‘mdesing” for the
lehaninel parameters (so channels are labeled 1..H)
land provides s gickal stop button that terminates
|execution aftes each state in the state machine.

Figure S11: (B) Modified SpectraWiz code 2/3.

"Process Data", Defalilt <}

[Chartvien]

Appends SnapShot to Graphic Display for Comparison Appends SnapShot te Graphic Display for Comparison

False ~ {u| False_~}| @

[vi ;’ =
iew Snapshet] View Data File[[TE8-

P e ML,

s e <p]

& Snapshot
P

True]

[7%.2f] #AMode Selection ¥
[z

= EHEE g th

e & B

T [CreateFiflaPath =3

. | LIS = k]

J

——
43> @ Global Stop

£
'I: [halt daemon on error|

Figure S11: (C) Modified SpectraWiz code 3/3.

After the integration time the code is passed into the conditional loop. Here, the first step
is to scan (Figure S12).

e b
Bt i
f% ?“UEEWS‘*I“ 5
Gpen ot 71 [y o gﬁ}mtmm,

Figure S12: Scan conditional loop

This code was relatively unchanged except for the dark spectra, which was running into
complications with communicating between the in-lab made control and the SpecraWiz code.
The patch done was to pass the Dark Input from the stage control side into the local variable for
the dark spectra of the SpectraWiz program. The use of Boolean true/false loops was employed
to keep track of what the original code was when comparing to the patched code. If the two
Boolean loops are True-True then it is SpectraWiz's original code. If the Boolean loops are
False-True then it is the patched code. Patch work for the dark spectra is shown in Figure S13,
which is the right most loop structure in Figure S12.

Populates Dark Arrayﬂ

H Ere: Tru E'TFU e I c th 0 ri g I na | co d & G ;.-;.ﬂ;.ﬂ.'.ﬂ;.-;.ﬂ;.ﬂ.'.ﬂ;.-;.ﬂ;.ﬂ.'.ﬂ;.-;.-;.ﬂ.'.ﬂ;.-;.ﬂ;.ﬂ;.ﬂ;.-n:';.-;.-;.ﬂ;.ﬂ;.ﬂ;.ﬂ;.ﬂ;.ﬂ;.ﬂ;.ﬂ;.ﬂ;.ﬂ.'.ﬂ;.ﬂ,
-wﬁ'._lze Dark

False-False is my patched code i

Populates Dark Array
HEFE: Tru E'TFUE iS thE Driginal CDI:IE Eo A A A A A A A :
False-False is my patched code i

— (after scan)

Figure S13: Modified code to work with user controlled dark spectra. Top is the original code
and bottom is the code with modifications.

Lastly, when the conditional loop switches to process data, the SpectraWiz code worked
perfectly except when trying to name and save files. Because of this a conditional statement was
made to check if it was possible to image with and without naming the file. This is the first
conditional loop in Figure S14. If the outer loop is false then auto-naming is off and the code
should default to the SpectraWiz code. However, since this conditional loop is wired to be true if
an image was taken, then auto-naming is on unless one changes the code. Next, is a for loop to
drop the array down and a level to work of complexity in order to work with the data. This is
then fed into an other conditional loop. Here, the data is given a name based on what address and
inner scan number of the program is at, Name path, and saves it to a file with that name, File
Path and Create File. The place the data is saved has to be chosen before running the data
acquisition so the files can be saved to a folder, this is the Folder Path input. This process is
carried out in this inner conditional loop in Figure S14.

Alode Selection Pl

path

Figure S14: Image to File code.

Additionally, the "Busy" condition will only execute if the program is taking an image
and will default to the last command before the program was switch over to the busy condition.
The "Exit" condition happens after all other conditions are not met and the stop button is pressed.
This will result in closing the program.

