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Abstract: Conventional photovoltaic (PV) grid-connected systems consist of a boost converter cas-
caded with an inverter, resulting in poor efficiency due to performing energy processing twice. Many
pseudo DC-link inverters with single energy processing have been proposed to improve system
efficiency and simplify circuits. However, their output voltage gain is limited by the non-ideal
characteristics of the power diode, making them difficult to apply in high-output voltage applications.
This paper proposes combining a boost converter with magnetic coupling and a full-bridge unfolding
circuit to develop an inverter featuring high voltage-gain and high efficiency. According to the desired
instantaneous output voltage, the high-gain boost converter and the full-bridge unfolding circuit are
sequentially and respectively controlled by SPWM. A sinusoidal output voltage can be generated by
performing energy processing only once, effectively improving the conversion efficiency. Magnetic
coupling is adopted to increase the voltage gain of step-up, and the step-down function is realized by
the full-bridge unfolding circuit to reduce conduction loss. Finally, a 500 W prototype was fabricated
for the proposed high-gain inverter. The experimental results were used to verify the correctness of
the theoretical analysis and the feasibility of the circuit structure.

Keywords: high gain; high efficiency; inverter; magnetic coupling

1. Introduction

Recently, air pollution has become increasingly serious due to the high consumption
of fossil fuels. To reduce carbon dioxide emissions to mitigate global warming and climate
change, many researchers are committed to developing renewable energy sources such as
photovoltaic (PV), wind, hydro, geothermal and biogas [1–3]. Among them, PV energy
is attracting increasing attention, and is widely used around the world. There are three
types of PV power systems: grid-connected, stand-alone, and hybrid [4–6], in which grid-
connected systems are the most popular. The PV grid-connected system converts the direct
current (DC) of solar energy into alternating current (AC) and feeds it into the grid [7,8].

Due to the low voltage of the PV panels, a low-frequency transformer needs to be
added after the inverter in order to be connected with utility, as shown in Figure 1a. However,
the low-frequency transformer significantly increases the size and cost of this PV power
system. The transformer-less PV grid-connected system is the alternative structure, as shown
in Figure 1b. It uses a boost converter to step-up the PV voltage and then converts it to AC
power for connection with the utility [9,10]. The transformer-less structure has the advantages
of small size and low cost, but its efficiency is reduced because of multiple energy processing
stages.

Several single-stage inverters derived from boost or buck converters have been pro-
posed to improve the efficiency [11–13], but their application is limited by the need for
multiple input sources and the inability to cover a wide range of input voltage variations.
Therefore, many pseudo DC-Link inverters have been proposed to overcome these draw-
backs [14–18]. Figure 2 shows the block diagram of the pseudo DC-Link inverter, in which
a DC/DC converter with both step-up and step-down capabilities is used to generate a
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rectified sine wave with unipolarity, and an unfolding circuit is cascaded to switch the
polarity and to obtain a sinusoidal output voltage. Since the unfolding circuit switches
only with the frequency of utility line, a pseudo DC-link inverter that requires only one
energy processing can effectively improve conversion efficiency. However, the step-down
function is achieved by connecting an additional power switch in series, resulting in higher
conduction loss. In addition, the output voltage gain is limited because of the non-ideal
characteristics of the power diode, making it unusable for low input voltage or high output
voltage applications.
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the desired output voltage. This control method is called partial SPWM (P-SPWM), be-
cause the high-gain boost converter and the full-bridge unfolding circuit are sequentially 
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varies. Generally, the following features of the proposed inverter are: 
1. Because the high-gain boost converter and the full-bridge unfolding circuit perform 
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conversion efficiency. 
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3. The full-bridge unfolding circuit is used to realize the step-down function so that 
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Based on the above considerations, this paper proposes a high-gain and high-efficiency
inverter with magnetic coupling, the block diagram of which is shown in Figure 3. The pro-
posed inverter combines a high-gain boost converter with coupling inductor and a full-
bridge unfolding circuit. When the instantaneous output voltage is higher than the input
voltage, the high-gain boost converter is controlled by sinusoidal pulse-width modulation
(SPWM), and the full-bridge unfolding circuit is only used for switching the polarity of the
output voltage. When the instantaneous output voltage is lower than the input voltage,
the power switch of the high-gain boost converter remains in off state, and the full-bridge
unfolding circuit is controlled by SPWM to step down the input voltage to the desired
output voltage. This control method is called partial SPWM (P-SPWM), because the high-
gain boost converter and the full-bridge unfolding circuit are sequentially and respectively
controlled by high-frequency SPWM as the instantaneous output voltage varies. Generally,
the following features of the proposed inverter are:

1. Because the high-gain boost converter and the full-bridge unfolding circuit perform
high-frequency switching at different times, only one energy processing stage is
required to generate the sinusoidal output voltage, which can effectively improve the
conversion efficiency.

2. Magnetic coupling is adopted to increase the voltage gain of step-up so that the
proposed inverter can be operated with utility of high voltage [19,20].

3. The full-bridge unfolding circuit is used to realize the step-down function so that
additional series power switch is not required, which can reduce conduction losses.

4. The proposed inverter has both step-up and step-down capabilities, making it suitable
for applications with a wide range of input voltage variations.
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Figure 3. The grid-connected PV power system with the proposed high-efficiency inverter.

2. Circuit Configuration

Figure 4 shows the circuit configuration of the proposed high-gain inverter with
magnetic coupling, in which VDC is the input voltage, and vo(t) is the output voltage. In this
circuit, the first stage is a high-gain DC-DC boost converter that is controlled by P-SPWM
to generate a rectified sine wave with unipolarity. It is formed mainly by the power switch
SBo, the diode DBo, and the coupled inductor. The second stage is a full-bridge unfolding
circuit that is controlled by P-SPWM to accomplish step-down function and switches the
polarity of the rectified sine wave during step-up mode. The unfolding circuit is mainly
composed of the switches SBu1, SBu2, SBu3, and SBu4, and a low-pass filter formed by the
inductor Lf and the capacitor Cf.
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The proposed inverter can be operated in either step-up or step-down mode, depend-
ing on the levels of the input and output voltages. In step-down mode, the switch SBo
remains in off state, and the diode DBo remains in the on state. The switches SBu1 and SBu2
are controlled by high-frequency SPWM and switch complementarily. The switches SBu3
and SBu4 switch complementarily with line frequency. Additionally, the low-pass filter is
used to filter out the high-frequency components of the output voltage.

When the desired output voltage is higher than the input voltage, the proposed inverter
enters step-up mode. In this mode, the switch SBo switches with the high-frequency SPWM
control. The switches SBu1, SBu4 maintain conductance to transfer energy to the output side
during the positive half-cycle, and the switches SBu2, SBu3 maintain cut-off. In the negative
half-cycle, the roles of the switches SBu1, SBu4 and the switches SBu2, SBu3 are swapped so
that the output voltage polarity can be switched.

The high-gain DC-DC boost converter and the full-bridge unfolding circuit do not
perform high-frequency switching at the same time, which means that only one energy
processing stage is required to convert a low DC voltage into the required AC voltage.
Therefore, the conversion efficiency of the proposed inverter can be effectively improved.
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3. Operation Principles

In this section, the detailed operating principles of the proposed inverter are addressed;
the following assumptions are made to simplify the circuit analysis:

1. All circuit elements are ideal.
2. The circuit operates in steady state.
3. Inductor currents are continuous.
4. The dead time of power switches is extremely short and can be ignored.

Figure 5 presents the timing diagram of the proposed high-gain inverter within one
cycle of output voltage vo(t), where VM is the amplitude of vo(t), To is the period of vo(t), and
dBo(t), dBu1(t), and dBu3(t) are the duty ratios of switches SBo, SBu1, and SBu3. Additionally,
VGS,Bo(t), VGS,Bu1(t), VGS,Bu2(t), VGS,Bu3(t), and VGS,Bu4(t) are the conceptual gate-driving
signals of all power switches.
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The output voltage vo(t) is sinusoidal and can be divided into positive and negative
half-cycles. When the input voltage VDC is higher than the absolute value of the instanta-
neous output voltage vo(t), the inverter operates in step-down mode; otherwise, the inverter
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operates in step-up mode. The operation principles of the negative half-cycle are the same
as those of the positive half-cycle, except that the driving signals of switches SBu1 and
SBu2 are swapped and the driving signals of switches SBu3 and SBu4 are swapped. In the
following, the operation principles of the proposed inverter are illustrated with respect to
the positive half-cycle.

3.1. Step-Down Mode

During the positive half-cycle (0 < t < To/2), the switch SBu4 keeps turning on, and
the switch SBu3 keeps turning off. When the input voltage VDC is higher than the output
voltage vo(t), the inverter operates in step-down mode. In this mode, the switch SBo keeps
turning off, and its duty ratio dBo(t) is zero. The coupled inductors LP and LS are connected
in series as an input filter. The full-bridge unfolding circuit is controlled by unipolar SPWM.
The gate driving signals of the switches SBu1, SBu2 are complementary, and their duty ratios
can be expressed as follows:

dBu1(t) =
VM · sin ωt

VDC
, (1)

dBu2(t) = 1 − VM · sin ωt
VDC

, (2)

within one switching period, when Sbu1 is turned on, and SBu2 is turned off, the input
voltage VDC simultaneously charges the inductor Lf and provides the energy required for
the output load through the diode DBo. The equivalent circuit is shown in Figure 6a. When
SBu1 is turned off, and SBu2 is turned on, the inductor Lf releases energy to the output load.
The equivalent circuit is shown in Figure 6b.
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Moreover, during the negative half-cycle (To/2 < t < To), the switches SBu3 and SBu4
exchange their operation states, and the switch SBo keeps turning off. The input voltage
VDC charges the inductor Lf and provides energy to the output load when the switch SBu2
turns on, and the equivalent circuit is shown in Figure 7a. When the switch SBu2 is turned
off and the switch SBu1 is turned on, the inductor Lf releases energy to the output load.
Figure 7b shows the equivalent circuit.
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3.2. Step-Up Mode

When the instantaneous output voltage vo(t) is higher than the input voltage VDC, the
proposed inverter enters step-up mode. During the positive half-cycle (0 < t < To/2), the
switches SBu1 and SBu4 keep turning on, and the switches SBu2 and SBu3 keep turning off.
The switch SBo operates with high-frequency SPWM control. Figure 8 shows the current
waveforms of the coupled inductor operating in continuous current mode (CCM), in which
T is the switching period. At the initial time t = 0, the switch SBo turns on to force the diode
DBo to be off, and the capacitor Co provides energy for the output load. Figure 9a shows the
equivalent circuit of the switch SBo turning on.
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The voltage across the primary winding of the coupled inductor, vLP, is equal to the
input voltage VDC, and can be expressed as follows:

vLP= VDC= LP
diLP
dt

(3)

According to Equation (3), the amount of current change in the primary inductor LP
during the on state of the switch SBo can be expressed as

∆iLP(close) =
VDC · dBoT

LP
, (4)

where dBo is the duty ratio of SBo. In Figure 8, iLP(0+) is the initial value of the primary
inductor current, so the end value iLP(dBoT−) of the on state of the switch SBo can be
expressed as

iLP

(
dBoT−) = iLP(0+) +

VDC · dBoT
LP

, (5)

Assuming that the coupled inductor is an ideal element (coupling coefficient k = 1),
the mutual inductance M can be expressed as follows:

M =
√

LPLS, (6)
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In addition, if the turn ratio between primary and secondary windings is defined
as 1/N, the relationship between primary inductor LP and secondary inductor LS can be
expressed as follows:

LS = N2LP, (7)

Substituting Equation (7) into Equation (6) yields the following equation:

M = NLP, (8)

At the time t = dBoT−, the switch SBo turns off, and the diode DBo is forced into the on
state. The primary inductor LP is connected in series with the secondary inductor LS to
release energy. The coupled inductor and the input voltage VDC simultaneously transfer
energy to the output and charge the capacitor Co, as shown in Figure 9b. Since the primary
and the secondary inductor currents are equal, the primary inductor current iLP(dBoT+)
after switch SBo turns off can be determined by the law of energy conservation as follows:

iLP(dBoT+) = iLS(dBoT+) =
1

(1 + N)
× iLP(dBoT−), (9)

When the switch SBo is in the off state, the voltage across the coupled inductor can be
expressed as

vLP + vLS = (VDC − vo(t)) = (LP + LS + 2M)× diLP
dt

, (10)

Substituting Equations (7) and (8) into Equation (10), it can be simplified as follows:

(VDC − vo(t)) = (1 + N)2LP × diLP
dt

, (11)

During the time between dBoT and T, the inductor current decreases linearly due to
the negative voltage across the coupled inductor in Equation (11). The amount of inductor
current change during this time interval can be expressed as follows:

∆iLP(open) = ∆iLS(open) =
(VDC − vo(t)) · (1 − dBo)× T

(1 + N)2 × LP
, (12)

From Equations (9) and (12), the minimum current on the primary winding of the
coupled inductor iLP(T−) can be expressed as follows:

iLP(T−) = iLP(dBoT+) + ∆iLP(open) =
iLP(dBoT−)

(1 + N)
+

(VDC − vo(t)) · (1 − dBo)× T

(1 + N)2LP
, (13)

Substituting Equation (5) into Equation (13), the following equation is obtained:

iLP(T−) =
1

(1 + N)

[
iLP(0+) +

VDC · dBoT
LP

]
+

(VDC − vo(t))(1 − dBo)T

(1 + N)2LP
, (14)

At the time t = TS, the switch SBo1 turns on, and the primary inductor current can be
obtained by the law of energy conservation as follows:

iLP(T+) = (1 + N
)
× iLP(T−), (15)

In steady-state operation, since the current iLP(T+) is equal to iLP(0+), the output
voltage gain can be obtained by substituting Equation (15) into Equation (14) as follows:

vo(t)
VDC

=
1 + NdBo(t)
1 − dBo(t)

, (16)
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By expressing the output voltage vo(t) as VM·sinωt, the duty ratio of the switch SBo in
step-up mode can be obtained as follows:

dBo(t) =
VM · sin ωt − VDC

VM · sin ωt + NVDC
, (17)

Moreover, when the proposed inverter operates in step-up mode during the negative
half-cycle (To/2 < t < To), the switches SBu1, SBu4 are in the off state, and the switches
SBu2, Su3 are in the on state. The switch SBo keeps switching with high frequency, and the
operation principles are the same as those for the positive half-cycle. The equivalent circuits
for when switch SBo is turning on and off are shown in Figure 10a,b, respectively.
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According to the analysis above, the status of all switching elements is listed in Table 1.
It can be clearly understood that the proposed inverter has only two power elements
switching with high frequency in both step-down and step-up modes; therefore, switching
losses can be reduced to improve the efficiency.

Table 1. Status of switching elements of the proposed high-gain inverter.

Element
Positive Half-Cycle (0 < t < To/2) Negative Half-Cycle (To/2 < t < To)

Step-Down Mode Step-Up Mode Step-Down Mode Step-Up Mode

SBu1 Switching with dBu1(t) Always on Switching with
(1 − dBu1(t)) Always off

SBu2
Switching with

(1 − dBu1(t)) Always off Switching with dBu1(t) Always on

SBu3 Always off Always off Always on Always on
SBu4 Always on Always on Always off Always off
SBo Always off Switching with dBo(t) Always off Switching with dBo(t)

DBo Always on Switching with
(1 − dBo(t)) Always on Switching with

(1 − dBo(t))

4. Design Considerations

To explain how to determine the component parameters, the design considerations of
the coupled inductor, the semiconductor components, and the output filter are addressed
in this section.

4.1. Boundary Condition of the Coupled Inductor

If the coupled inductor operates in boundary conduction mode (BCM), the minimum
current on the primary side iLP(T−), as shown in Figure 8, will reach zero just before the
switch SBo enters the next switching cycle. In BCM, the average inductor current ILB within
one high-frequency cycle can be calculated as follows:

ILB =
1
2

∆iLP(close)×dBo +
1
2

∆iLP(open)×(1 − dBo) (18)
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The amount of current increase and decrease on the primary winding in BCM have
the following relationship:

∆iLP(open) =
∆iLP(close)

(1 + N)
(19)

Substituting Equation (19) into Equation (18) gives

ILB =
∆iLP(close) × (1 + Nd Bo

)
2(1 + N)

(20)

Substituting Equation (4) into Equation (20) yields

ILB =
VDC × dBoT × (1 + Nd Bo)

2LP(1 + N)
(21)

Since the average current ILB is equal to the instantaneous input current, the boundary
condition Io(B) of the instantaneous output current can be obtained from Equations (16) and
(21), and the relationship of power balance as follows:

Io(B) =
VDC × dBoT × (1 − dBo)

2LP(1 + N)
(22)

When the instantaneous output current io(t) is equal to Io(B), the proposed inverter
operates in BCM, and the boundary inductance of the primary winding LP(B) can be
obtained as follows:

LP(B) =
VDC × dBoT × (1 − dBo)

2 × io(t)× (1 + N)
(23)

4.2. Voltage Stresses of the Power Components

When the switch SBo turns off in step-up mode, as shown in Figure 9b, the maximum
voltage stress on SBo occurs at the peak output voltage, and can be expressed as follows:

Vds, Bo(Max)= VDC +
VM − VDC

1 + N
(24)

When the switch SBo turns on, the diode DBo is forced to turn off, as shown in Figure 9a.
The maximum voltage stress on DBo also occurs at the peak output voltage, and can be
expressed as follows:

VD−Bo(Max)= NVDC+VM, (25)

The maximum voltage stress on both the capacitor Co and the capacitor Cf is the peak
output voltage VM, and can be expressed as follows:

VCo(Max)= VC f (Max)= VM, (26)

According to Figures 9 and 10, the voltage stresses on the switches SBu1, SBu2, SBu3
and SBu4 are equal to the voltage across the capacitor Co. Therefore, the maximum voltage
stresses on these four switches of the unfolding circuit can expressed as follows:

Vds, Bu1(Max)= Vds, Bu2(Max)= Vds, Bu3(Max)= Vds, Bu4(Max)= VM. (27)

4.3. Current Stresses of the Power Components

When the inverter operates in step-up mode and the switch SBo turns on, the current in
the primary winding of the coupled inductor rises. When the output voltage vo reaches the
peak VM, the current stress on the primary winding reaches its maximum, as indicated below:

ILP(Max) =
VM (1 + Nd Bo)

R(1 − dBo)
+

VDCdBoT
LP

(28)
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When the switch SBo turns off, the diode DBo is forward biased. The primary and
secondary windings are connected in series to the discharge, so the maximum current stress
of the secondary winding can be known from Equations (9) and (28), as follows:

ILS(Max)= ILP(Max)×
1

(1 + N)
=

[
VM (1 + Nd Bo)

R(1 − dBo)
+

VDCdBoT
LP

]
× 1

(1 + N)
(29)

In step-up mode, the maximum current stress on the switch SBo1 is the same as that of
the primary winding, expressed as follows:

Ids, Bo(Max)= ILP(Max) =
VM (1 + Nd Bo)

R(1 − dBo)
+

VDCdBoT
LP

(30)

Additionally, when the diode DBo is conducting, its maximum current stress is the
same as that of the secondary winding, expressed as follows:

IDBo(Max)= ILS(Max) =

[
VM (1 + Nd Bo)

R(1 − dBo)
+

VDCdBoT
LP

]
× 1

(1 + N)
(31)

Assuming that the output high-frequency current ripple can be completely filtered out
and ignored, the current stresses of the switches SBu1, SBu2, SBu3, SBu4, and the inductor LS
are the same as the output current, and their maximum values can be expressed as follows:

Ids, Bu1(Max)= Ids, Bu2(Max)= Ids, Bu3(Max)= Ids, Bu4(Max)= IL f (Max) =
VM

R
(32)

4.4. Selection of the Output Filter

When the converter operates in step-down mode, the full-bridge unfolding circuit
is controlled by SPWM, and the inductor Lf is used for energy storage. The boundary
inductance of Lf can be expressed as follows:

L f (B) =
R × (1 − dBu1)T

2
(33)

The inverter can operate in the CCM of step-down mode by selecting the inductance
of Lf to be greater than the boundary inductance Lf(B).

In addition, the inductor Lf and the capacitor Cf are used as a low-pass filter in step-up
mode, and its cut-off frequency fc can be expressed as:

fc =
1

2π
√

L f C f

(34)

Once the inductance of Lf is determined, the capacitance of Cf can be designed on the
basis of Equation (34) according to the desired cut-off frequency.

5. Experimental Results

To verify the feasibility of the proposed high-gain inverter, an experimental prototype
was built according to the electrical specifications listed in Table 2. The prototype was
tested using input voltages between 100 V and 200 V, in order to verify that the proposed
inverter is suitable for PV panels with wide-range voltage variations. Additionally, the
output voltage was selected as 220 Vrms in order to prove the high boosting capacity of the
proposed inverter.
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Table 2. Electrical specifications of the proposed high-gain inverter.

Electrical Specifications

Input voltage, VDC 100–200 (V)
Output voltage, vo 220 (Vrms)
Line frequency, fo 60 (Hz)
Output power, Po 500 (W)

Switching frequency, f 20 (kHz)
Switching period, T 50 (µs)

On the basis of the output voltage of 220 Vrms and the output power of 500 W, the
equivalent load resistance (R) can be calculated as being 96.8 Ω. By selecting the BCM of
step-down mode at an instantaneous output current io(t) of 0.6 A and an input voltage
VDC of 100 V, the boundary inductance of Lf can be calculated as being about 1 mH using
Equation (33). By selecting a cut-off frequency fc of 5 kHz, the capacitance of Cf can be obtained
using Equation (34) as 1 µF.

To ensure that the maximum duty ratio is below 0.5, the turn ratio N is chosen as 1.5.
At the input voltage of 100 V and the peak output voltage of 312 V, the maximum duty ratio
can be calculated using Equation (17) as being around 0.46. Additionally, the condition of
peak output current and 40% load is selected to operate in BCM, thus avoiding excessive
values of primary inductance and the saturation of the magnetic core. From Equation (23),
the boundary inductance of the primary winding LP(B) can be obtained as being about
193 µH. In the actual design, 200 µH is used as the primary inductance, and the secondary
inductance of 450 µH can be obtained from Equation (7). Based on the previous design
and calculations, the selected component parameters of the experimental prototype are
summarized in Table 3.

Table 3. Component parameters of the proposed high-gain inverter.

Component Parameters

MOSEET, SBo SPW47N60C3 (650 V/47 A)
MOSEETs, SBu1, SBu2, SBu3 and SBu4 IRFP460 (500 V/20 A)

Diode, DBo C4D10120A (1200 V/14 A)
Turn Ratio, N 1.5

Primary Inductance, LP 200 µH
Secondary Inductance, LS 450 µH

Capacitor, Co 1 µF
Inductor, Lf 1 mH

Capacitor, Cf 1 µF

Figure 11 shows the measured waveforms of the output voltage vo(t) and the output
current io(t) under the condition of 100 V input voltage and 500 W output power. It can
be seen that the output voltage and current are both near-ideal sinusoidal waves with low
distortion, verifying that the proposed circuit is indeed capable of converting DC input to
AC output.
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Figure 12 shows the measured waveforms of the gate-driving signals of the switches
SBo, SBu1 and SBu2 under the condition of 100 V input voltage and 500 W output power.
When the absolute output voltage |vo(t)| is lower than 100 V, the proposed inverter
operates in step-down mode. The switches SBu1 and SBu2 switch with high frequency,
and the switch SBo remains in the off state. Conversely, the proposed inverter operates in
step-up mode. The switch SBo is switching with high frequency, and the switches SBu1 and
SBu2 perform low-frequency switching only to switch the polarity of output voltage.
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Figure 13 shows the measured waveforms of the currents and the voltages of the
coupled inductor. From Figure 13a, the coupled inductor functions as a filter in step-down
mode, so that the voltages vLP and vLS are almost zero. When the inverter operates in
step-up mode, the voltages vLP and vLS vary with high-frequency switching of the switch
SBo. Figure 13b shows the zoomed-in waveforms at the peak of the output voltage vo(t).
The inductor current iLP is operated in CCM, verifying previous theoretical calculations
and parametric design. Additionally, the inductor currents iLP and iLS are equal during the
switch SBo turning off, because the primary and secondary inductors discharge in series.
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and vLS at 100 V input voltage, 500 W output load and (a) low-frequency line cycle (vLP, vLS: 200
V/div; iLP, iLS: 10 A/div; time: 5 ms/div); (b) high-frequency switching cycle (vLP, vLS: 200 V/div;
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To verify that the proposed inverter is suitable for a wide range of input voltages, the
input voltage is increased to 200 V for testing. Figure 14 shows he measured waveforms
of the output voltage vo(t) and the output current io(t) under the condition of 200 V input
voltage and 500 W output power. Both the output voltage and current can be maintained
in low-distortion sine waves, which proves that the proposed inverter is suitable for a
wide range of input voltages. The gate-driving signals at 200 V input voltage are shown in
Figure 15. The control strategy is similar to that at 100 V input. Due to the higher input



Micromachines 2022, 13, 1568 13 of 16

voltage, the time interval becomes longer for the step-down mode and shorter for the
step-up mode.
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Figure 16 presents the measured waveforms of the currents and the voltages of the
coupled inductor. As shown in Figure 16a, the coupled inductor is still used as a filter in
step-down mode, and the inductor voltages are almost zero. The waveforms are zoomed-in
at the peak of the output voltage vo(t) and shown in Figure 13b. Due to the higher input
voltage, the duty ratio of the switch SBo is reduced, and the charging time of the primary
inductor is shorter. During the switch SBo turning off, the inductor currents iLP and iLS are
still the same, proving that the primary and secondary inductors are discharging in series
to increase voltage gain.
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vLP and vLS at 200 V input voltage, 500 W output load and (a) low-frequency line cycle (vLP, vLS:
200 V/div; iLP: 10 A/div; iLS: 5 A/div; time: 5 ms/div); (b) high-frequency switching cycle (vLP, vLS:
200 V/div; iLP: 10 A/div; iLS: 5 A/div; time: 20 µs/div).
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The total harmonic distortion (T.H.D.) and odd-order harmonics of the output voltage
at full load are measured and listed in Table 4. All measured harmonics comply with
the standard of EN6100-3-2 Class C. The efficiency curves of the proposed inverter are
illustrated in Figure 17. As can be seen, the conversion efficiencies reach up to 96.1% at 200V
input voltage and up to 94.2% at 100V input voltage, verifying that the proposed inverter
can indeed achieve high efficiency. Additionally, Figure 18 shows a photograph of the pro-
totype hardware used for the experimental measurements, in which the dsPIC33FJ16GS504
development board is used to generate the P-SPWM driving signals, and a wire-wound
resistor is used as a testing load.

Table 4. The total harmonic distortion and odd-order harmonics of the output voltages.

Harmonic 100 V 200 V

T.H.D. 1.73% 1.13%
3rd Harmonic 1.57% 0.87%
5th Harmonic 0.36% 0.29%
7th Harmonic 0.24% 0.33%
9th Harmonic 0.11% 0.17%

11th Harmonic 0.07% 0.12%
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To further verify that the proposed inverter has the ability to adjust with utility line
voltage fluctuations, Figure 19 shows the experimental waveforms at 230 Vrms output and
100 V input. It can be seen that the output voltage is still a near-ideal sinusoidal wave
with low distortions. Its measured T.H.D. is 1.75%, which is slightly higher than that of
220 Vrms output.
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6. Conclusions

A high-gain and high-efficiency inverter with magnetic coupling was successfully
developed and implemented. The digital signal processor dsPIC33FJ16GS504 was used
to generate the gate-driving signals of the proposed inverter, which can simplify the
complexity of the control circuit and improve the reliability. As the instantaneous output
voltage changes, the proposed circuit sequentially operates in step-down and step-up
modes. In each operation mode, only one energy processing is required to obtain the
desired output voltage. In addition, to significantly reduce switching losses, conversion
efficiency can be effectively improved because part of the energy is delivered directly to the
output load. Additionally, by adding a coupled inductor to the boost circuit, the voltage
gain of the proposed inverter can be increased, so that it is suitable for applications with
low input voltage.
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