
����������
�������

Citation: Camps, O.; Al Chawa,

M.M.; Stavrinides, S.G.; Picos, R.

Stochastic Computing Emulation of

Memristor Cellular Nonlinear

Networks. Micromachines 2022, 13, 67.

https://doi.org/10.3390/mi13010067

Received: 4 November 2021

Accepted: 27 December 2021

Published: 31 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Stochastic Computing Emulation of Memristor Cellular
Nonlinear Networks

Oscar Camps 1,† , Mohamad Moner Al Chawa 2,† , Stavros G. Stavrinides 3,† and Rodrigo Picos 1,4,*

1 Industrial Engineering and Construction Department, University of Balearic Islands,
07122 Palma Mallorca, Spain; oscar.camps@uib.es

2 Institute of Circuits and Systems, Technical University of Dresden, 01062 Dresden, Germany;
mohamad_moner.al_chawa@tu-dresden.de

3 School of Science and Technology, International Hellenic University, 57006 Thessaloniki, Greece;
s.stavrinides@ihu.edu.gr

4 Health Institute of the Balearic Islands (IDISBA), 07120 Palma Mallorca, Spain
* Correspondence: rodrigo.picos@uib.es
† These authors contributed equally to this work.

Abstract: Cellular Nonlinear Networks (CNN) are a concept introduced in 1988 by Leon Chua
and Lin Yang as a bio-inspired architecture capable of massively parallel computation. Since then,
CNN have been enhanced by incorporating designs that incorporate memristors to profit from
their processing and memory capabilities. In addition, Stochastic Computing (SC) can be used to
optimize the quantity of required processing elements; thus it provides a lightweight approximate
computing framework, quite accurate and effective, however. In this work, we propose utilization of
SC in designing and implementing a memristor-based CNN. As a proof of the proposed concept, an
example of application is presented. This application combines Matlab and a FPGA in order to create
the CNN. The implemented CNN was then used to perform three different real-time applications
on a 512 × 512 gray-scale and a 768 × 512 color image: storage of the image, edge detection, and
image sharpening. It has to be pointed out that the same CNN was used for the three different tasks,
with the sole change of some programmable parameters. Results show an excellent capability with
significant accompanying advantages, such as the low number of needed elements further allowing
for a low cost FPGA-based system implementation, something confirming the system’s capacity for
real time operation.

Keywords: cellular nonlinear networks; stochastic logic; real time processing; image processing;
memristors

1. Introduction

Cellular Nonlinear Networks (CNN) were introduced by Chua and Yang [1] in 1988,
and can be described as a mixture between Cellular Networks and Artificial Neural Net-
works that can implement a parallel processing universal computer machine. This bio-
inspired architecture is able to process in parallel massive amounts of data, thus being
specially suitable for image processing, with single ASIC CMOS prototypes already imple-
mented being able to deal with rates up to 3× 104 frames per second [2].

Memristors have been proposed as a device that may help to implement this kind of
circuit [3,4], but experimental implementations are still lacking. These devices, memristors,
are passive, two-pole elements also introduced by Chua in 1971 [5], as a theoretically
possible basic circuit element. In 2008, Strukov et al. [6] realized their ReRAM devices
were, actually, a kind of memristor. There have been many groups dedicated to creating
either devices or emulators, ever since. One of the more classical mathematical memristor
descriptions including memconductance G can be written as:

i(t) = G(Q) · v(t) (1)

Micromachines 2022, 13, 67. https://doi.org/10.3390/mi13010067 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13010067
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-0068-3422
https://orcid.org/0000-0001-8886-4708
https://orcid.org/0000-0001-8484-1402
https://orcid.org/0000-0002-9167-6422
https://doi.org/10.3390/mi13010067
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13010067?type=check_update&version=1

Micromachines 2022, 13, 67 2 of 18

where Q (also known as charge) is the integral over time of the current i:

Q(t) =
∫ t

i(t)dt (2)

Notice that the requirement for the device to be a memristor is mapped to the require-
ment for the characteristics of the device to be dependent on some internal variables, as
will be further discussed below, in addition to some fingerprints [7,8].

One of the main problems for using memristors into circuits is that they are not
yet readily available for implementation in usual technologies. In this paper we use
Stochastic Computing to implement a fully digital realization of a CNN using memristors.
To do so, we have used a memristor emulator presented in [9], as well as a Stochastic
Computing implementation of a CNN using it, as in our previous work [10], where a
simpler implementation was presented operating exclusively on gray images. The notion
of Stochastic Computing (SC) was introduced by Von Neumann in the 1950s [11] as a
theoretical framework to explain how (relatively) accurate results could be obtained using
imprecise systems. In this framework, time and accuracy are balanced in a trade-off. It was
later popularized by Gaines [12], and it has found a niche in approximate computing. There
are many examples in the literature for diverse applications, such as data compression [13],
chaotic equation calculation [14], data mining [15], FFT computation [16], control [17],
image processing algorithms [18,19], or A/D conversion [20]. As of today, it seems probable
that it may conquer an important share in edge computing applications, since it can decrease
energy consumption and circuit complexity and area overhead for low numbers of bits.
However, this comes at a price, since the time required to perform the operation also
increases exponentially with the number of bits. This, in turn, may increase the total
energy consumption when the number of bits exceeds 16–17 [21,22]. There are, however,
techniques that allow this problem to be alleviated, and make this competitive even for
higher bit-numbers [22].

Within this paradigm, strings of 2N binary digits bi ∈ [0, 1] are used to represent real
numbers p. These strings of digits are called stochastic computing numbers (SCN) and their
mean value corresponds to the number p represented [23]. Thus, the absolute value ranges
for any implementation of SCN must fall within [0, 1]. There are two distinct possibilities
to map a real number to SCN: the first one is from the domain [0 . . . 1], and the second one
corresponds to [−1 . . . 1].

Once the selected mapping has been chosen, the different SCN operations can be
easily implemented, requiring only the use of fundamental logic gates or very simple
digital circuits. As an example, in the case of the [0 . . . 1] domain, multiplication of SCNs
are implemented using an AND gate; in the second case, the [−1 . . . 1] domain, this same
operation demands using a XNOR gate.

The full system we have implemented is depicted in Figure 1. The first part is processed
in the computer, where the images are read using a Matlab script and converted to gray
scale if needed. The resulting image is then sent to the FPGA board, which is used
as an accelerator and connected using the FPGA-in-the-loop methodology that allows to
integrate it in a seamless way. The FPGA performs the processing using a massively parallel
implementation of the proposed Stochastic Memristive Cellular Nonlinear Network, and
the result is then read back into the computer and represented to the user, along with the
entropy of the image and the rms error if needed.

The paper is structured as follows: after this introduction, the basics of memristors and
Cellular Nonlinear Networks are presented in Section 2, which is being used in Section 3
to implement the basic CNN cell in Stochastic Computing. Section 4 presents the results
obtained using three different pictures (two gray, one color) with three different sets of
parameters. These three sets of parameters allow the CNN to perform three different
operations on the images: storing, edge detection, and image improvement. Finally,
Section 5 concludes the paper.

Micromachines 2022, 13, 67 3 of 18

Figure 1. Conceptual depiction of the system, showing the tasks assigned to Matlab and those
performed by the FPGA. The FPGA and Matlab are used jointly by using the FPGA-in-the-loop tool
from Matlab, where the VHDL code is automatically generated, uploaded, and integrated with the
main script at the computer.

2. Memristive Cellular Nonlinear Networks
2.1. Memristors and Memristive Systems Modeling

Among the possible theoretical descriptions of memristive systems, Corinto et al.
present in [24] a very complete framework to study memristors and, in general, systems
that may present memristive behavior. They propose using both the classical description
using voltage and current, but they also discuss the flux–charge (ϕ–q) approach.

The memristive systems can be classified according to how far they are from ideality.
Following the taxonomy proposed in [7], there are three distinct possibilities: the ideal,
the generic, and the extended memristor. This extended categorization was a theory
requirement, needed to cover the description of pinched, hysteretic behaviors found in
numerous new various elements.

The most general class of memristors are the extended memristors. The memristors
belonging to this class are described by extra internal state variables (in addition either to
current and voltage, or to ϕ and q). As an example, Equations (3) to (5) implement the case
of flux-controlled memristors:

i = G(ϕ, v, x) · v (3)

ẋ = gϕ(ϕ, v, x) (4)

ϕ̇ = v (5)

This way, an extended memristor has a memristance M represented by the nonlinear
memconductance G (or, more accurately, its inverse) in Equation (3), where ϕ is the flux,
and v is the voltage between the terminals of the memristive device. The extra variables are
grouped into the vector x, and they may comprise different physical magnitudes depending
on the specific memristive system; as examples, we can mention the radius of a conducting
filament, the internal temperature of the system, as well as other non-electrical variables
that may be used to describe the state of the memristor. These state variables x present
a dynamic behavior described by gϕ and Equation (4). As a side comment, it is worth
noticing that all the devices described as being memristors are indeed extended memristors.

When no parasitic effects are present, those extended memristors are better described
as generic memristors (or, simply, memristors), since function gϕ depends only on the
state variables x and ϕ. Ideal memristors, finally, are those corresponding to the original
definition [5], and can be considered in this framework as generic memristors with no state
variable dependence other than charge or flux.

As an example, let us consider the simplest memristor model that can be devised,
similar to those discussed in [24] or, for real devices, in [25–28]. In this case, the model of
an ideal memristor where the memresistance or the memconductance depends only on the
charge or the flux can be written as:

Micromachines 2022, 13, 67 4 of 18

G = G0

(
1 +

φ

φ0

)
(6)

where G0 is the unperturbed conductance, and φ0 includes the importance of the memristive
effect. Notice that for φ0 → ∞, the behavior tends to be similar to that of an ideal resistor.
The behavior of the device is represented in Figure 2, for G0 = 0.1 mS, φ0 = 10, and
three different frequencies. Notice how the device reproduces the two fingerprints of a
memristor [7,8]: it presents a pinched loop whose area tends to zero at high frequency
(green line, ‘x’ symbol).

Figure 2. Representation of the I-V characteristics of the memristor defined by Equations (1) and (6)
for G0 = 0.1 mS, φ0 = 10, and three different frequencies (ω(red �) < ω(blue o) < ω(green x)).

2.2. Cellular Nonlinear Networks

The system discussed in this paper, Cellular Nonlinear Network (CNNs) [1], is not
to be confounded with Convolutional Neural Networks (also CNN), even if they share
the same acronym. The CNNs discussed here represent a powerful massively parallel,
multivariate signal processing paradigm. In their most basic description, they are made of
independent processing units, called cells, where each cell has an input, an output which is
fed back as another input, and also feels the effect of the inputs and outputs of its nearest
neighbors. These effects are then processed internally into a state variable, and the output is
linearly dependent on the result of this processing, with a positive and negative saturation.

As an example of hardware implementation of a CNN, we find [2], where each
processing element typically accommodates additional data storage units, which allow the
CNNs to store the programming parameters at the cell level. As a result, these Universal
Machines (UMs) can be considered as one of the earliest examples of a non-von Neumann
computer. Unfortunately, these memory blocks need a large integrated circuit (IC) area to
be implemented, which increases significantly the size of each cell. As a consequence, the
spatial resolution is quite poor compared with simple image sensors, which is a common
problem that CNN-UMs and, as an inherited problem, arrays comprising sensor-processor
cells based upon them, suffer from.

Mathematically, the behavior of the i, j cell can be described by a differential equation as:

dxij

dt
=− xij + a0,0 f (xij) + zij + b00uij

+ ∑
k,i∈Ni,j ,k 6=i,l 6=j

ak−i,l−jykl

+ ∑
k,i∈Ni,j ,k 6=i,l 6=j

bk−i,l−jukl

(7)

Micromachines 2022, 13, 67 5 of 18

where xij is the state variable, uij and yij are the inputs and outputs, respectively, and aij and
bij are the feedback and feed-forward coefficients. The stability of the system can be controlled
by setting the value zij to an appropriate value [4], and is equivalent to a constant bias in
the electrical equivalent. Function f (x) is a nonlinear function, saturating to a minimum
and a maximum values (vmin and vmax). In this sense, it is similar to the output function of
a neuron. However, the most usual shape for it is a piecewise linear function, defined as:

f (v) =
1
2
(|v + vsat| − |v− vsat|) (8)

Equation (7) is usually rearranged as:

dxij

dt
=g(xij) + zij + b00uij

+ ∑
k,l∈Ni,j ,k 6=i,l 6=j

(
ak−i,l−jykl + bk−i,l−jukl

) (9)

g(xij) = −xij + a0,0 f (xij) (10)

Notice that, even if the sum is made over the whole set of integers, we usually restrict
ourselves to just the nearest neighbors. This Equation (10) can be implemented with a
single element thanks to the unique nonlinear behavior of memristors. Thanks to this
capability to process or store data within a common physical nanoscale medium, their
use in future CNN cell designs may allow to remove the burden of extra memory blocks
within each processing element, allowing the development of co-located sensor-processor
arrays with enormous high-resolution levels, specially suited for the Internet of Things
(IoT) industry.

Referring to the determination of the coefficients, some methods have been pub-
lished [29,30] for the traditional CNN, and, more recently, using the so-called Dynamic
Route Map (DRM) [3,4,31,32], to the first-order approximate model of each cell of a Mem-
ristor CNN (M-CNN). Such an approximation is depicted as a circuit in Figure 3, and the
evolution of the state variable (xij) is described by an equation equivalent to Equation (9):

dxij

dt
= k(xij)[θ(vx;i,j f p

+(xm;i,j)

+θ(−vx;i,j f p
−(xm;i,j)

] (11)

where i ∈ 1,. . . , M, j ∈ 1,. . . , N, θ() is the unit step function, vxi,j stands for the voltage
across the capacitor Cx, whereas xmi,j, and vmi,j ≡ vxi,j denote, respectively, the state and
voltage of memristor mx, whose current is described via the generalized Ohm’s law from
Equation (3): imi,j = G(xmi,j)vmi,j , with the memductance given by G(xmi,j) = x−1

mi,j
. The

non-linear function proposed in [32] to characterize the memristive CNNs are:

k(vxi,j) = −βvxi,j +
β− α

2
(
∣∣∣vxi,j + Vt

∣∣∣− ∣∣∣vxi,j −Vt

∣∣∣) (12)

with β > α ∈ <+, featuring units ΩV−1s−1, and Vt ∈ <+ denoting the minimum voltage
needed by the memristor for switching. In addition, there are two different window
functions, to ensure that the memristor stays in between the two possible states [xon, xo f f].
These two window functions can be written in a compact way [32] as:

f p
r (x) = 1−

(
ξ +

x− xon
xo f f − xon

)2p

(13)

Micromachines 2022, 13, 67 6 of 18

where ξ = −1 when r = “+” (the upper boundary), and ξ = 0 in the opposite case; p can
be any integer (p ∈ Z). In addition, the dynamical evolution of the voltage vxi,j of each cell
in system presented in Figure 3 is:

Cx
dvxi,j

dt
= −(1

R
+ G(xmi,j)) · vxi,j + a0,0 fout(vxi,j)

+ ibias + b0,0vinj,k

+ ∑
k,l∈[−1,1]

(
bk,lvini+k,j+l + ak,lvouti+k,k+l

) (14)

fout(v) =
Ryglin

2
(|v + vsat| − |v− vsat|) (15)

Notice the equivalence of Equation (14) with Equation (9): the last line of both equa-
tions is equivalent, while the first line of Equation (9) corresponds to the first two lines of
Equation (14). Thus, we can conclude that the circuit in Figure 3 accurately represents a
possible implementation of a CNN cell, and it is the circuit we will implement in the next
section as a SC module.

Figure 3. Schematics and Stochastic implementation of a CNN cell, the processing element in cell
C(i, j) (i ∈{1, . . . , M}, j ∈{1, . . . , N}). The other elements (resistor, memristor, and capacitor) present
the same values from cell to cell, i.e., Cxi,j = Cx, mxi,j = mx, and Ryi,j = Ry. Adapted from [3].

3. M-CNN Stochastic Computing
3.1. Stochastic Computing Basics

The SC approach adopts real number representation by strings of N random binary
numbers bi. The probability of “1” bits to appear within the bit-string is proportional to the
number to be operated [23]:

p =
1
N ∑

i
bi (16)

These strings are called Stochastic Computing Numbers (SCN) or Stochastic Encoded
Numbers (SEN). In this paper, we will opt for the second, using also the term Binary
Encoded Numbers (BEN) for those encoded as classical binary numbers. Notice that the
number of bits that can be encoded in a chain of length N is log2N, since the relevant
information is just the number of “1”s. There are two main ways to generate a map between
a SCN and real numbers: first, we can map the desired range of real numbers to the
real domain [0 . . . 1]; second, we can map them to the interval [−1 . . . 1]. Depending on

Micromachines 2022, 13, 67 7 of 18

which mapping is to be implemented, many different mathematical operations can then be
performed using simple logic gates or simple sequential circuits.

As an example, multiplication of SCN is performed using a simple AND gate when
using the [0 . . . 1] domain. Alternatively, considering the [−1 . . . 1] domain, the same
multiplicative operation requires the use of an XNOR gate, as shown in Figure 4a.

(a)

(b)

Figure 4. Basic implementation of basic operation in SC. (a) Basic implementation scheme of a
SC multiplier in the (0 . . . 1) range (AND gate, left) and in the (−1 . . . 1) range (XNOR gate, right).
(b) Basic implementation scheme of a SC adder using a multiplexer.

Since we cannot represent any SC number as a probability higher than one, the case
of addition becomes slightly more complex, since 1 + 1 = 2. Thus, the operation that
should be implemented is (x + y)/2, which would always return a maximum value of 1.
This operation is usually implemented using a multiplexer, as shown in Figure 4b, where
the p(0.5) indicates a signal with a probability of 50% of being ‘1’ or ‘0’. This necessary
input signal is generated using one of the bits generated in the RNG, so no additional
circuitry is needed. It is worth pointing out that this gate is the same in both the [0 . . . 1]
and the [−1 . . . 1] domains. Other more complex operations (division [17], square roots [17],
reversible gates [33], etc., . . .) are also discussed in the literature, although not presented in
this paper.

Another important point is the conversion from BEN to SEN. This is usually achieved
by using a scheme similar to that in Figure 5, where an N-bit random number is generated
by utilizing a random number generator (RNG) and compared to the value of the N-bit
BEN. If the output of the RNG is below the BEN, the converter’s output would be bit
“1”, and bit “0” otherwise. In the opposite operation, converting SEN back to its BEN
representation, the number of 1’s included in the signal needs to be calculated; something
that can be straightforwardly achieved by a simple counter.

It is apparent that the error in the approximation of the SEN to its actual value is equiv-
alent to the error provided by a random walk process of length n, and thus proportional to√

n, as it has been discussed in the literature [34]. Therefore, using N bits, we may consider
that all the noise caused by the process is included in the lowest N/2 bits. This way, the
noise figure NF for a signal of power Sp with noise power Np caused by the use of the
SEN is:

NF = 10log10

(
Sp

Np

)
= 10log10

(
2N

2N/2

)
≈ 3.01 N/2 dB (17)

Micromachines 2022, 13, 67 8 of 18

Figure 5. Basic implementation scheme of a Binary Encoded Number (BEN) to a Stochastic Encoded
Number (SEN), using a Random Number Generator (RNG).

Notice that for this equation we have considered the maximum possible amplitude for
the input signal. In order to consider the minimum amplitude over the noise, we consider
we are 1 bit over the noise (N/2 + 1). In this case, we obtain:

NF = 10log10

(
Sp

Np

)
= 10log10

(
2N/2+1

2N/2

)
≈ 3.01 dB (18)

Thus, the system is expected to have a NF between 3 dB and 3
√

N dB. This desired
NF would set the required number of bits, which is related to the sensitivity of the equation
system, on noise. Empirically, we have seen that linear equations allow for a low N, while
nonlinear systems call for higher values. Notice that a value of the NF = 20 dB calls for
N = 12 bits, while for N = 32 bits the provided noise figure NF = 54 dB.

3.2. Stochastic Computing Implementation of a Memristor Emulator

The described advantages of SC framework were used by a stochastic computing
implementation of a memristor emulator [9], which describes the memristor using Equa-
tion (6), and was written in the form of Equations (19)–(21), so that it could be implemented
in a discrete way. The mathematical operations Equations (19)–(21) were carried out by
simple digital gates. A simple way to model memristors is using a linear relation of the
charge Q with the memconductance G(Q), with an upper and a lower value, Gmax and
Gmin, correspondingly. Then according to this approach:

G1(Q) = G0 + G1 ·Q (19)

G2(Q) = min(Gmax, G1(Q)) (20)

G(Q) = max(Gmin, G2(Q)) (21)

It is apparent that now Stochastic Computing can be used to implement such a model
within a digital environment (an FPGA, or an ASIC). Other complex, physically based
models simulating memristive behavior in FPGAs can be found in the literature [35,36],
but they are very mathematically complex models, requiring a very large number of gates.

The emulator discussed above presents all the standard fingerprints of a memristor as
required by the theory [8]. This implementation appears as a block diagram in Figure 6,
where vx and GND are the SCN values of the positive and negative terminals of the
memristor, respectively, while the calculated current is represented by the stochastic value
iM. The SCN value of GND has to be represented by a probability of 0.5 for an “1”, since we
are mapping the interval [0 . . . 1] to an interval that includes negative and positive values.
In our case, we used a public version of the Mersenne twister algorithm, available from
GitHub [37].

Micromachines 2022, 13, 67 9 of 18

Figure 6. The Stochastic Computing memristor implementation. Inputs vx and GND are the SCN
values of the positive and negative inputs of the memristor, respectively, and iM is the calculated
SCN value of the current.

Rewriting Equations (19)–(21) to allow them to be implemented in discrete time
results in:

Q =
∫ t

i(t) ≈ ∆t ·∑
j

i(t = j · ∆t) (22)

where the integration step is ∆t. Using Equation (22), we can rewrite (19) as:

G1(Q) = G0 + G1 · ∆t ·∑
j

i(t = j · ∆t)S (23)

The adder needs to increase or decrease its output by a unit, depending on the inputs,
since i and GND are both SEN. An increasing is performed when vx = 1, while when
GND = 1 the output is reduced. A single constant is used to group M1 and ∆t, and the
max and min functions are built into the adder by establishing a maximum and a minimum
values. A SEN output is generated from the adder’s output by comparing it to a random
number spanning [0 . . . (2NB − 1)]. An AND gate is then used to obtain the current as per
Equation (1), as in Figure 6.

3.3. Stochastic Computing Implementation of a M-CNN

As discussed above, a very compact implementation of a single cell of a Cellular
Nonlinear Network can be performed as in Figure 3 [3]. The output voltage vy;i,j presents
a non-linear dependence on the internal voltage vx;i,j. The dynamic behavior of this vx is
governed by a differential equation:

dvx

dt
=

1
C

(
∑
i,j
(Bi,jii,j + Ai,joi,j)− iM

)
(24)

where ii are the input currents caused by the inputs of the nearest cells. The currents
oi correspond to the outputs of those cells, while the current iM is that flowing through
the memristor. As proposed in [3,4], we only consider the 8 closest neighbors. This way,
Stochastic Computing can be used to make an implementation of this equation. As an
initial step, we perform a first-order integration of (24):

∆vx =
∆t
C

(
∑

i
(Biii + Aioi)− iM

)
(25)

The above Equation (25) has been implemented in Figure 7 as a stochastic equivalent
circuit, where all data circulation correspond to 1-bit lines. Thus, implementation of
Equation (25) was performed with 16 adders each implemented using 1 OR gate with a
1-bit multiplexers, 2 multipliers implemented as AND gates, 1 inverter, and 1 accumulator.

Micromachines 2022, 13, 67 10 of 18

Additionally, a random number generator is also needed (note that it may be shared
between different cells) along with the memristor emulator previously presented.

Figure 7. Stochastic Computing Circuit implementation of the M-CNN processing element C(i, j) as
in Figure 3.

The speed of the system can be estimated with the length of the chain needed to imple-
ment the SCN representation of the numbers to be used. These numbers are determined
considering the input images. In our case, we are using both gray images and color images,
all of them downloaded from http://www.hpca.ual.es/~vruiz/images (accessed on 20 June
2021). The gray images use a 8-bit single plane to store it, while the color images use three
different 8-bit planes. Thus, at least 8 bits need to be recovered faithfully. As discussed
above [34], the use of 14 bits corresponds to a chain length of 214 = 16,384 bits and can
represent values with an error confined in the last 6 bits, with more than a 95% probability.
Following this reasoning, we choose these 14 bits for both the length of the chain and the
accumulators.

4. Image Processing Results

The CNN described above was simulated using Matlab, with the circuit parameters
equivalent to those appearing in Table 1. Parameter values have been chosen to be similar
to those proposed in [9], to optimize the emulator behavior. Another option would have
been using the process described in [3,32] or [38], but then scaling of the values was
differing significantly to allow the emulator performing efficiently. The FPGA-in-the-loop
methodology, as shown in Figure 1, was implemented to speed up the simulation, using an
Arria V development kit. This FPGA system was connected to the computer running the
Matlab code via a cabled network.

http://www.hpca.ual.es/~vruiz/images

Micromachines 2022, 13, 67 11 of 18

Table 1. Parameter values for the elements of the circuit in Figure 3, where the memristor is defined
by Equation (1).

Parameter Value

R 100 kΩ

C 50 µF

G0 100 kΩ

φ0 10 V·s

The A and B matrices were changed to three different sets, corresponding to three
different cases: store, edge, sharpening, as discussed below. The notation to represent the
coefficients in the matrices is shown in Table 2.

Table 2. Coefficient notation for M = A, B (m = a, b). Notice that the coefficient for the current node
is (0, 0).

M

m−1,−1 m0,−1 m1,−1
m−1,0 m0,0 m1,0
m−1,1 m0,1 m1,1

The images all have different sizes (notated as N ×M), as reported in Table 3, and
they were all initially color images with 8-bit color resolution at each RGB plane. We
have processed these figures by performing two different experiments, both of them using
three different (A, B) sets of parameters: first, we used a color-to-gray conversion, and
we processed the images through the three different CNN. In a second step, we used a
color image, and we processed each color plane independently to finally reconstruct a color
image from these three planes.

Table 3. Picture size in pixels. The color depth is 8 bits per channel.

Figure Size (M × N) Pixels2

Figure 8 512× 512

Figure 9 768× 512

Figure 11 768× 512

In order to keep a good NF during the stochastic processing, and according to Equa-
tion (17) and the discussion in the previous section, each pixel was converted from 8 to 14
bits by padding the least significant positions with zeros. After the processing, the stochas-
tic images to normal images were converted back by disregarding the 6 least significant
bits of the corresponding accumulator in Figure 6.

The results are shown in two different ways: as pictures, and also using the RMS error
and the entropy of the image. The RMS error erms is defined in Equation (26), where pi;i,j and
po;i,j are the values of the pixel (i, j) for the input and the processed image, respectively. The
entropy H is calculated using the Matlab implementation of Equation (27), where pi contains
the normalized histogram counts for each gray level. The entropy of the unprocessed images
is reported in Table 4. Notice that for the color images we report the values of the entropy
for each channel, while for the rest we report only the entropy of the gray image.

erms =
1

N ·M ∑
i,j
(po;i,j − pp;i,j)

2 (26)

H = −∑
i

pilog2(pi) (27)

Micromachines 2022, 13, 67 12 of 18

Table 4. Calculated values of entropy of the images. The results for the color image show the three
color planes separately.

Figure Original Store Edge Enhance

Figure 8 6.70 6.71 4.03 6.90

Figure 9 7.18 7.20 3.87 7.45

Figure 11 (R) 7.15 7.07 4.04 7.38

Figure 11 (G) 7.16 7.27 4.19 7.88

Figure 11 (B) 7.16 7.28 4.26 7.76

4.1. Store Image

As a first example, we show the results of storing the image into the CNN. That is, the
values of internal voltage are evolved until the output is equal to the input. As a comment,
this is the easiest “program” that can be implemented into the SM-CNN, and can be used
as a first step for more complex algorithms as can be, for instance, a background removal
or a motion detection algorithms. The coefficients of the matrices are provided in Table 5.

Table 5. Coefficients for the input and output weights in Equation (24) for the case of the image
store setup.

A

 0.0 0.0 0.0
0.0 0.9 0.0
0.0 0.0 0.0

B

 0.0 0.0 0.0
0.0 0.1 0.0
0.0 0.0 0.0

We have represented both the input and output images for two different cases input
gray images namely Figures 8a and 9a (a zoom-in of the latter, appears in Figure 10a) and a
color image (Figure 11a). The results for the store process are shown in Figures 8b and 9b
for the gray images, while the stored color image is presented in Figure 11b. Visually, it can
be seen there that the algorithm performs correctly.

Additionally, we have calculated the entropy of the images and the RMS error, as
shown in Tables 4 and 6. The entropy of the images is nearly the same, and the rms error is
kept, at most, below 1.3%.

Table 6. Calculated RMS of the stored images, referred to the original image. The results for the color
image show the three color planes separately.

Figure RMS

Figure 8b 1.29%

Figure 9b 0.57%

Figure 11b (R) 1.13%

Figure 11b (G) 0.58%

Figure 11b (B) 0.61%

Micromachines 2022, 13, 67 13 of 18

(a) (b)

(c) (d)

Figure 8. Example 1: results obtained using the three proposed stochastic computing CNN with
different gene values. (a) Original image. (b) Stored image. (c) Edge detection result. (d) Sharp-
ened image.

(a) (b)

(c) (d)

Figure 9. Example 2: results obtained using the three proposed stochastic computing CNN with
different gene values. (a) Original image. (b) Stored image. (c) Edge detection result. (d) Sharp-
ened image.

Micromachines 2022, 13, 67 14 of 18

(a) (b)

Figure 10. Example 2: Zoom-in of Figure 9a,d, showing a detail of the sharpening results obtained
using the proposed stochastic computing CNN. (a) Zoom-in of the original image. (b) Zoom-in of the
sharpened image.

(a) (b)

(c) (d)

Figure 11. Example 3: Color figure, showing the sharpening results obtained using the proposed
stochastic computing CNN. (a) Original image. (b) Stored image. (c) Edge detection result. (d) Sharp-
ened image.

4.2. EDGE Detection Using SM-CNN

The proposed SM-CNN was further checked using an implementation of one of the
stochastic systems proposed in [4]. Specifically, we have improved the EDGE routine
presented in [10]. This routine performs a border detection algorithm in the image using
the coefficients in Table 7. In the previous work, the routine was fixed, and no quantitative
analysis was performed. The edge algorithm aims to detect changes between adjacent
pixels, so the output value will evolve to a 1 or 0, depending on the change of color. The
evolution will depend on the threshold of the output function and can thus be changed.

Micromachines 2022, 13, 67 15 of 18

Table 7. Coefficients for the input and output weights in Equation (24) for the case of the edge
detection setup.

A

 0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

B

−1/8 −1/8 −1/8
−1/8 1.0 −1/8
−1/8 −1/8 −1/8

We used the same images as in the previous example, where two of the images were
gray 8-bit images and another one was a 24-bit color image (3× 8 bits planes). They were
processed as in the previous case to 14 bits by padding, and back to 8 bits by truncation.
We have represented both the input and output images for two different gray images in
Figures 8c and 9c, while the result for the color image is shown in Figure 11c. It can be seen
there that the algorithm performs as expected, showing also the corresponding decreasing
in the values of the entropy in Table 4.

4.3. Sharpening

The sharpening algorithm is a variation of the EDGE detection, combined with the
STORE genii. In fact, we calculated a new coefficient set as a linear combination of the two
previous sets: As, Bs for the store matrices, and Ae, Be for the edge detection. The new set
Ai, Bi is calculated as:

Mi = λ1Ms + λ2Mi (28)

where M stands for both A and B. In this case, λ1 = 1/3 and λ2 = 2/5, and the corre-
sponding matrix coefficients are provided in Table 8.

Table 8. Coefficients for the input and output weights in Equation (24) for the case of the image
enhancement setup.

A

 0.0 0.0 0.0
0.0 0.3 0.0
0.0 0.0 0.0

B

−0.05 −0.05 −0.05
−0.05 0.43 −0.05
−0.05 −0.05 −0.05

We used the same images as in the previous example, where two of the images were

gray 8-bit images and another one was a 24-bit color image (3x8 bits planes). They were pro-
cessed as in the previous case to 14 bits by padding, and back to 8 bits by truncation. Results
of applying this set of coefficients to gray images are shown in Figures 8d and 9d (with a
zoom comparing original in Figure 10a against the processed output in Figure 10b). The re-
sults for a color image are depicted in Figure 11d, with a zoom-in shown in Figure 12a,b for
the original and processed images, respectively. Visually, the images seem to be improved,
with less fuzzy edges. This is further corroborated by the increase in the entropy shown
in Table 4.

Micromachines 2022, 13, 67 16 of 18

(a) (b)

Figure 12. Example 3: Zoom-in of Figure 11a,d, showing a detail of the sharpening results obtained
using the proposed stochastic computing CNN. (a) Zoom-in of the original image. (b) Zoom-in of the
sharpened image.

5. Conclusions

In this work we have performed a fully digital implementation of a Memristive
Cellular Nonlinear Network profiting from the Stochastic Computing paradigm. The
basic unitary cell of the proposed CNN features a digital memristor emulator, plus several
arithmetic units that are implemented as very simple gates, allowing for an enormous
number of cells in parallel, which can translate into a very fast image processor.

We have implemented this full CNN structure into an ARRIA V FPGA, and we have
tested it along with Matlab by implementing three different procedures: a image store,
an edge detection, and, finally, an image sharpening process. Notice that these three
procedures involve only the change of the matrix coefficients, that are common to all the
cells. As has been discussed, the results imply that the system performs smoothly, with
errors lower than 1.3% in the storage, an excellent edge detection capability, and a very
good detail sharpening. A full FPGA implementation of images with lower number of
pixels would allow for a very high image processing speed, adequate for real time needs,
and well inside the capabilities and requirements of edge computing. In addition, as shown
in [38], the proposed kind of memristive CNNs are resilient to individual “pixel” failures.

As an example, in this paper we have used 14-bit stochastic numbers, which trans-
lates into a chain length of 214 = 16,384. An entry-level FPGA can run at 80MHz, so it
could operate around 4800 operations per second. Since all the operations in the circuit
are sequential, this is also the speed at which each step of the numerical integration is
performed. Assuming that you need around 10–20 steps to reach the stable point, we
could be processing more than 200 points per second. Then, the full resolution would
be a matter of how many parallel threads can be implemented into an FPGA or an ASIC,
but the numbers show that it seems to be adequate for real-time processing, even using
low-speed systems.

Notice that in this paper only the proof of concept for the SC Memristive CNN has
been discussed, not comparing it against any other improving algorithm using, for instance,
a hard-wired algorithm implementation or Neural Networks, which may show much
better image improvement. It has to be noted, however, that the method presented here is
training-free, which simplifies the design when compared against NNs and also removes
any possible bias introduced by the training. In addition, the facility to change the algorithm
is also worth mentioning, since it reduces to changing the values of the coefficients in the
the cells. This makes this approach especially preferable over a hard implementation of
specific algorithms in, for instance, multi-purpose systems that can need to be swapping
functions on the fly.

Author Contributions: Conceptualization, R.P. and S.G.S.; methodology, R.P.; validation, O.C.,
M.M.A.C. and R.P.; investigation, O.C. and R.P.; resources, O.C., M.M.A.C. and R.P.; writing—original
draft preparation, O.C., S.G.S. and R.P.; writing—review and editing, O.C., M.M.A.C., S.G.S. and R.P.;

Micromachines 2022, 13, 67 17 of 18

visualization, O.C., S.G.S. and R.P.; supervision, R.P. and S.G.S.; funding acquisition, R.P. All authors
have read and agreed to the published version of the manuscript.

Funding: Some of the authors wish to acknowledge support from DPI2017-86610-P, TEC2017-84877-R
projects, awarded by the MICINN and also with partial support by the FEDER program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the images used in the work are publicly available in the internet
for free download.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Chua, L.O.; Yang, L. Cellular neural networks: Theory. IEEE Trans. Circuits Syst. 1988, 35, 1257–1272. [CrossRef]
2. Rodriguez-Vazquez, A.; Fernandez-Berni, J.; Lenero-Bardallo, J.A.; Vornicu, I.; Carmona-Galan, R. CMOS vision sensors:

Embedding computer vision at imaging front-ends. IEEE Circuits Syst. Mag. 2018, 18, 90–107. [CrossRef]
3. Tetzlaff, R.; Ascoli, A.; Messaris, I.; Chua, L.O. Theoretical Foundations of Memristor Cellular Nonlinear Networks: Memcomput-

ing With Bistable-Like Memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 502–515. [CrossRef]
4. Ascoli, A.; Tetzlaff, R.; Kang, S.; Chua, L.O. Theoretical Foundations of Memristor Cellular Nonlinear Networks: A DRM2-Based

Method to Design Memcomputers with Dynamic Memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2753–2766.
[CrossRef]

5. Chua, L.O. Memristor-the missing circuit element. Circuit Theory IEEE Trans. 1971, 18, 507–519. [CrossRef]
6. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [CrossRef]

[PubMed]
7. Chua, L.O. Everything you wish to know about memristors but are afraid to ask. Radioengineering 2015, 24, 319. [CrossRef]
8. Biolek, D.; Biolek, Z.; Biolková, V.; Kolka, Z. Some fingerprints of ideal memristors. In Proceedings of the 2013 IEEE International

Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; pp. 201–204.
9. Camps, O.; Picos, R.; de Benito, C.; Chawa, M.M.A.; Stavrinides, S.G. Emulating memristors in a digital environment using

stochastic logic. In Proceedings of the 7th International Conference on Modern Circuits and Systems Technologies (MOCAST),
Thessaloniki, Greece, 7–9 May 2018; pp. 1–4.

10. Camps, O.; Stavrinides, S.G.; Picos, R. Efficient Implementation of Memristor Cellular Nonlinear Networks using Stochastic
Computing. In Proceedings of the European Conference on Circuit Theory and Design (ECCTD), Sofia, Bulgaria, 7–10 September
2020; pp. 1–4.

11. Von Neumann, J. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Autom. Stud. 1956,
34, 43–98.

12. Gaines, B.R. Stochastic computing systems. In Advances in Information Systems Science; Springer: Berlin/Heidelberg, Germany,
1969; pp. 37–172.

13. Wang, R.; Han, J.; Cockburn, B.; Elliott, D. Stochastic circuit design and performance evaluation of vector quantization. In
Proceedings of the IEEE 26th International Conference on Application-Specific Systems, Architectures and Processors (ASAP),
Toronto, ON, Canada, 27–29 July 2015; pp. 111–115.

14. Camps, O.; Stavrinides, S.G.; Picos, R. Stochastic Computing Implementation of Chaotic Systems. Mathematics 2021, 9, 375.
[CrossRef]

15. Morro, A.; Canals, V.; Oliver, A.; Alomar, M.L.; Rossello, J.L. Ultra-fast data-mining hardware architecture based on stochastic
computing. PLoS ONE 2015, 10, e0124176. [CrossRef]

16. Yuan, B.; Wang, Y.; Wang, Z. Area-efficient scaling-free DFT/FFT design using stochastic computing. IEEE Trans. Circuits Syst. II
Express Briefs 2016, 63, 1131–1135. [CrossRef]

17. Marin, S.T.; Reboul, J.Q.; Franquelo, L.G. Digital stochastic realization of complex analog controllers. IEEE Trans. Ind. Electron.
2002, 49, 1101–1109. [CrossRef]

18. Najafi, M.H.; Jamali-Zavareh, S.; Lilja, D.J.; Riedel, M.D.; Bazargan, K.; Harjani, R. Time-encoded values for highly efficient
stochastic circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 1644–1657. [CrossRef]

19. Fick, D.; Kim, G.; Wang, A.; Blaauw, D.; Sylvester, D. Mixed-signal stochastic computation demonstrated in an image sensor with
integrated 2D edge detection and noise filtering. In Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, San
Jose, CA, USA, 15–17 September 2014; pp. 1–4.

20. Toral, S.; Quero, J.; Ortega, J.; Franquelo, L. Stochastic A/D sigma-delta converter on FPGA. In Proceedings of the 42nd Midwest
Symposium on Circuits and Systems (Cat. No.99CH36356), Las Cruces, NM, USA, 8–11 August 1999; Volume 1, pp. 35–38.

21. Moons, B.; Verhelst, M. Energy-Efficiency and Accuracy of Stochastic Computing Circuits in Emerging Technologies. IEEE J.
Emerg. Sel. Top. Circuits Syst. 2014, 4, 475–486. [CrossRef]

http://doi.org/10.1109/31.7600
http://dx.doi.org/10.1109/MCAS.2018.2821772
http://dx.doi.org/10.1109/TCSI.2019.2940909
http://dx.doi.org/10.1109/TCSI.2020.2978460
http://dx.doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1038/nature06932
http://www.ncbi.nlm.nih.gov/pubmed/18451858
http://dx.doi.org/10.13164/re.2015.0319
http://dx.doi.org/10.3390/math9040375
http://dx.doi.org/10.1371/journal.pone.0124176
http://dx.doi.org/10.1109/TCSII.2016.2603465
http://dx.doi.org/10.1109/TIE.2002.803233
http://dx.doi.org/10.1109/TVLSI.2016.2645902
http://dx.doi.org/10.1109/JETCAS.2014.2361070

Micromachines 2022, 13, 67 18 of 18

22. Li, S.; Glova, A.O.; Hu, X.; Gu, P.; Niu, D.; Malladi, K.T.; Zheng, H.; Brennan, B.; Xie, Y. SCOPE: A Stochastic Computing
Engine for DRAM-Based In-Situ Accelerator. In Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Fukuoka, Japan, 20–24 October 2018; pp. 696–709.

23. Toral, S.; Quero, J.; Franquelo, L. Stochastic pulse coded arithmetic. In Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS), Geneva, Switzerland, 28–31 May 2000; Volume 1, pp. 599–602.

24. Corinto, F.; Civalleri, P.P.; Chua, L.O. A theoretical approach to memristor devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5,
123–132. [CrossRef]

25. Al Chawa, M.; Picos, R.; Covi, E.; Brivio, S.; Garcia-Moreno, E.; Spiga, S. Flux-charge characterizing of reset transition in bipolar
resistive-switching memristive devices. In Proceedings of the 11th Spanish Conference on Electron Devices, Barcelona, Spain,
8–10 February 2017.

26. Picos, R.; Roldan, J.B.; Al Chawa, M.M.; Garcia-Fernandez, P.; Jimenez-Molinos, F.; Garcia-Moreno, E. Semiempirical Modeling of
Reset Transitions in Unipolar Resistive-Switching Based Memristors. Radioengineering 2015, 24, 421. [CrossRef]

27. Picos, R.; Roldan, J.; Al Chawa, M.; Jimenez-Molinos, F.; Villena, M.; Garcia-Moreno, E. Exploring ReRAM-based memristors
in the charge-flux domain, a modeling approach. In Proceedings of the Memristive Systems (MEMRISYS) 2015 International
Conference on, Paphos, Cyprus, 8–10 November 2015; pp. 1–2.

28. Al Chawa, M.M.; Picos, R. A Simple Quasi-Static Compact Model of Bipolar ReRAM Memristive Devices. IEEE Trans. Circuits
Syst. II Express Briefs 2019, 67, 390–394. [CrossRef]

29. Itoh, M.; Chua, L.O. Designing CNN genes. Int. J. Bifurc. Chaos 2003, 13, 2739–2824. [CrossRef]
30. Itoh, M. Some Interesting Features of Memristor CNN. arXiv 2019, arXiv:1902.05167.
31. Maldonado, D.; Gonzalez, M.B.; Campabadal, F.; Jimenez-Molinos, F.; Al Chawa, M.M.; Stavrinides, S.G.; Roldan, J.B.; Tetzlaff, R.;

Picos, R.; Chua, L.O. Experimental evaluation of the dynamic route map in the reset transition of memristive ReRAMs. Chaos
Solitons Fractals 2020, 139, 110288. [CrossRef]

32. Ascoli, A.; Tetzlaff, R.; Messaris, I.; Kang, S.; Chua, L. Image Processing by Cellular Memcomputing Structures. In Proceedings of
the IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5.

33. Khanday, F.A.; Akhtar, R. Reversible stochastic computing. Int. J. Numer. Model. Electron. Netw. Devices Fields 2020, 33, e2711.
[CrossRef]

34. Camps, O.; Picos, R.; de Benito, C.; Al Chawa, M.M.; Stavrinides, S.G. Effective accuracy estimation and representation error
reduction for stochastic logic operations. In Proceedings of the 7th International Conference on Modern Circuits and Systems
Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018; pp. 1–4.

35. Vourkas, I.; Abusleme, A.; Ntinas, V.; Sirakoulis, G.C.; Rubio, A. A Digital Memristor Emulator for FPGA-Based Artificial Neural
Networks. In Proceedings of the Verification and Security Workshop (IVSW), Sant Feliu de Guixols, Spain, 4–6 June 2016; pp. 1–4.

36. Ranjan, R.; Ponce, P.M.; Kankuppe, A.; John, B.; Saleh, L.A.; Schroeder, D.; Krautschneider, W.H. Programmable memristor
emulator asic for biologically inspired memristive learning. In Proceedings of the 2016 39th International Conference on
Telecommunications and Signal Processing (TSP), Vienna, Austria, 27–29 June 2016; pp. 261–264.

37. Forencich, A. Verilog Implementation of Mersenne Twister PRNG. 2018. Available online: https://github.com/alexforencich/
verilog-mersenne (accessed on 20 June 2021).

38. Duan, S.; Hu, X.; Dong, Z.; Wang, L.; Mazumder, P. Memristor-Based Cellular Nonlinear/Neural Network: Design, Analysis, and
Applications. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1202–1213. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JETCAS.2015.2426494
http://dx.doi.org/10.13164/re.2015.0420
http://dx.doi.org/10.1109/TCSII.2019.2915825
http://dx.doi.org/10.1142/S0218127403008375
http://dx.doi.org/10.1016/j.chaos.2020.110288
http://dx.doi.org/10.1002/jnm.2711
https://github.com/alexforencich/verilog-mersenne
https://github.com/alexforencich/verilog-mersenne
http://dx.doi.org/10.1109/TNNLS.2014.2334701
http://www.ncbi.nlm.nih.gov/pubmed/25069124

	Introduction
	Memristive Cellular Nonlinear Networks
	Memristors and Memristive Systems Modeling
	Cellular Nonlinear Networks

	M-CNN Stochastic Computing
	Stochastic Computing Basics
	Stochastic Computing Implementation of a Memristor Emulator
	Stochastic Computing Implementation of a M-CNN

	Image Processing Results
	Store Image
	EDGE Detection Using SM-CNN
	Sharpening

	Conclusions
	References

