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Abstract: Percutaneous coronary intervention (PCI) with stent implantation is one of the most ef-
fective treatments for cardiovascular diseases (CVDs). However, there are still many complications 
after stent implantation. As a medical device with a complex structure and small size, the manufac-
ture and post-processing technology greatly impact the mechanical and medical performances of 
stents. In this paper, the development history, material, manufacturing method, and post-pro-
cessing technology of vascular stents are introduced. In particular, this paper focuses on the existing 
manufacturing technology and post-processing technology of vascular stents and the impact of 
these technologies on stent performance is described and discussed. Moreover, the future develop-
ment of vascular stent manufacturing technology will be prospected and proposed. 
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1. Introduction 
Cardiovascular diseases (CVDs) are a leading killer of human life throughout the 

world, and most of these deaths are caused by atherosclerosis [1]. Atherosclerosis is made 
up of fat, cholesterol, calcium, and other substances inside the arteries that cause the 
blockage of blood vessels [2]. Percutaneous coronary intervention (PCI) with stent im-
plantation is one of the most effective treatment to unblock blood vessels [3,4]. However, 
there are still many complications, including in-stent restenosis, late thrombosis, artery 
injury, re-occlusion rates, and local chronic inflammation [5], so that further research on 
vascular stent technology is urgently required. 

Over the past few decades, vascular stents have experienced rapid development in 
terms of materials and design. In 1964, Charles et al. [6] used a catheter to expand a pa-
tient’s diseased blood vessels, which was the first percutaneous transluminal angioplasty 
(PTA). In 1969, Dotter et al. [7] carried out the first animal experiment of vascular stent 
implantation. In 1977, Andreas et al. [8] performed the first case of percutaneous coronary 
angioplasty (PCA), which opened a new era in the treatment of cardiovascular diseases. 
In 1985, Palmaz et al. [9] developed balloon-expandable stents to treat cardiovascular ste-
nosis. In 1987, Sigwart et al. [10] successfully performed the world’s first coronary stent 
implantation operation. 

The first generation of vascular stents were bare metal stents (BMSs), commonly 
made of stainless steel and nickel–titanium (NiTi) alloy. BMSs have many advantages in-
cluding simple design, convenient processing, and excellent mechanical properties, which 
promote its wide use in the treatment of cardiovascular diseases and wide recognition by 
medical experts and patients [6,11,12]. However, BMSs will stay in the human body per-
manently after implantation, and clinical reports show that the BMSs will cause artery 
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injury, inflammation, and even in-stent restenosis [13–15]. In order to solve these prob-
lems, the second generation of vascular stents, drug eluting stents (DESs), was developed 
[16]. DESs are the most widely used vascular stents in the current PCI treatment field. 
DESs include three parts: a metallic platform, an effective therapeutic agent, and a drug 
carrier. The metallic platform plays a role in supporting the blood vessels to maintain 
blood flow smoothly. The therapeutic agent and drug carrier form a drug coating to con-
trol the release of the therapeutic agent in blood vessels. Previous clinical studies have 
shown that DESs can effectively prevent inflammation of the diseased blood vessel and 
reduce intimal hyperplasia [17,18]. However, DESs have the same deficiency as BMSs due 
to the permanent retention in the human body [19]. Then, researchers developed the third 
generation of vascular stents, biodegradable stents (BDSs) [20,21]. BDSs are made of bio-
degradable materials including biodegradable metallic alloys and biodegradable poly-
mers. BDSs can degrade and be absorbed after fulfilling their purpose of supporting dis-
eased vascular. Therefore, BDSs have better biocompatibility and fewer complications. 
However, there are still some problems in the development of BDSs, especially weak me-
chanical properties and unclear degradation behavior [22–24], so that the long-term effi-
cacy and safety of the BDSs are still under further research. 

With the development of medical technology and the increasing demand for person-
alized patients, stent design optimization and precision manufacturing are highly re-
quired. At present, design optimization mainly focuses on the following aspects including 
bridge/link [25–29], representative volume element/representative unit cell [30–34], and 
patient-specific structure [35–38]. Then, the commonly used manufacturing technologies 
of vascular stents mainly include the braiding technique [39,40], micro-injection molding 
[41–43], laser cutting [44–56], and 3D printing [57–64]. Each processing method has its 
advantages and disadvantages. After stent processing, a series of post-processing tech-
niques, including drug coating [65–70], surface modification [71–74], surface microstruc-
tures [75–79] can significantly improve the surface quality and the biocompatibility of the 
stent. Therefore, the efficacy and safety of vascular stents largely depend on precision 
manufacturing technology and post-processing technology. 

This paper aimed to conclude the vascular stent technology in terms of stent materi-
als, stent manufacturing techniques, and stent post-processing techniques. The existing 
stent manufacturing techniques are introduced, and the future manufacturing techniques 
are discussed. Finally, prospects and suggestions for the development of stent manufac-
turing technology will be determined. 

2. Clinical Trials 
Palmerini et al. [80] investigated the long-term safety of BMSs and DESs. The 3 year 

follow-up data of more than 50,000 patients showed DESs had great advantages in safety 
and efficacy over BMSs. Sousa et al. [81] evaluated the safety and efficacy of sirolimus (a 
cell cycle inhibitor)-coated BX Velocity stents, and the results showed that no major events 
had occurred during 8 months follow-up. Brugaletta et al. [82] compared the 1 year out-
come among BMSs (Multilink Vision, Abbott Vascular), everolimus-eluting stents (EESs) 
(Xience V, Abbott Vascular), bioresorbable vascular scaffold (BVS) (Abbott Vascular, 
Santa Clara, CA, California) in ST-segment elevation myocardial infarction patients. Many 
evaluations were conducted during the investigation including cardiac death, target ves-
sel myocardial infarction, target lesion revascularization, and device thrombosis. Three 
kinds of stents showed similar performance at 1 year follow up. 

A vascular stent is effective in the clinical treatment of vascular diseases, but there 
are still many problems including in-stent restenosis and stent thrombosis. After implan-
tation, stent fracture seriously affects the performance of stent. The first report of stent 
fracture was a fracture on the midportion of a metal stent in 2002 [83]. Scheinert et al. [84] 
performed a follow-up survey on patients treated by implantation of self-expanding ni-
tinol stents, and the results showed the rate of stent fractures was 37.2%, which indicates 
the risk of long-term implantation. Shaikh et al. [85] investigated stent performance in 
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3920 patients over 12 months, and 188 in-stent restenosis cases were observed. Stent frac-
tures were identified in 35 of the 188 cases. Doi et al. [86] classified the stent fractures into 
four types and analyzed the fracture mechanisms. There are many stent fractures factors, 
including materials, design, and mechanical property. Therefore, the selection of appro-
priate materials and processing technology is crucial for the clinical application of vascu-
lar stents. 

3. Stent Materials 
3.1. Traditional Materials 

Traditional vascular stents are commonly made of biomedical metals or alloys. For 
example, 316 L stainless steel has high mechanical strength and good corrosion resistance, 
and it is the original material used for vascular stents. However, 316 L stainless steel has 
poor flexibility, which may cause stent breakdown and medical complications. NiTi alloy 
was also used for vascular stents due to the fact of its good shape memory properties and 
excellent elasticity [87,88], while NiTi alloy stents brought out high internal stress when 
implanted in narrowed blood vessels. Then, cobalt alloy was used as vascular stent mate-
rial, such as in the Wallstent stent (Boston Scientific, Marlborough, MA, USA). Cobalt al-
loy has good biocompatibility, corrosion resistance, and autoradiography properties. 
Moreover, the mechanical property of cobalt alloy is better than 316 L stainless steel, 
which contributes to thinner struts of cobalt alloy stents. Cobalt alloy stents with thinner 
struts generate less blood vessel coverage so that the reendothelialization of blood vessels 
can be accelerated and thrombosis can be reduced. 

Although traditional metallic stents have achieved reasonable clinical outcomes, 
some shortcomings were also discovered after long-term clinical application. Traditional 
metallic stents stay in the human body permanently after implantation, which seriously 
affects the clinical prognosis of patients. In addition, a large number of complications will 
appear including in-stent restenosis, late thrombosis, artery injury, occlusion rates, and 
local chronic inflammation. It has been reported that the ratio of in-stent restenosis is 20–
30% after the implantation of traditional vascular stents. 

3.2. Biodegradable Materials 
The biodegradable materials used for stents include corrodible metallic materials, 

such as magnesium alloys and zinc alloys, and degradable polymeric materials. 
Mg is an essential mineral element for many physiological functions in the human 

body. Although Mg is the lightest metal, the mechanical strength of the reinforced Mg 
alloy is comparable with that of aluminum alloy and steel. Ma et al. [89] used magnesium-
based alloys as stent materials and analyzed the influence of Mg2+ on vascular smooth 
muscle cells. The results showed that low concentrations (<10 mM) of Mg2+ can increase 
cell adhesion, cell spreading, cell viability, cell proliferation rate, cell migration rate, and 
actin expression, but high concentrations (40–60 mM) of Mg2+ may cause adverse reactions 
on the cells. Kirkland et al. [90] studied the dissolution rates of different Mg alloys in the 
simulated body fluid and demonstrated their feasibility for medical implants. The first 
commercial absorbable metallic stent was the AMS-1 BDS (AMS-1, Biotronik AG, Bülach, 
Switzerland), made of Mg alloy (Mg > 90%, rare earth metals < 10%) [91]. AMS-1 BDS has 
shown good mechanical support and degradation performance in the clinical trial [92]. 
Cao et al. [93] investigated the in vitro corrosion properties of Mg matrix in situ compo-
sites, and the results indicated that Mg-10 wt% (weight percent) ZnO composites dis-
played the lowest corrosion rate. Patil et al. [94] studied the corrosion behavior of Mg 
samples with self-assembled alkylsilane coatings, and the results showed that the corro-
sion rate was dramatically reduced. 

Zn is a new biomaterial used in biodegradable stent manufacturing due to the fact of 
its excellent catalytic, structural, and regulatory properties [95]. Zn has good corrosion 
behavior, which makes it a promising material candidate for biodegradable stents. Bowen 
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et al. [96] proposed Zn as a biodegradable stent material first. Guillory et al. [97] investi-
gated the effect of corrosion characteristics on the long-term inflammatory profile of de-
gradable zinc arterial implants. Drelich et al. [98] conducted a long-term follow up of zinc 
implants in the murine artery, and the results indicated that Zn stents can be bio-inte-
grated into the arterial environment and safely degrade within 1–2 years. Drelich et al. 
[99] studied the effect of surface finishing (oxidation, electropolishing, and anodization) 
on the degradation behavior of Zn stent and found that the oxide film made a great impact 
on the degradation rate after stent implantation. Jarzębska et al. [100] carried out experi-
ments to investigate the influence of severe plastic deformation on the mechanical prop-
erties and microstructure of biodegradable zinc alloy with 1 wt% magnesium and pointed 
out that this alloy with enforced strength may satisfy the requirements for stent applica-
tion. 

In addition to metal materials, biodegradable polymeric materials have also been 
widely used in stent applications. Poly-L-lactic acid (PLLA), as the most common polymer 
material, was first applied as stent material [101]. The initial 6 month clinical results sug-
gested that PLLA biodegradable stents are feasible, safe, and effective. Grabow et al. [102] 
studied the effect of plasticizer addition on the mechanical properties of PLLA materials, 
and the results indicated that plasticizer addition increased the elongation at break of 
PLLA obviously, while it adversely affected the creep behavior of PLLA. Subsequently, 
other biodegradable polymer materials, including poly(lactide-co-glycolide) (PLGA), 
polyε-caprolactone PCL, poly-glycolic acid PGA, poly(D-lactide) PDLA, have been ex-
plored for stent application [103,104]. The polymeric materials show great advantages in 
biodegradation properties, biocompatibility, and drug delivery performance. However, 
the mechanical property of the polymer is insufficient, so further research is required to 
improve the mechanical properties of the polymer through material processing, precise 
manufacturing techniques, and post-processing techniques. 

4. Stent Manufacturing Techniques 
4.1. Braiding Technique 

The braiding technique is to wind a wire around the carrier, and then the wire is 
braided along the axis of rotation in the prepared track to fabricate the mesh-like stent. 

Ueng et al. [39] fabricated vascular stents by braiding stainless-steel fibers combined 
with nitinol fibers (0.08 mm in diameter). Sun et al. [40] applied the braiding technique for 
biodegradable stent fabrication by using poly(p-dioxanone) (PPDO) monofilaments and 
PCL/PPDO composite filaments, and mechanical testing results showed that the mechan-
ical properties of the braided biodegradable stents were comparable to metallic stents in-
cluding elastic recovery rate, deformation rate, and expansion behavior, as shown in Fig-
ure 1. 

Overall, the braiding technique is more suitable for the fabrication of compliant shape 
memory polymeric stents due to the limitations of simple structure and poor radial stiffness. 
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Figure 1. The braiding process of a biodegradable stent (BBS). (A) scheme of stent production. (B) 
(a) geometrical model; (b) bond at the interlacing point with PCL/PPDO composite filament and 
PPDO monofilament; (c) sample [40]. 

4.2. Micro-Injection Molding 
Micro-injection molding is a forming process using molds. Generally, the polymer is 

heated, melted, and then sent to the mold to form the designed shape after cooling. 
Micro-injection molding has many advantages including high processing efficiency, 

good surface quality, high reproducibility, good material condensation orientation, and 
good forming consistency [105,106]. Holzer et al. [107] fabricated grooves of 18 nm in 
width on polymer. Lee et al. [108] combined Moldflow and pressure-driven deformation 
modeling to optimize the process of micro-injection molding and produced 300 nm grat-
ing texture. Stormonth-Darling et al. [109] produced a pillar nanostructure with an ultra-
high aspect ratio of up to 20:1. 

Huang et al. [41] attempted to fabricate polymeric vascular stents by injection mold-
ing for the first time and successfully obtained some patent authorizations. Their achieve-
ments bring out the possibility for the batch production of polymeric stents. Li et al. [42] 
carried out numerical simulations on the micro-injection molding process of polymeric 
stents by integrating the design of the experiment and the kriging surrogate model, and 
the results showed that the residual stress and warpage can be significantly reduced. A 
novel balloon-expandable self-locking poly(e-caprolactone) stent designed by Liu et al. 
[43] was fabricated by micro-injection molding and spray-coating techniques. The me-
chanical test results showed that they possess good self-locking characteristics and com-
pression strengths. 

Actually, the micro-injection molding method is not widely applied in stent manu-
facturing. There are still many problems during the micro-injection molding process, in-
cluding serious material filling and demolding problems, due to the stents’ tiny size and 
complex structure. 

4.3. Laser Cutting 
Laser cutting is the most common method used for vascular stent fabrication, as 

shown in Figure 2. During the laser cutting process, a high-power laser boom focuses on 
the tubular material, the material quickly melts, vaporizes, or ablates and then the mate-
rial is blown away by high-speed airflow. 
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Figure 2. Laser cutting process of a vascular stent. 

Momma et al. [44] used the traditional industrial laser to cut slotted tubular coronary 
stents, and steel stents with high quality were obtained. However, the traditional indus-
trial laser is limited to material types, so that higher precision laser processing techniques 
are required. Li et al. [45] optimized the femtosecond laser cutting process of NiTi shape 
memory alloy and fabricated a self-expanding medical micro-device with high accuracy. 
Raval et al. [46] fabricated a stent with complex geometry based on 316 LVM tubes by a 
CNC-controlled pulsed neodymium-doped yttrium–aluminum garnet (Nd: YAG) laser. 
Chen et al. [47] produced a high-quality 316 LVM stainless steel vascular stent by opti-
mizing the laser processing parameters including the lens’ focal length, focus position, 
pulse frequency, cutting speed, and pulse width. Kathuria et al. [48] applied the short 
pulse Nd-YAG laser to fabricate a stent with a diameter of 2.0 mm and a length of 20 mm 
and found that the cutting surface quality can be improved by controlling the heat-af-
fected zone and dross removal process. Erika et al. [49] investigated the formation mech-
anism of back wall dross and surface roughness during fiber laser micro-cutting of 316 L 
miniature tubes and fabricated the stents with a surface roughness of less than 1 µm and 
dross deposits of less than 3.5%. Bear et al. [50] designed and fabricated a novel laser-
activated shape memory polymer stent, and the deformation of the fabricated stents was 
calibrated in a water-filled artery model in vitro. Stepak et al. [51] obtained a PLLA/PLGA 
stent with a strut width of 300 µm by CO2 laser cutting, but the mechanical properties of 
the stents were severely weakened due to the large areas of the heat-affected zone during 
stent processing. Demir et al. [52] fabricated an AZ31 magnesium alloy cardiovascular 
stent with a novel mesh design by laser micromachining, and the obtained stent had a 
diameter of 2.5 mm and a thickness of 0.2 mm. Liu et al. [53] fabricated NiTi shape 
memory vascular stents by fiber laser cutting and studied the influence of cutting param-
eters on cutting quality including the surface roughness, kerf width, heat-affected zone, 
and dross formation. The results showed that the cutting quality could be improved by 
optimizing power density along the cutting direction. Guerra et al. [54] machined PCL, 
PLA, and PCL–PLA tubes to obtain mesh-like stents by fiber laser cutting and analyzed 
the effect of power, cutting speed, and the number of passes on penetration, precision, 
and dross. It suggests that fiber laser has great potential in PCL stent machining. Meng et 
al. [55] designed a fiber laser cutting system for metallic stent fabrication, and the experi-
mental results indicated that the kerf width plays an important role in the machining qual-
ity of 316 L stainless-steel stents. Muhammad et al. [56] fabricated nitinol and platinum–
iridium alloy vascular stent by picosecond laser micromachining. Although laser cutting 
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is the most widely used method in vascular stent fabrication, there are still many disad-
vantages. Particularly, large heat-affected zones will appear after laser processing, which 
lead to a decrease in mechanical properties and biocompatibility for the vascular stent. 
Therefore, some other stent processing methods are constantly being explored and at-
tempted. 

4.4. 3D Printing 
3D printing, also known as additive manufacturing technology, is a manufacturing 

process that creates a physical object from a digital model. The technique is realized by 
adding layer upon layer of material to build up a complete object. 3D printing technology 
is developing rapidly, and the most widely used 3D printing techniques include selective 
laser melting (SLM), stereo lithography (SLA), and fused deposition modeling (FDM). 3D 
printing has many advantages, including flexible processing, various materials, and per-
sonalized structure. Therefore, many researchers focus on this method to manufacture 
vascular stents for personalized patients. 

Flege et al. [57] fabricated customized biodegradable vascular PLLA and PCL stents 
by the SLM technique for the first time and demonstrated that they have good biocom-
patibility. Finazzi et al. [58] produced a novel cobalt–chromium (CoCr) alloy balloon-ex-
pandable stents using an industrial SLM system, and the balloon expansion experiments 
showed that the stent had good mechanical properties. Van Lith et al. [59] fabricated a 
novel stent with bioresorption and antioxidant properties using a costumed micro-contin-
uous liquid interface production system (µCLIP). The printed stent had a bridge width of 
150 µm and struct thickness of 500 µm and showed good mechanical properties. Ware et 
al, as shown in Figure 3. [60] optimized the µCLIP process by adjusting the entangled 
process parameters and applying a novel speed working curve method. They obtained a 
biodegradable stent with a strut thickness of 150 mm, and the radial stiffness was compa-
rable to nitinol stents. Guerra et al. [61] produced PCL/PLA composite vascular stents by 
a novel 3D printing technology based on FDM. The 3D printed stents showed excellent 
properties including dynamic mechanical behavior, expansion behavior, and degradation 
behavior. Lin et al. [62] fabricated shape memory stents with a negative Poisson ratio 
structure by 4D printing, and the stent deformation can be validated by increasing tem-
perature. Jia et al. [63] used shape memory PLA to fabricate self-expandable biodegrada-
ble vascular stents by 3D printing technology, and the stents had good shape memory 
function. Zhao et al. [64] developed a novel 3D printing system to improve printing accu-
racy by integrating a rotating shaft with controllable rotating speed and temperature, and 
the developed system showed great potential in manufacturing stents with variable struc-
tures, as shown in Figure 4. 

 
Figure 3. SLA processing of vascular stents. (a) CAD images of the initial/primary design (Base 
Design) and a secondary design (Arrowhead Design). (b) Diagram of continuous liquid interface 
production microstereolithography (microCLIP) with typical projected photomasks of the stent. 
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(c) 3D-printed base design (top) and arrowhead design (bottom) stents. (d) Scanning electron mi-
croscopy images of the base design (top) and arrowhead design (bottom). [59] 

 
Figure 4. FDM processing of stents. (a) 3D printer machine and machine methodology. (b) Fabrica-
tion process. [64] 

4.5. Other Manufacturing Techniques 
In addition to the above methods, other processing techniques, such as micro-electri-

cal discharge machining (µEDM), micro-photochemical etching, magnetron sputtering, 
micro-precision milling, and some combined processing method, have also been devel-
oped for vascular stent manufacturing. 

Takahata et al. [110] fabricated stents from 50 µm thick stainless-steel foil by using 
µEDM technology, and mechanical testing results showed that the fabricated stent had 
good radial stiffness and bending compliance. Kuribayashi et al. [111] produced a new 
origami stent graft from Ni-rich TiNi shape memory alloy foil by negative photochemical 
etching. Lima de Miranda et al. [112] integrated magnetron sputtering, three-dimensional 
photolithography, and wet etching techniques to fabricate shape memory alloy stents 
from thin TiNi films. Rumpf et al. [113] used DC magnetron sputtering on NiTi tubes to 
manufacture stents with a diameter of 400 µm and a wall thickness of 50 µm. Moreover, 
precision milling has many advantages for stent manufacturing such as fast processing 
speed and high processing accuracy. Especially, the precision milling technique produces 
high cutting efficiency and cutting accuracy with the intensive research and rapid devel-
opment of micro-cutting tools including the tool’s service life and the cutting edge. How-
ever, research publications on precision cutting methods for cardiovascular stent manu-
facturing are rare. Table 1 describes the advantages and disadvantages of common vascu-
lar stent processing methods. 

Table 1. Comparison of various manufacturing techniques used in vascular stents. 

Methods Advantages Disadvantages 
Braiding technique 

[39,40] 
Easy to process Limited to simple structure 

Poor radial stiffness 

Micro-injection molding 
[41–43] 

High production efficiency 
Good surface quality 

High consistency 
Difficult to processing 

Laser cutting Good quality Heat-affected zone 
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[44–56] High processing accuracy 
3D printing 

[57–64] 
Personalized customization  

High material utilization Poor accuracy 

µEDM 
Micro-photochemical etching 

Magnetron sputtering 
[110–113] 

Burr/dross-free Limited to specific materials 

Micro-precision milling High production efficiency 
High processing accuracy 

Burrs  

5. Post-Processing Techniques 
5.1. Drug Coating 

The surface can be coated with a layer for drug delivery after stent processing, which 
can reduce the complications after stent implantation by controlling the release of drugs 
and by improving the biocompatibility and long-term efficacy and safety of stents. The 
rate of drug release is influenced by many factors including the diffusion coefficient, the 
dissolution coefficient, the rate of drug absorption into the tissue, and the penetration rate 
of the vessel wall. In order to achieve good therapeutic effects, the drug coating of vascular 
stents has many requirements. First of all, targeted drugs should be lipophilic to ensure 
the concentration of drugs in the diseased blood vessels are maintained at a relatively high 
level. Then, the drugs possess the ability to inhibit the excessive proliferation of smooth 
muscle cells and neointimal hyperplasia. In addition, drugs need to be able to resist plate-
let adhesion and eliminate inflammation and thrombosis. However, the existing targeted 
drugs used in the surface coating of vascular scaffolds cannot fulfill all of the above re-
quirements at the same time. Table 2 summarizes the commonly used drugs in stent coat-
ings according to their structural formula, mode of action, and products. 

Yair Levy et al. [65] coated rapamycin on the surface of the metallic stent using a 
temperature induced crystallization method. The in vitro drug release testing results 
showed that the drug release rate was more than 70% at 15 days. Wahid Khan et al. [66] 
investigated the drug release rate of carrier free-rapamycin coated CoCr alloy stents, and 
the results showed that the drug release rate was fast and highly dependent on the releas-
ing condition. Chen et al. [67] used an ultrasonic spray-coating method to make siroli-
mus/PLGA coatings on stents and studied the influence of the solvent types, spraying 
process parameters, and the plasticizer addition on the coating quality. In vitro drug re-
lease rates changed with the various ratios of sirolimus/PLGA, but there was no linear 
interaction between the drug release rate and the ratio of the drug/polymer. Raval et al. 
[68] modified the conventional airbrush technique to coat Co–Cr L605 metallic stents with 
the drug sirolimus and biodegradable polymeric-matrix-mixed layers. Drug releasing 
mechanisms were studied, and the results indicated that the drug release rate was faster 
in hydrophilic layer coatings compared with the hydrophobic coatings. Petersen et al. [69] 
produced a polymer coating containing antiproliferative drugs on stents and studied the 
drug-releasing mechanisms in the internal and external coatings. The results showed that 
this coating method could inhibit the proliferation of smooth muscle cells, reduce platelet 
adhesion, and promote endothelial cell growth. Van der Giessen et al. [70] investigated 
the effects of rapamycin doses on the clinical efficacy of drug-eluting stents, and the re-
sults showed that there was no significant difference. 

A stent surface with microgrooves can reduce the dose of anti-proliferative drugs 
and improve the efficiency of drug release. In this way, Firehawk (MicroPort, Shanghai, 
China) is designed with drug coatings containing the minimum dose of rapamycin clini-
cally. The Jactax stent (Boston Scientific, Marlborough, MA, USA) has 2750 discrete mi-
cropores on the outer surface, and a mixture of paclitaxel and PLA (50/50) was added to 
these micropores [114]. Another coating preparation method is to process the penetrating 
micropores on the stents. Conor stents (Conor Medsystems, Menlo Park, CA, USA) are 
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designed with drug coatings by this method, and the mixture of PLGA and paclitaxel is 
placed in each micropore. Although the drug release rate is relatively fast, in vivo tests 
have shown that the stents had a stronger inhibitory effect against neointimal hyperplasia 
than the stents with a long-term drug release coating [115]. In the penetrating micropores, 
anti-proliferative drugs can be loaded on the side of the vessel wall, and pro-endotheliali-
zation drugs can be loaded on side of the blood. In this way, the endothelialization of the 
stent is not delayed, and the probability of complications, such as late thrombosis and in-
stent restenosis, can be reduced. 

Table 2. Drugs commonly used in a vascular stent. 

Drug Structural Formula Mode of Action Products 

Sirolimus 

 

Anti-proliferative, immu-
nosuppressive 

Cordis Corporation, Hialeah, FL, USA 
Abbott Vascular, Temecula, CA, USA 

Biotronik, Berlin, Germany 
MicroPort, Shanghai, China 

Everolimus 

 

Immunosuppressive 

Cordis Corporation, Hialeah, FL, USA 
Abbott Vascular, Temecula, CA, USA 

Biotronik, Berlin, Germany 
MicroPort, Shanghai, China 

Paclitaxel 

 

Anti-proliferative agent 

Boston Scientific, Marlborough, MA, 
USA 

Conor Medsystems, Menlo Park, CA, 
USA 

Cook Medical, Bloomington, IN, USA 
Biotronik, Berlin, Germany 

Sahajanand Medical, Surat India 

Tacrolimus 

 

Anti-proliferative, immu-
nosuppressive 

Kaneka Corporation, Osaka, Japan 
Sorin Biomedica, Saluggia, Italy 

Zotarolimus 

 

Anti-proliferative, immu-
nosuppressive 

Medtronic CardioVascular, Minneap-
olis, MN, USA 
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Umirolimus 

 

Immunosuppressive 

Biosensors Inc., Schenectady, NY, USA 
Terumo Corporation, Tokyo, Japan 

Biosensors Europe SA, Morges, Swit-
zerland 

5.2. Surface Modification 
Surface modification is to treat the stent surface by physical or chemical methods so 

that the stent has better biocompatibility. Surface modification is conducive to the recov-
ery of damaged blood vessels, improves blood contact characteristics, and enhances the 
migration, adhesion, and proliferation of endothelial cells. At the same time, it also helps 
to control the drug release rate of stents. 

Meng et al. [71] deposited a chitosan/heparin coating onto vascular stents by layer-
by-layer self-assembly method, which promoted the process of reendothelialization and 
intimal healing after stent implantation. Qiu et al. [72] developed a biodegradable vascu-
lar stent with surface modified by 2-N, 6-O-sulfated chitosan. The experimental results 
showed that the microstructure of the modified stent changed, but the mechanical prop-
erties were not significantly influenced. The modified stent had good compatibility with 
blood and cells and could promote cell proliferation. Hossfeld et al. [73] modified the sur-
face of DESs by hyaluronic acid/chitosan films. The animal experiment results showed 
that modified stents could reduce the adsorption of blood cells and had a good effect on 
inhibiting thrombosis. Kim et al. [74] designed a multi-layer stent surface, which is coated 
by hyaluronic acid micelles, heparin, and poly-L-lysine, and the designed stents can in-
hibit the proliferation of smooth muscle cells. 

5.3. Microstructures 
Surface microstructures, including microgroove array, micropillar array, microlens 

array, and surface micropatterning [116,117], have the advantages of reducing resistance, 
improving lubrication and superhydrophobicity, and improving the physical properties 
of the material surface. Fabricating microstructures on the surface of stents can improve 
blood compatibility and blood fluidity after implantation and inhibit the adhesion of mac-
romolecules in the blood. 

The surface of metallic stents was treated with parallel grooves and compared with 
smooth controls by Palmaz et al. [75]. The results found that parallel grooves on the sur-
face significantly increased the migration rate of endothelial cells. Wang et al. [76] pro-
duced microstructures with different periods on the surface of metallic vascular stents 
and loaded the mixture of polymer and drug into the microstructures. The results showed 
that the microstructure with a period of 10 µm had the best drug adhesion and releasing 
properties. Aguilar et al. [77] produced micropatterning by ultraviolet laser and femtosec-
ond laser on the biodegradable polymer surface, and the results showed that both laser 
processing methods had the advantages of high-precision, convenience, flexibility, and no 
harmful chemical composition for polymeric materials. Ma et al. [78] prepared a multi-
functional 3D micro–nano structure by temporally shaped fs laser ablation on the surface 
of NiTi alloy stent. The biological experiments showed that the structure can effectively 
inhibit the proliferation of bacteria to form a biofilm and has good antibacterial infection 
ability. Ding et al. [79] studied the effect of microstructure geometry and size on the bio-
compatibility of material, and the results showed that 1 µm groove microstructures are 
good for cell adhesion and proliferation. Moreover, both groove and pillar microstruc-
tures can inhibit the growth and expansion of smooth muscle cells. 

5.4. Other Post-Processing Techniques 
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In addition to the above commonly used treatment processes, other strategies, such 
as polishing and oxidation treatment, can also promote the biocompatibility of vascular 
stents. 

Plant et al. [118] treated the surface of NiTi alloy by mechanical polishing and oxida-
tion heating treatment and found that the integrity of human endothelial monolayers on 
NiTi alloy can be controlled by surface treatment. Hryniewicz et al. [119] improved sur-
face corrosion resistance and fatigue resistance properties of CoCr alloy by electrolytic 
polishing under a magnetic field. Demir et al. [120] applied the electrochemical polishing 
technique to improve the surface quality of the CoCr stents and demonstrated that the 
adhered particles and molten material can be removed by this polishing technique. 

6. Conclusions 
This paper comprehensively analyzed the manufacturing technology of vascular 

stents and summarized the material selection, precision manufacturing, manufacturing 
post-processing, and other aspects. These factors have a great influence on the perfor-
mance of vascular stents. The existing technique for stent fabrication can satisfy basic clin-
ical requirements. However, there are still many limitations and shortcomings of existing 
stent manufacturing technology, especially for difficult miscellaneous diseases and per-
sonalized demands. 

Precision milling has great advantages, such as high processing efficiency and high 
processing accuracy and has great potential in vascular stent manufacturing. Similarly, 
post-processing techniques, such as complex surface textures, ion sputtering, and biocor-
rosion, can also be used to improve the surface quality and accuracy of the fabricated vas-
cular stents. Overall, vascular stent manufacturing technology will present multi-process 
combined and diversified development in the future. 
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