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Abstract: Advances in cancer research over the past half-century have clearly determined the molecu-
lar origins of the disease. Central to the use of molecular signatures for continued progress, including
rapid, reliable, and early diagnosis is the use of biomarkers. Specifically, extracellular vesicles as
biomarker cargo holders have generated significant interest. However, the isolation, purification, and
subsequent analysis of these extracellular vesicles remain a challenge. Technological advances driven
by microfluidics-enabled devices have made the challenges for isolation of extracellular vesicles an
emerging area of research with significant possibilities for use in clinical settings enabling point-of-
care diagnostics for cancer. In this article, we present a tutorial review of the existing microfluidic
technologies for cancer diagnostics with a focus on extracellular vesicle isolation methods.

Keywords: extracellular vesicles; exosome; microfluidics; cancer diagnosis

1. Introduction

The National Cancer Institute (NCI) defines cancer as a disease in which some of the
body’s cells grow uncontrollably and spread to other parts of the body. Solid tumors can
spread to other anatomical locations, recur in the same location post-treatment, or invade
nearby tissue. It is now generally believed that cancer is caused by changes to genes that
control cell function, especially impacting processes on how cells grow and divide. There
are more than 100 types of cancer, often named for the organs or tissues where these tumors
may form. The treatment of cancer requires reliable diagnostics to identify the type and
extent of the disease.

The accepted gold standard for cancer diagnosis is through a tissue biopsy [1]. How-
ever, recent reports have noted the multitude of challenges presented by tissue biopsies as
these are invasive procedures that may lead to patient discomfort and increase the risk of
cancer seeding other locations when carried out on inaccessible tumors [2]. A tissue biopsy
provides a snapshot of a tissue sample at a given time with only a small fraction of the
suspected tumor extracted for a biopsy [3]. Subsequently, an even smaller fraction of tissue
is analyzed, and therefore the tissue biopsy may not accurately portray intratumor spatial
heterogeneity [4–6].

With continued advances in cancer research [7–9], multiregion genetic analysis of
consecutive tumors has shown that each tumor presents diverse, spatially distinct mutations
with varied phenotypes within the same tumor [6]. Moreover, a single tumor biopsy sample
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may be inadequate to develop personalized medicine strategies due to the variations in
tumor properties [10,11]. Complexity, diversity, and varied physiological locations for solid
tumors [12] lead to additional limitations such as not having enough tumor tissue available
for biopsy or not being able to monitor intratumor temporal heterogeneity or metastatic
sites [5,13].

As a complementary method to tissue biopsies, a liquid biopsy is an investigation and
analysis of biofluids to identify biomarkers in a patient fluid sample for cancer diagnosis,
prognosis, and monitoring [14,15]. Liquid biopsies rely on the constituent materials in
biofluids representing the tumor state. Consequently, the main analytical targets in liquid
biopsies include extracellular vesicles (EVs), circulating nucleic acids, and circulating
tumor cells (CTCs) [16]. Liquid biopsies may provide additional potential benefits due to
relatively low cost [17,18], being minimally invasive [19,20], and providing the opportunity
for detailed molecular profiles of tumor-derived materials shed into a variety of biofluids,
such as blood [21], urine [22], saliva [23], and cerebrospinal fluid (CSF) [24,25].

Microfluidics is the development and study of devices and systems with operational
dimensions in the 1–100 µm range for the manipulation of small (10−9–10−18 L) quantities
of fluids [26]. As technological progress in microfluidics [27] has continued over the past
20 years, the use of analyzing patient biofluids (e.g., blood, urine, or saliva) containing
particles sized from 10 nm to 100 µm as a diagnostic tool for cancer has also found major in-
terest [28–30]. Microfluidic devices have been extensively used for the isolation, enrichment,
and detection of large biomolecules like DNA [31] and proteins [32], as well as extracellular
vesicles [33], circulating tumor cells (CTCs) [34], and circulating nucleic acids [35]. The
compact nature of microfluidic devices helps conduct multiple unit operations on a single
device with integrated functioning [36,37]. These devices are compact and portable and,
therefore, suitable for point-of-care (PoC) diagnostics [38,39].

The growing interest in developing microfluidics-enabled technologies for exploiting
the advantages offered by liquid biopsies is seen in Figure 1, as reflected by the rapid
growth of peer-reviewed publications in this area. A search for the keywords “liquid
biopsy” in December 2021 in Elsevier’s database Scopus yields 11,918 articles published
since 2010. The largest numbers were published most recently in 2020 (2182) and 2021
(2426). Adding the keyword “microfluidics” shows 2520 publications in the last decade,
with 2020 showing 537 articles published and the partial year for 2021 already showing
699 articles published, compared to fewer than 20 articles published 10 years ago.
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Therefore, the purpose of this article is to reach a broad audience of science and
engineering researchers developing new microscale flow-based technologies for cancer
diagnostics. This review article focuses on microfluidic and nanofluidic devices and the
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various technological approaches implemented through these devices for liquid biopsies
with an emphasis on methods and approaches used for isolation, detection, and analysis
of extracellular vesicles (EVs) from biofluids. The article describes a few conventional
isolation techniques to provide a contrast to the emerging microfluidics technologies,
with references cited in Section 3 providing the readers with an opportunity to consider
conventional EV isolation methods in further detail. Therefore, this article is structured
with an overview of the conventional EV isolation techniques followed by a discussion
of various microfluidic technologies using phenomena like immunoaffinity, filtration,
acoustofluidics, inertial microfluidics, and electrokinetics. It should be noted that there
are no standardized definitions to compare the isolation efficiency of a microfluidic device
and subsequent sample purity. Each study defines parameters relevant to the study for
quantifying the performance of the respective devices; hence, in this review, we have
included the definition of parameters as noted by the respective authors. We believe the
field as a whole can benefit from a standardized definition and generation of comparative
metrics, allowing the comparison of various microfluidic technologies.

2. Importance of Extracellular Vesicles

Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound carri-
ers released by nearly all cells [40,41]. EVs carry complex cargoes, including proteins, lipids,
DNA, miRNA, and nucleic acids [42,43]. Previously, it was assumed that EVs were a mech-
anism to discard nonfunctional cellular components [44,45]. Based on size, composition,
and origin, EVs can be classified into two main categories: exosomes and microvesicles [3].
Exosomes are small EVs (30–100 nm) and are secreted into the extracellular environment via
fusion of multivesicular endosomes with the cell surface, whereas microvesicles are larger
EVs (100–1000 nm) that are released by the outward budding and cleavage of the plasma
membrane as shown in Figure 2 [46]. Exosomes are of particular importance because
these particles have been shown to contain biomarkers, such as nucleic acids and proteins,
from their origin cell that have been shown to influence intercellular communication [47].
Further work is needed to evaluate the cargo and roles for microvesicles, especially the
large EVs greater than 500 nm in size.
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based on size and origin. Microvesicles are typically larger (100–1000 nm), whereas exosomes are
smaller (50–150 nm). There are a variety of terms used to describe extracellular vesicles, with emerging
consensus on defining them as small or large EVs. Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, Nature Reviews Molecular Cell Biology [46].

Through modulation of intercellular communication, EVs also play a role in tumori-
genesis [48–50]. The tumor microenvironment, which includes blood vessels, fibroblasts,
immune cells, and cancer cells, regulates tumor resistance, progression, and metastasis,
and all cells within the microenvironment can release EVs [51]. Additionally, researchers
have discovered that tumor cells may release more EVs than normal cells [3,52]. Normal
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or noncancer cells can internalize EVs via receptor-mediated endocytosis, phagocytosis,
macropinocytosis, or fusion with the membrane, as shown in Figure 3, resulting in the
subsequent changes in the recipient cell [46]. Therefore, tumor-derived exosomes can
travel to distal premetastatic target cells and promote metastatic tumor growth by initiating
stromal support of tumor angiogenesis, decreasing the antitumor immune response, and
enhancing the proliferation of tumor cells [40,53–56].
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Figure 3. Visual representation of receptor-mediated endocytosis, macropinocytosis, phagocytosis,
and membrane fusion of EVs into recipient cells as a means of intercellular communication. Reprinted
by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature
Reviews Molecular Cell Biology [46].

For example, in 2018, Guisti et al. demonstrated intercellular EV modulation in vitro
by treating normal human dermal fibroblasts (NHDF) with EVs derived from human
ovarian cancer cells, SKOV3 (more aggressive) and CABA I (less aggressive) [57]. During
treatment, the morphology of fibroblasts transitioned to resemble cancer-associated fibrob-
lasts (CAFs), and this transition was later confirmed by marker analysis found in CAFs,
such as α-SMA and FSP-1 [57]. These CAFs were able to influence the proliferation, motil-
ity, and invasiveness of surrounding endothelial, tumor, and fibroblast cells, confirming
that EVs from ovarian cancer cells cause normal fibroblast cells to behave like CAFs, and
these simulated CAFs may alter the behavior of surrounding cells [57]. Similarly, Webber
et al. revealed that TGFβ1 expressed on the surface of exosomes derived from prostate
cancer cells (PCa) was necessary for the differentiation from normal to tumor-promoting
stroma in vivo [58]. In another in vitro experiment, PCa-derived exosomes promoted cell
migration, attenuated apoptosis, and escalated cancer cell growth [59].

It is important to note that while the EV cargo often presents a snapshot of the host
cell [47,60], the composition of EVs can be different from that of origin cells due to selective
cargo sorting [61]. Despite the potential diagnostic and prognostic utility of EVs, the
practical relevance of using EVs for routine analysis is limited, as the methodologies
required for EV isolation are either time-consuming, provide low yields of EV cargo, or
add substantial cost to diagnostic processes [61].

3. Conventional Isolation Techniques

Isolation of EVs is briefly described in this section with a particular focus on centrifugation-
based methods, ultrafiltration, and polymer-based precipitation methods that have been
the cornerstone methodologies for the isolation and detection of EVs.

Table 1 presents a summary of methods for the isolation of cancer-relevant materials
using conventional techniques.
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Table 1. Table summarizing conventional isolation techniques for EVs.

Isolation Method Operating
Principle Advantages Study Isolation

Efficiency Throughput

Centrifugation
Spinning results in

separation and
pellet formation

High purity

Use of multiple
centrifugation cycles for

exosome enrichment from
human serum [62]

- -

Size exclusion Particles separated
based on size

Minimal impact on
size and features

Quality and efficiency
assessment of qEV using
nano-flow cytometry [63]

67.7 ± 13.1% [63] -

Polymer-based
precipitation

Precipitation of
lower solubility
components of
sample out of

solution

Time efficient;
requires minimal

equipment

Quality and efficiency
assessment of ExoQuick

isolation kit using
nano-flow cytometry [63]

~82% [63] -

3.1. Centrifugation-Based Techniques

One of the more common techniques for the isolation of extracellular vesicles (EVs) is
ultracentrifugation. In this technique, a sample from cell-cultured media or serum [64] is
spun at high speeds, causing a separation of the components to form a pellet containing
the majority of the EVs. The literature is inconsistent in defining a precise speed for
ultracentrifugation compared to other centrifugation methods [65]. However, generally
for ultracentrifugation, spin speeds with accelerations to 2 × 105 g have previously been
reported [66–69]. To purify the pelleted samples, it may be necessary to spin the sample
multiple times [66]. In standard centrifugation processes, speeds with acceleration of
4 × 104 g have been reported [62]. In differential ultracentrifugation, the sample is spun in
a sequence of increasing speeds, commonly starting with accelerations of 300–400 g, then
2000 g, and reaching 10,000 g [69].

However, excessive spinning may result in damage to the EVs [66]. On the other hand,
inadequate centrifugation may result in a high level of impurities in the EV sample due to co-
isolation, which occurs when other components in the liquid samples such as extravesicular
protein complexes or aggregates, lipoprotein particles, and other contaminants [70] are
incorporated into the isolated EV sample [67]. Impure samples complicate the analysis of
EVs as it is difficult to determine whether characteristics are directly related to the EVs
or the other co-isolated components [67]. Moreover, past results have also shown that
extended centrifugation beyond 70 min can result in higher yields of RNA and protein from
the EVs, but duration beyond four hours may result in the presence of excess protein [65].
Consequently, determining the optimal centrifugation conditions for the spin duration is
important [65].

Previous reports have evaluated the efficiency of multiple cycles of centrifugation
at 4 × 104 g versus ultracentrifugation at 11 × 104 g in the isolation of EVs, and the
results have indicated that five cycles at either acceleration may be required to obtain
a suitable sample with the two methods generating similar results [62]. Others have
examined the biofluid viscosity dependence on the efficiency of the EV isolation. The
results suggest that sample dilution prior to ultracentrifugation may be advantageous [71].
In a comparison of isolation methods, when ultracentrifugation was used in isolation
from samples in cell culture media, particle concentrations of 6.20 × 108, 6.33 × 107, and
9.17 × 106 particles/mL were obtained, respectively, over three samples in a concentration
gradient [64]. In the same comparison, the use of ultracentrifugation in serum samples
produced particle concentrations of 6.35 × 109, 2.22 × 109, and 1.23 × 109 particles/mL
over three samples [64]. In a separate study comparing EV isolation methods, the purity
obtained through differential ultracentrifugation was found to be 78.2± 0.6%, where purity
is based on the particle counts before and after treatment of Triton X-100 (used as a non-
ionic surfactant for lysing the phospholipid bilayer of EVs) [63]. The drawbacks of using
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ultracentrifugation were noted throughout this section with the primary ones relating to
high cost, low EV yield, and long run times; however, this technique may yield higher
protein purity [64].

3.2. Size Exclusion

Size exclusion chromatography is another method of EV isolation in which particles
are separated based on size. This method can be applied to a wide variety of biofluids,
including cell culture media, blood plasma and serum, urine, milk, saliva, nasal lavage,
synovial fluid, cerebrospinal fluids, ascites, and tear fluids [72]. A sample is loaded into
a column often containing cross-linked but porous agarose beads [72]. Larger molecules
pass through the column as they are too large to enter the pores, while smaller components
enter the pores and take longer to elute [69]. EVs are larger than smaller molecules [68]
and therefore elute faster. One advantage of using size exclusion chromatography is that
it has minimal impact on EV properties [72,73], with the sample purity, scalability, and
reproducibility offered by this method being considered positives [69]. Work of Tian
et al. on size exclusion chromatography performed using qEV columns shows purity
of 28.1 ± 0.8% [63] with twenty minutes to process one sample [69,74]. They lysed the
phospholipid bilayer of EVs using non-ionic surfactant Triton X-100 and used the particle
counts before and after treatment of Triton X-100 as a measure of EV preparations purity [63].
However, this method may not be effective in isolating particles of similar sizes or EVs
from lipoproteins [72,75].

3.3. Polymer-Based Precipitation Methods

In polymer-based precipitation methods, reagents are added to a conditioned culture
medium, causing the lower-solubility components of the sample to precipitate out of the
solution [76]. The sample is then spun with accelerations of approximately 1500 g [77] to
obtain a collection of EVs [69]. This creates a pellet similar to that obtained through the use
of ultracentrifugation but avoids the higher centrifugal forces that may damage EVs [78].
These methods have an incubation time from 30 min to 12 h [78]. One disadvantage of
this method lies in the fact that co-isolation may occur [78,79]. Additionally, the reagents
added are often difficult to remove, and these reagents can interfere with the subsequent
analysis of EVs [78,80]. Protein concentration and particle numbers are commonly used for
the quantification of exosomes. Generally, exosome purity is defined as the ratio of particle
number to protein concentration [81]. Moreover, the purity of these samples may be lower
than that obtained by other methods such as ultracentrifugation due to protein contamina-
tion [64]. For example, components of plasma such as fibrinogen may interfere with sample
purity, but additional steps, including treatment with thrombin and centrifugation, may
eliminate this interference [63]. Additionally, serum albumin and apolipoprotein E were
found in samples isolated through the use of polymer-based precipitation methods [82].
The purity of two different types of polymer precipitation was assessed, and one produced
a purity of 5.3 ± 2.6%, and the other had a purity of 18.5 ± 1.5% [63]. Precipitation meth-
ods may be favorable due to the preservation of biological activity found in EVs and the
minimal equipment required [76]. However, the commercial kits used in polymer-based
precipitation methods use supplies costing 4 USD/mL of the sample [76] and total cost
reaching USD 50 per test. To minimize expenses, lower-cost precipitation reagents such
as polyethylene glycol may be used [83]. When used alongside ultracentrifugation, these
methods may result in higher yields than other conventional isolation techniques [84]. In
fact, particle concentrations obtained through polymer-based precipitation methods maybe
two to four orders of magnitude larger than those obtained through ultracentrifugation
only [63].

4. Microfluidic-Based Devices for Extracellular Vesicle Isolation

While much progress has occurred over time in cancer diagnostic methods, the use of
EVs remains underutilized, as articulated in the previous sections. The challenges in the



Micromachines 2022, 13, 139 7 of 18

isolation and capture of EVs prompted the development of microfluidic systems to separate
EVs in a relatively short time (10–200 min) with small sample volumes (100 µL–8 mL) [30].
It is worth noting that cancer diagnostic methods deploying microfluidics and nanofluidics
constitute a vast area of research, with circulating cancer cells, cell-free DNA, and other
biomarkers also being researched extensively. However, as the focus of this work is on
EVs, in the sections to follow we describe only a subset of this broader field, as many other
reviews are available for other biomaterials used in cancer diagnostics [5,15,16,85–89].

Table 2 presents a summary of methods for the isolation of cancer-relevant materials
using microfluidic technologies.

Table 2. Table summarizing several microfluidic techniques for isolation of EVs.

Isolation
Method

Operating
Principle Advantages Study Isolation

Efficiency Throughput

Immunoaffinity

Interactions
between

antibodies and
antigens

High specificity

HBEXO-chip for purifying
tumor-derived exosomes
and establishing miRNA
signature in pancreatic

cancer with
GPC1+exosomes as

biomarkers [90]

~75% [90] -

Using CD-63-1 aptamer
for the isolation of EVs

(50–150 nm) from CD-63
positive tumor samples

[91]

- -

OncoBean (DUO) using
melanoma-specific

antibodies MCAM and
MCSP for exosome

isolation [92]

- -

Immunoaffinity-based
isolation of melanoma
cell-derived exosomes

from plasma of patients
with melanoma with
CSPG4-specific mAb

763.74 as biomarker [93]

- -

Filtration
Difference in
particle size
population

No need for
external actuation;

easy to use

Isolation of bladder cancer
EVs from urine samples

using integrated
double-filtration device

[94]

74.2% [94] -

Isolation of exosome-like
lipid vesicles via a ciliated

micropillar device [95]

60% (83 nm lipid
vesicles), 45%
(120 nm lipid
vesicles) [95]

3 µL/min [95]

Isolation and capture of
EVs from liposarcoma
cell-conditioned media

(LCCM) and
dedifferentiated

liposarcoma patient
serum, with MDM2 and

CD-63 as biomarkers [96]

76% (LCCM),
36%

(dedifferentiated
liposarcoma

patient serum)
[96]

10 µL/min [96]
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Table 2. Cont.

Isolation
Method

Operating
Principle Advantages Study Isolation

Efficiency Throughput

Acoustofluidics Acoustic waves

Biocompatibility,
versatility,
precision,
flexibility

Isolation of salivary
exosomes from Human
papilloma viral (HPV)-

associated oropharyngeal
cancer

patients with HPV DNA
as biomarker [97]

- -

Isolating exosomes
directly from undiluted

human blood [98]
82% [98] 4 µL/min [98]

Nanoparticle enrichment
and separation using

acoustic centrifugation
[99]

- -

Acoustic trapping for the
enrichment of EVs from
cell culture conditioned
media, urine, and blood

plasma from healthy
volunteers [100]

- 10 µL/min
[100]

Separation of exosomes
using acoustic nanofilter

system [101]
>90% [101] -

Viscoelastic flow

Imbalance of
normal forces in a
non-Newtonian

medium

Ease of use, no
requirements for

external actuation,
robust

performance once
operational

parameters are
optimized

Separation of exosomes
from cell culture media

and serum of
adenocarcinomic human
alveolar basal epithelial

cells [102]

>80% [102] 200 µL/h [102]

Electrokinetics
Charge of the
particle and
electrolyte

Strong actuation
force due to linear

scaling law

On-chip microcapillary
electrophoresis for

separation of human
breast cancer derived

exosomes [103]

- -

4.1. Isolation Based on Immunoaffinity

In immunoaffinity-based separation, molecules are selectively captured due to specific
interactions between antibodies and antigens [104]. The stationary phase often consists of
antibodies that have been immobilized and target specific antigens within the sample and
isolate portions containing this specific antigen [105]. The implementation of this approach
for microfluidic devices usually requires functionalization of the walls of a microfluidics
device with immobilized antibodies [104]. Therefore, surface preparation for function-
alization [106,107] plays an important role in tethering antibodies [96]. Physicochemical
interactions leading to eventual binding or capture of antigens at the immobilized antibody
site include hydrogen bonding, coulombic interactions, Van der Waals interactions, and
hydrophobic interactions [104].

A high throughput implementation of immunoaffinity separation is the HBEXO-Chip,
a device featuring eight channels and a herringbone design that allows for the separation
of EVs 30–150 nm in diameter from plasma [90]. The capture efficiency was calculated
by allowing 50 million exosomes per milliliter of PBS solution to flow into the device,
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followed by measuring the concentration of nanoparticles before and after the sample
run through the HBEXO-Chip to determine the number of particles captured [90]. The
HBEXO-Chip has demonstrated a 75% capture efficiency of tumor-derived exosomes from
plasma [90]. Other devices reported for isolating EVs 50–150 nm in diameter have targeted
specific cancer biomarkers [91]. For example, a CD-63-1 aptamer was designed for the
isolation of EVs 50–150 nm in diameter from tumor samples which are positive for CD-63,
considered to be a biomarker in certain types of cancers, including breast cancer [91].
The OncoBean chip (Figure 4) uses biotin-avidin chemistry to facilitate the collection of
EVs [108]. Kang et al. reported on the dual-utilization OncoBean (DUO) by targeting
separation of EVs using melanoma-specific antibodies melanoma cell adhesion molecule
(MCAM) and melanoma-associated chondroitin sulfate proteoglycan (MCSP) [92]. In
another implementation of immunoaffinity with microfluidics, devices use magnetic beads
coated with antibodies [109]. Additionally, specific biomarkers can also be used to isolate
specific EVs with diameters 40–120 nm [110]. For example, Sharma et al. used melanoma-
specific biomarkers such as mAb 763.74 (specific for CSPG4 epitope) for the isolation of
EVs (30–150 nm) from melanoma cells [93].

Micromachines 2022, 13, x 9 of 20 
 

 

 
Figure 4. Schematic showing features and functionality of the OncoBean Chip. Width, length, and 
height of posts were 50, 118, and 100 µm, respectively, with an interpost distance of 25–32 µm. Neu-
trAvidin is used to coat the surface of the device, which helps in the incorporation of desthiobiotin-
conjugated antibodies required for recognition of surface markers of EVs. Biotin is used for the re-
lease of the desthiobiotin-antibody-EV complex and effectively allowing for collection of EVs. Re-
printed from [108] with permission from the Royal Society of Chemistry. 

4.2. Isolation Based on Size 
4.2.1. Filtration 

Filtration within microfluidic devices is a passive, size-based isolation technique that 
utilizes a physical barrier to isolate desired EVs. The filters can be microfabricated, or ex-
isting filtration media can be integrated within microfluidic devices [111,112]. Filtration 
systems provide advantages over other microfluidic mechanisms due to their inherent 
simplicity with minimal requirements to label the desired EV products with fluorescent 
tags for imaging prior to separation. Some isolation devices utilize common labeling 
methods like fluorescent tagging to image EVs using fluorescent microscopy, though such 
techniques can disrupt the entrapment ability by altering the size, shape, and functionality 
of the molecules to which they are attached. Label-free isolation methods used in filtration 
devices contribute to higher entrapment efficiency while maintaining the functionality of 
EVs so that they can be examined after isolation [111]. However, the main challenge for 
these EV isolation methods is the lack of specificity in isolating particles [96]. 

Many implementations of EV isolation using size-based filtration have been re-
ported. For example, Liang et al. fabricated an integrated double-filtration device that iso-
lated EVs from bladder cancer patients [94]. The device consisted of two polycarbonate 
membranes with 30 and 200 nm pores, which enabled the isolation of EVs within the 30–
200 nm size range, and after filtration of the urine samples, the EVs were then detected 
and quantified using enzyme-linked immunoassay (ELISA) [94]. The isolation efficiency 
was defined as the ratio of the number of EVs isolated and the number of EVs in the input 
sample. In comparison against healthy control urine samples, the samples from bladder 
cancer participants demonstrated a significant increase of EVs present in the urine with 
74.2% isolation and entrapment efficiency [94]. To examine its diagnostic effectiveness, 
the authors determined the device’s sensitivity and specificity, where sensitivity refers to 
the ELISA chip’s ability to correctly identify cancer-related EVs, and specificity refers to 
the chip’s ability to accurately distinguish non-cancer-related particles. Overall, the device 
demonstrated 81.3% sensitivity with a specificity of 90% [94], thus suggesting clinical fea-
sibility for the use of this device for cancer diagnostics. Another device of interest—a cili-
ated micropillar-based filtration device developed by Wang et al.—successfully isolated 
exosome-like lipid vesicles from a 30 µL injection sample with high efficiency in 10 min 
[95]. Smaller, 83 nm lipid vesicles were trapped and recovered within the device with 
~60% retention, while larger, 120 nm lipid vesicles observed a 15% retention decrease [95]. 

Figure 4. Schematic showing features and functionality of the OncoBean Chip. Width, length,
and height of posts were 50, 118, and 100 µm, respectively, with an interpost distance of 25–32 µm.
NeutrAvidin is used to coat the surface of the device, which helps in the incorporation of desthiobiotin-
conjugated antibodies required for recognition of surface markers of EVs. Biotin is used for the release
of the desthiobiotin-antibody-EV complex and effectively allowing for collection of EVs. Reprinted
from [108] with permission from the Royal Society of Chemistry.

4.2. Isolation Based on Size
4.2.1. Filtration

Filtration within microfluidic devices is a passive, size-based isolation technique that
utilizes a physical barrier to isolate desired EVs. The filters can be microfabricated, or
existing filtration media can be integrated within microfluidic devices [111,112]. Filtration
systems provide advantages over other microfluidic mechanisms due to their inherent
simplicity with minimal requirements to label the desired EV products with fluorescent
tags for imaging prior to separation. Some isolation devices utilize common labeling
methods like fluorescent tagging to image EVs using fluorescent microscopy, though such
techniques can disrupt the entrapment ability by altering the size, shape, and functionality
of the molecules to which they are attached. Label-free isolation methods used in filtration
devices contribute to higher entrapment efficiency while maintaining the functionality of
EVs so that they can be examined after isolation [111]. However, the main challenge for
these EV isolation methods is the lack of specificity in isolating particles [96].
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Many implementations of EV isolation using size-based filtration have been reported.
For example, Liang et al. fabricated an integrated double-filtration device that isolated EVs
from bladder cancer patients [94]. The device consisted of two polycarbonate membranes
with 30 and 200 nm pores, which enabled the isolation of EVs within the 30–200 nm size
range, and after filtration of the urine samples, the EVs were then detected and quantified
using enzyme-linked immunoassay (ELISA) [94]. The isolation efficiency was defined as
the ratio of the number of EVs isolated and the number of EVs in the input sample. In com-
parison against healthy control urine samples, the samples from bladder cancer participants
demonstrated a significant increase of EVs present in the urine with 74.2% isolation and
entrapment efficiency [94]. To examine its diagnostic effectiveness, the authors determined
the device’s sensitivity and specificity, where sensitivity refers to the ELISA chip’s ability to
correctly identify cancer-related EVs, and specificity refers to the chip’s ability to accurately
distinguish non-cancer-related particles. Overall, the device demonstrated 81.3% sensitivity
with a specificity of 90% [94], thus suggesting clinical feasibility for the use of this device
for cancer diagnostics. Another device of interest—a ciliated micropillar-based filtration
device developed by Wang et al.—successfully isolated exosome-like lipid vesicles from
a 30 µL injection sample with high efficiency in 10 min [95]. Smaller, 83 nm lipid vesicles
were trapped and recovered within the device with ~60% retention, while larger, 120 nm
lipid vesicles observed a 15% retention decrease [95]. Casadei et al. integrated the tasks of
size-based separation in a crossflow arrangement with the CD-63 antibody immunoaffinity-
based capture of liposarcoma-derived EVs in a single micro-nanofluidic device (Figure 5)
and achieved ~76% and ~32% EV recovery for liposarcoma cell-conditioned media and
dedifferentiated liposarcoma patient serum, respectively, when compared against ultra-
centrifugation [96]. They also reported a significant advance over existing state-of-the-art
techniques with a five-fold enhancement in the quantity of liposarcoma-relevant EV-DNA
obtained in 30 min [96].
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4.2.2. Acoustofluidics

Acoustofluidics are microfluidic devices that integrate microfluidics and wave acous-
tics. These devices use acoustic (or sound) waves for particle patterning, transport, focusing,
separation, sorting, and enrichment of particles [113]. These devices use either surface
acoustic waves (SAWs) or bulk acoustic waves (BAWs) [114]. Acoustic waves which prop-
agate along the surface of elastic material are called SAWs [115]. In contrast, BAW are
standing waves that are generated within the volume of the elastic medium and propagate
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in the interior of the device [114]. Acoustic radiation and acoustic streaming are the two
main forces that govern the separation of particles which depend on the particle size and
material properties, including density and compressibility. Acoustic radiation forces are
experienced by a particle when it interacts with an acoustic wave and is proportional to
the particle volume, whereas acoustic streaming arises in the fluid by the absorption of
high acoustic oscillations and induces the size-dependent Stokes drag force on the particles
suspended in the fluid [116,117]. Acoustofluidic devices provide various advantages for
EV isolation because these devices can be operated label-free with minimal contact and use
of reagents [114,118].

Wang et al. developed an acoustofluidic device for the detection of human papillomavirus-
associated oropharyngeal cancer (HPV-OPC) using human papilloma viral (HPV) DNA in
the whole saliva as a diagnostic means for HPV-POC [97]. Their device consisted of a PDMS
microchannel 100 µm in height and 800 µm in width bonded with two pairs of interdigitated
transducers (IDTs) generating SAWs at frequencies of 20MHz and 40MHz [97]. The two
IDTs were at an angle with respect to the microchannel. The output resulted in isolated
EVs in the 30–150 nm diameter range [97]. Their results showed an insignificant effect of
variable viscosity (from 1.10 to 2.30 mPa.s) of saliva samples on the number of isolated
EVs [97]. In a similar device, Wu et al. exhibited the isolation of exosomes from whole
blood [98]. Gu et al. proposed an acoustofluidic centrifuge system capable of nanoparticle
transport, concentration, and separation [99]. Their device consists of a circular PDMS
containment ring with a pair of tilted IDTs surrounding the circular PDMS [99]. Acoustic
radiation force and drag force produced by the SAWs generate a rotational vortex field in
the sample droplet, which forced the particles to follow a helical trajectory, resulting in
their rapid concentration to the center of the droplet [99].

Ku et al. used acoustic trapping for the enrichment of EVs from urine, cell-cultured
conditioned media, and blood from healthy volunteers [100]. Their device output sample
carried EVs varying from exosomes to microvesicles in size and included observable levels
of intravesicular microRNAs and further confirmed no impact of acoustic waves on the
integrity or miRNA content of the trapped vesicles [100]. Lee et al. developed a nanofilter
based on acoustofluidics for the separation of extracellular microvesicles and isolated
exosomes of diameter less than 200 nm from erythrocyte-derived vesicles from stored blood
units and cell-conditioned media with a separation yield of >90% [101].

4.2.3. Inertial Microfluidics

An emerging class of devices examines the size-dependent isolation of neutrally buoy-
ant particles via lateral migration in a non-Newtonian fluid [102,119,120]. Such devices
utilize the non-Newtonian viscoelastic properties of blood or saliva to enhance simple
isolation capabilities while minimizing pre-isolation modifications [119,121]. Unlike New-
tonian fluids, particles in viscoelastic flows are subject to an imbalance of normal stresses
that drives their lateral migration, such as the inward driving force of fluid elasticity, the
outward force of shear thinning, and particle motion [119,120]. Larger particles demon-
strate a tendency to migrate toward the center of the channel at a faster rate, while smaller
particles remain along the side walls of the device [102,121]. Such microfluidic devices are
advantageous as they do not require externally applied fields (e.g., electric, magnetic, or
acoustic), which simplifies device design and fabrication [102].

Exploiting fluid inertia and viscoelastic properties has been successful for CTC iso-
lation. However, their use for isolating EVs is limited as with nanoscale particles such as
EVs, the inertial lift forces [122] are much smaller, and the standard approaches of these
inertial microfluidics may not work. However, recent advances in combined electrokinetic
and Poiseuille flow have shown the ability to manipulate dielectric particles in Newtonian
flows [123,124], with the application to EV isolation remaining an open question. Though,
for non-Newtonian fluids, Liu et al. reported isolating exosomes from other large EVs in
a diluted poly-(oxyethylene) (PEO) solution that served to enhance the viscoelasticity of
the solution and generate the lift forces responsible for EV isolation from smaller particles
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(Figure 6) [102]. Nanoparticle tracking analysis (NTA) was used to determine the recovery
rate and purity of the separation by measuring the size distributions of the initial and
processed samples [102]. The device demonstrated a greater than 90% separation purity
with more than 80% recovery [102].
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large EVs. The chip consists of two inlets and three outlets where EVs are collected in the center outlet
while exosomes exit the two peripheral outlets. (b) Illustration of exosome isolation in a viscoelastic
medium via elastic lift force (blue arrows) to migrate larger EVs toward the center of the channel
while maintaining lateral exosome flow along the side walls of the device. Reprinted with permission
from Lui et al. [102]. Copyright 2017 American Chemical Society.

4.3. Isolation Based on Electrokinetics

The coupling of an applied electric field to fluid flow gives rise to electrokinetic
flows [125]. There are a variety of electrokinetic phenomena [126] that have found use in
microfluidics, such as electrophoresis [127], electromigration [128], electroosmosis, dielec-
trophoresis [129], streaming potential, and sedimentation potential.

Electrokinetic phenomena have also been used for the isolation and detection of
EVs [130–134]. Aïzel et al. used a radial geometry in a micro-nanofluidic device for the
enrichment of viruses and exosomes [135]. On application of an electric field across 100 nm
deep radial channels, they observed concentration and repulsion at the cathodic and anodic
part, respectively, achieving an enrichment factor of up to 800 for 50 nm nanoparticles
within 1 h [135]. Dey et al. used a symmetric AC electric field [136] in a converging-
diverging channel to analyze the trapping of charged microparticles [137]. They studied
the trapping mechanisms at low (≤100 Hz) and intermediate (from ~100 Hz to 100 kHz)
frequencies and reported a significant dominance of linear electrokinetic phenomena,
including electrophoresis and electroosmosis, over the effect of positive electrophoresis in
the concentration profile of the analyte which was trapped [137].

A previous report by Kato et al. showed the use of on-chip microcapillary elec-
trophoresis (µCE) and laser dark-field microscopy to demonstrate the correlation between
the average ζ potentials of exosomes extracted from six different types of human cell cul-
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tures (normal breast epithelial cells (MCF10A), breast cancer cells (MDA-MB-231 [MM231]
and MDA-MB-231-luc-D3H2LN cells [MM231LN]), normal prostate epithelial cells (PNT2),
and prostate cancer cells (PC-3 and PC-3M-luc-C6 [PC-3ML])) in serum-free media and
their cells of origin [138]. They reported a negative shift in the ζ potential distribution
of tumor-derived exosomes compared to exosomes derived from nontumor cells [138].
Extending the study for the label-free prescreening of prostate cancer using the same µCE
system [138], Akagi et al. analyzed the ζ potential of prostate cancer exosomes and reported
a larger ζ potential for cancer-derived exosomes [139]. Akagi et al. also integrated their
µCE system [138] with immunoaffinity for the differential protein expression profiling of
individual EVs for the detection of overexpression of CD-63 glycoproteins on EVs [103].
They used EVs collected from the culture supernatant of MDA-MB-231 human breast cancer
cells and anti-human CD63 antibody and immunoglobulin G (IgG) as EV markers [103].

Devices based on microfluidic techniques for EV isolation typically offer faster separa-
tion times with smaller sample volumes compared to conventional EV isolation methods.
Tables 1 and 2 give an overview and comparison of the discussed conventional and mi-
crofluidic EV isolation methods. As noted throughout the review, each method offers
advantages and disadvantages. At present, there are no standard methods to compare
microfluidic device performance and conventional methods. Specific definitions arise
from individual studies based on samples used, equipment, personnel, cost, and resource
availability. There is also a gap in the literature in terms of heterogeneity in EV isolation
techniques with no common definitions or protocol for reporting and defining efficiency
parameters, including characterization of EV size, composition, and purity across cancer
and methodology types.

5. Summary and Conclusions

This tutorial review noted the progress in the use of microfluidics-enabled devices for
the isolation of extracellular vesicles from a variety of biofluids. The article also summarized
comparisons to existing technologies. Clearly, microfluidics can play an important role
in developing translational solutions with impact in point-of-care diagnostics for cancer.
The survey of publications indicates robust interest in continued device development
and technology progress in new and innovative approaches that use a variety of physical
phenomena for isolation and analysis of extracellular vesicles.
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