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Abstract: It is a major challenge to effectively inhibit microbial pathogens in the treatment of infec-
tious diseases. Research on the application of nanomaterials as antibacterial agents has evidenced
their great potential for the remedy of infectious disease. Among these nanomaterials, carbon
quantum dots (CQDs) have attracted much attention owing to their unique optical properties and
high biosafety. In this work, P-doped CQDs were prepared by simple hydrothermal treatment of
m-aminophenol and phosphoric acid with fluorescence emission at 501 nm when excited at 429 nm.
The P-doped CQDs showed effective antibacterial activity against Escherichia coli (E. coli) and Staphy-
lococcus aureus (S. aureus). The minimal inhibitory concentrations (MICs) of P-doped CQD were
1.23 mg/mL for E. coli and 1.44 mg/mL for S. aureus. Furthermore, the morphologies of E. coli cells
were damaged and S. aureus became irregular when treated with the P-doped CQDs. The results
of zeta potential analysis demonstrated that the P-doped CQDs inhibit antibacterial activity and
destroy the structure of bacteria by electronic interaction. In combination, the results of this study
indicate that the as-prepared P-doped CQDs can be a promising candidate for the treatment of
bacterial infections.

Keywords: carbon quantum dots; biocompatibility; antibacterial activity

1. Introduction

Bacterial infections, especially those caused by drug-resistant bacteria, threaten public
health and have always been a serious problem worldwide [1,2]. Due to the abuse of antibi-
otics, these infections have become more difficult to cure because of increasingly serious
drug-resistance [3,4]. It is of urgent concern to develop alternative antimicrobial agents
with excellent properties against bacterial infection. Recently, nanomaterials involving
metal or metal oxide have aroused widespread interest due to their great potential in the
treatment of bacterial infections from antibiotic-resistant bacteria [5–8]. However, it is
essential to balance antibacterial efficiency and biosafety, which has become an obstacle
in the clinical application of these semiconductor nanomaterials. Carbon-based nano-
materials, including fullerene, carbon nanotubes, graphene, graphene oxide, and carbon
quantum dots [9–11], have been proved to have efficient antimicrobial activity and high
biocompatibility. Therefore, these carbon-based nanomaterials offer more potential for
the elimination of various bacterial infections with negligible cytotoxicity and excellent
biocompatibility.

Carbon quantum dots (CQDs), a new type of zero-dimensional carbon-based nanoma-
terial, exhibit intriguing properties, such as photostability, great environmental sustain-
ability, high water dispersibility, easy synthesis, low production cost, and low toxicity, as
well as good biocompatibility [12–15]. These characteristics mean that CQDs are excellent
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candidates for use as optical nanoprobes for chemical analysis [16,17], and for fingerprint
imaging [18], biosensors [19,20], fluorescent labeling, and bioimaging [21,22]. Recently,
numerous studies on CQDs with antibacterial activity have been reported. Huang et al. re-
ported that super-cationic CQDs possessed strong antibacterial activities against multidrug-
resistant bacteria and superior efficacy in treating eye-related bacterial infections [23]. Qu
et al. reported that various surface-charged carbon dots induced programmed bacterial
death and systematically analyzed the apoptosis mechanisms of E. coli cells [24]. Kang
et al. developed a series of cationic carbon dots, which can selectively kill Gram-positive
bacteria via electrostatic interaction, with a greater positive charge showing stronger the
antibacterial ability [25]. Among them, the most positively charged CQDs have shown a
considerable capacity for the inhibition of bacterial growth due to their strong antibacterial
effect by interacting with the negatively charged components of bacterial cell walls. There-
fore, it is critical to regulate the surface charge and to synthesize CQDs with a controllable
positive charge.

Inspired by these superior properties and the potential applications, more researchers
have focused on the preparation of positively charged CQDs. The heteroatoms, such as
nitrogen (N) and boron (B), when used in the doping of CQDs, can effectively tune the
electronic energy level and affect certain intrinsic chemical properties of CQDs, which
has attracted growing interest from researchers [20,26,27]. The N atom has been widely
used for chemical doping in CQDs because of its five valence electrons strongly bonding
with carbon atoms [28,29]. Although the phosphorus (P) atom is larger than the carbon
atom, it can work as an n-type donor to alter the electronic characteristics of CQDs [30,31].
Thus, in order to create more active electronic sites, the P atom is used as a heteroatom to
synthesize the CQDs in our work, which could produce unanticipated and exceptional
antibacterial effects.

In this work, the P-doped CQDs derived from m-aminophenol and phosphoric acid
were first prepared by one-step hydrothermal treatment. In vitro cytotoxicity analyses
revealed the good biocompatibility of P-doped CQDs. Importantly, the as-prepared P-
doped CQDs showed excellent inhibitory effects on Escherichia coli (E. coli, Gram-negative
bacteria) and Staphylococcus aureus (S. aureus, Gram-positive bacteria). Furthermore, the
cell walls of the bacteria were broken after P-doped CQD treatment, and the zeta potential
of P-doped CQDs was +23.1 mV. Thus, the antibacterial mechanism of P-doped CQDs may
be attributed to the electrostatic interaction between the surface charge of P-doped CQDs
and bacterial cell walls (Scheme 1).
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2. Materials and Methods
2.1. Materials

M-aminophenol (≥98%) was purchased from the Aladdin Reagent Co. Ltd. (Shanghai,
China). A Britton–Robinson (BR) buffer and sodium chloride (NaCl) solution were prepared
and adjusted to control the acidity and the ionic strength. Ultra-pure water (18.2 MΩ),
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purified by a Millipore water purification system (Milli-Q, Millipore, Billerica, MA, USA),
was used for the preparation of all solutions.

2.2. Apparatus

All fluorescence spectra were acquired using a Shimatzu RF-5301PC fluorescence
spectrophotometer (Kyoto, Japan). Transmission electron microscopy (TEM) and high-
resolution transmission electron microscopy (HRTEM) images were performed on a JEOL
2100F field emission transmission electron microscope (Tokyo, Japan). The thickness of
CQDs was characterized using a Dimension Icon Scan Asyst atomic force microscope
(AFM, Bruker Co., Karlsruhe, Germany). Elemental and functional group analyses were
performed using an ESCALAB Xi+ X-ray photoelectron spectrometer (XPS, Thermo Fisher
Scientific Inc., Waltham, MA, USA) and a Nicolet iS5 Fourier Transform Infrared spec-
trometer (FTIR, Thermo Fisher Scientific Inc., Waltham, MA, USA). The Raman spectrum
obtained on the Ag substrate (excited by a 532 nm laser) was recorded with a DXR 2xi
Raman microscope (Thermo Fisher Scientific Inc., Waltham, MA, USA). The C9920-02G
fluorescence spectrophotometer (Hamamatsu Photonics KK, Tokyo, Japan) was used to
measure the fluorescence lifetime. Zeta potentials of CQDs were obtained with a Zetasizer
Nano ZS90 System (Malvern, UK). The concentration of bacteria was determined by mea-
suring the optical density at 600 nm (OD600) via UV–vis spectroscopy. The morphology
of bacteria was observed under a Hitachi S-3400N scanning electron microscope (SEM,
Tokyo, Japan).

2.3. Preparation of the P-Doped CQDs

The P-doped CQDs were prepared by one-step hydrothermal treatment using m-
aminophenol and phosphoric acid. Briefly, 0.10 g m-aminophenol and 1 ml phosphoric
acid was first dispersed in 4.0 mL ultrapure water, and 5.0 mL of the mixture was added
into a 25 mL teflon-lined autoclave and then kept at 200 ◦C for 48 h. Once cooled to
room temperature naturally, the resultants were centrifuged at 6000 rpm for 5 min and
then the supernatant was filtered with BIOSHARP membrane filters (0.22 µm) to remove
insoluble impurities, and the transparent solution was subjected to dialysis (Mw = 500 Da)
for 48 h to eliminate the residual unreacted material. Finally, the purified CQD solution was
freeze-dried to obtain solid powder. The product was stored at 4 ◦C for future experiments.

2.4. Cellular Toxicity Test

In Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine
serum (FBS), 1 × 105 cells per mL BV2 microglia cells were plated on a 96-well cell culture
plate (100 µL per well) and cultured at 37 ◦C with 5.0% CO2 in a humidified incubator
for 24 h. The medium was then replaced with 100 µL of DMEM medium supplemented
with 2% FBS containing different doses of P-doped CQDs and was incubated for another
24 h. The control was cells without treatment with the P-doped CQDs. After removing
the culture medium, a mixture of 10 µL MTT reagent and 90 µL DMEM medium was
added to every well, which was washed with PBS buffer three times. The cells were further
incubated for 1 h. After removing the culture medium with MTT, 150 µL of DMSO was
added and shaken at room temperature for approximately 10 min. The OD was measured
at 538 nm. The cell viability was estimated using Equation (1):

Cell viability [%] = (ODtreated/ODcontrol) × 100% (1)

where ODtreated and ODcontrol were the optical density of cells in the presence and absence
of CQDs, respectively.

2.5. MIC Test

E. coli and S. aureus were cultured in Luria–Bertan (LB) liquid medium at 37 ◦C shaking
at 180 rpm overnight. Bacteria were diluted to a concentration of 1.5 × 107 CFU/mL. A
measure of 50 µL of diluted bacterial suspension and 50 µL of various concentrations



Micromachines 2021, 12, 1116 4 of 10

of P-doped CQDs were transferred to a 96-well cell culture plate for a final volume of
100 µL/well. Bacterial suspension in an LB medium without the P-doped CQDs was used
as the control, and only LB medium was used as the blank. The mixtures were incubated
at 37 ◦C for 12 h. At the end of incubation, the concentration of bacteria was determined by
measuring OD600.

2.6. SEM Images for Bacteria

E. coli and S. aureus were incubated with the as-prepared P-doped CQDs for 4 h.
Bacteria without the P-doped CQDs treatment were used as the control groups. The cells
were centrifuged at 8000 rpm for 10 min at 4 ◦C and the precipitation was washed with
phosphate-buffered solution (PBS, pH = 7.4). The cells were fixed with 5% glutaraldehyde
for 2 h at 4 ◦C. The bacteria were soaked in a dehydration solution with different concen-
trations of alcohol (30%, 50%, 70%, 85%, 95%, 100%), which were dried by vacuum and
sputter-coated with gold. The samples were observed under a Hitachi S-3400N scanning
electron microscope.

3. Results and Discussion
3.1. Characterizations of the P-Doped CQDs

The TEM image (Figure 1a) shows that the size of P-doped CQDs was distributed
in the range from 2.75 nm to 4.25 nm with an average diameter of 3.4 nm. The HRTEM
image (inset of Figure 1a) shows 0.21 nm of in-plane lattice spacings ([100] facet), revealing
a typical graphite-like structure formed during the synthesis of P-doped CQDs [25,32]. The
AFM image (Figure 1b) shows that the topographic height of the P-doped CQDs varied
mostly from 2.7 nm to 3.8 nm, which was similar to the TEM characterization, indicating
that the P-doped CQDs had a nearly spherical morphology.
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Figure 1. (a) TEM images (inset: particle size distribution and HRTEM images). (b) AFM images
(inset: the height profile). (c) Normalized UV-vis absorption spectra, fluorescent excitation, and
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The P-doped CQDs had unique absorption and emission abilities. As shown in
Figure 1c, the P-doped CQDs had a strong absorption band at 257 nm and a broad ab-
sorption band characterized at 384 nm owing to the π→π * transition of C=C and the
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n→π * transition of the surface groups, respectively. The maximum emission peak was
located at 501 nm with a maximum excitation at 429 nm. The fluorescence emission of
P-doped CQDs was independent with the excitation wavelength ranging from 300 nm to
460 nm (Figure S1a). In addition, the absolute quantum yield (QY) of P-doped CQDs was
approximately 14.4%. The average fluorescence lifetime of P-doped CQDs was calculated
as 3.9 ns (Figure S1b).

In order to understand the functional group composition and structures of P-doped
CQDs, Raman spectra, FTIR spectra, and XPS were measured. The Raman spectrum
(Figure 1d) illustrated two narrow peaks, a G-line peak at around 1595 cm−1 and a D-line
peak at around 1387 cm−1, which was attributed, respectively, to sp2 hybridized carbon
and sp3 hybridized carbon in the P-doped CQDs. The FTIR spectra (Figure 2a) of P-doped
CQDs showed the characteristic absorption bands of O-H and N-H vibrations around
3128 cm−1 (which improve the hydrophilicity and stability in the aqueous solution), C-H
stretching vibrations at 2991 cm−1, C=O bond stretching vibrations around 1645 cm−1,
C-N bond stretching vibrations around 1401 cm−1, C-O stretching vibrations at 1083 cm−1,
and P-O stretching vibrations at 958 cm−1 [16,26,33]. The FTIR spectrum revealed that
the P-doped CQDs had abundant carboxyl, hydroxy, and amino functional groups, and
that P had indeed been doped into the P-doped CQDs in the synthesis process. The XPS
full spectrum of P-doped CQDs (Figure 2b) presented five dominant peaks of C 1s at
283.7 eV, O 1s at 533.5 eV, N 1s at 401.3 eV, and P 2s and P 2p at 191.5 eV and 133.5 eV,
respectively, further indicating the successful incorporation of the P element into the P-
doped CQDs [26,30]. The elemental analysis showed the composition of C 20.15%, O
60.64%, N 3.48%, and P 15.72%, in the as-prepared P-doped CQDs. The high-resolution C
1s spectra of P-doped CQDs (Figure 2c) was divided into three peaks at 284.3, 285.7, and
288.6 eV, corresponding to C=C/C–C, C-O/C-N/C-P, and C=O, respectively [20,34]. High-
resolution N 1s spectra of P-doped CQDs (Figure 2d) showed two peaks at 400.1 and 402.1
eV, which were assigned to pyrrolic N (C-N) and N-H bands, respectively [32]. The bands
in the O 1s spectra (Figure 2e) presented two peaks at 531.3 and 532.8 eV, attributed to C=O
and C-O/P=O, respectively [35]. The high-resolution P 2p spectra (Figure 2f) revealed the
existence of P=O (134.2 eV) and P=C (135.3 eV) [36]. As shown by the results of FTIR and
XPS, the as-prepared P-doped CQDs had abundant functional groups, including -COOH,
-OH, and a small number of N, P-containing groups.
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3.2. Stability of the As-Prepared P-Doped CQDs

In order to determine the stability of P-doped CQDs, a series of experiments were
designed. The P-doped CQDs showed excellent photostability under continuous Xe lamp
illumination (429 nm) for 60 min (Figure S2a). The fluorescence intensity of P-doped CQDs
was pH-independent in the BR pH range 2.09–11.92 (Figure S2b). The fluorescence retained
78% of the initial intensity after incubation with 2.0 M NaCl (Figure S2c), illustrating that
the P-doped CQDs were stable in a medium of high ionic strength and not aggregated in
this medium. The fluorescence intensity of P-doped CQDs slightly decreased when the
concentrations of H2O2 were as high as 500 mM (Figure S2d), indicating that the P-doped
CQDs had good antioxidation. These results indicate that the as-prepared P-doped CQDs
have great potential in the application of fluorescent nanoprobes for complex matrixes.

3.3. Cellular Toxicity and Confocal Microscopy Imaging of the P-Doped CQDs

The cytotoxicity of P-doped CQDs was evaluated by the MTT method using BV2
microglioma cells. The cell viability changed slightly after 24 h incubation with a relatively
high concentration of P-doped CQDs (500 µg/mL) (Figure 3a), suggesting that the CQDs
had good biocompatibility. To explore the potential application of P-doped CQDs in
bioimaging, cellular imaging was investigated through a confocal fluorescence microscope.
The confocal image showed that the P-doped CQDs were dispersed in the cytoplasmic and
nuclear area (Figure 3b), indicating that the P-doped CQDs can be applied for cytoplasmic
and nuclear staining and labelling.
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3.4. Antibacterial Activity of the P-Doped CQDs

The antibacterial activity of P-doped CQDs was explored with E. coli and S. aureus, as
the model pathogens of Gram-negative and Gram-positive bacteria, respectively. Equal
amounts of 1.5 × 107 CFU/mL bacterial suspension were treated with different concen-
trations (0, 0.41, 0.82, 1.23, 1.44, 1.64, 1.84, 2.05 mg/mL) of P-doped CQDs. The bacterial
viability was evaluated by recording OD600 values of the bacterial mixture. The results
showed that the viability of E. coli and S. aureus decreased with the increasing concen-
tration of P-doped CQDs (Figure S3a,b; Tables S1 and S2). When the concentration of
P-doped CQDs was up to 1.23 and 1.44 mg/mL, respectively, the OD600 values were
almost consistent with that of the blank group, indicating that the P-doped CQDs had
significant antibacterial abilities with MIC values of P-doped CQDs of 1.23 mg/mL on
E. coli and 1.44 mg/mL on S. aureus. Furthermore, the P-doped CQDs could effectively
inhibit Gram-negative and Gram-positive bacteria on a time-dependent basis at different
doses (Figure 4a,b).
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In addition, different concentrations of P-doped CQDs (0, 0.82, 1.23, 1.44 mg/mL)
were added into the bacterial LB medium to form the LB plate. After incubation for 12 h,
bacterial colonies were generated on the LB culture plate. The visual evidence of the
antibacterial effect was displayed on the culture plate. The viability of E. coli and S. aureus
showed a concentration-dependent inhibitory effect (Figure 5a–h), similar to the results of
the MIC experiments.
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0.82, 1.23, and 1.44 mg/mL, respectively.

3.5. Antibacterial Mechanism of P-Doped CQDs

To further explore the mechanism, the morphologies of bacteria, before and after
P-doped CQDs treatment, were observed by SEM. E. coli and S. aureus were incubated with
the P-doped CQDs (1.23 mg/mL and 1.44 mg/mL) for 4 h. It was obvious that the integrity
of E. coli without the P-doped CQDs treatment was kept well, while the cell walls of E. coli
with the P-doped CQDs treatment were wrinkled and broken (Figure 6a,b). Similarly, the
cell walls of S. aureus incubated without the P-doped CQDs were intact and smooth, while
the cell surfaces of S. aureus incubated with the P-doped CQDs became damaged, with
some cytoplasm exudated from the cells (Figure 6c,d). Furthermore, zeta potential analysis
(Figure 7) showed that the P-doped CQDs were positively charged (+23.1 mV), and E. coli
(−11.6 mV) and S. aureus (−16.0 mV) were negatively charged. The zeta potential was
slightly more positive (−7.7 mV for E. coli and −8.8 mV for S. aureus) after the bacteria
were treated with the P-doped CQDs, indicating that the positively charged P-doped CQDs
were likely to be bonded with the bacteria by electrostatic interaction, ultimately resulting
in the cell walls being disturbed and the death of the bacteria.
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4. Conclusions

In summary, we have prepared P-doped CQDs with m-aminophenol as a carbon
source and phosphoric acid as a phosphorus source by a facile hydrothermal method.
Based on surface functional group analyses of the as-prepared P-doped CQDs by FTIR
and XPS, the P-doped CQDs were successfully doped with phosphorus. The as-prepared
P-doped CQDs have high photostability and environmental stability. Furthermore, the
P-doped CQDs exhibit a strong inhibitory effect on Gram-negative bacteria (E. coli) and
Gram-positive bacteria (S. aureus) with MIC at 1.23 mg/mL and 1.44 mg/mL, respectively.
The Zeta potential measurements indicate that a strong electrostatic interaction between
the negatively charged bacteria and the positively charged P-doped CQDs causes the
wrinkled and damaged bacteria. This work is of great significance for the development of
antibacterial nanomaterials as promising alternative antibacterial agents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mi12091116/s1, Figure S1. (a) Fluorescent emission spectra of P-doped CQDs under different
excitation wavelengths from 300 to 460 nm, (b) fluorescence lifetime of P-doped CQDs; Figure S2.
Fluorescent spectra of P-doped CQDs at (a) different incubation times, (b) pH solutions, (c) different
concentration of NaCl, (d) H2O2; Figure S3: The antibacterial ability of P-doped CQDs on (a) E. coli
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and (b) S. aureus. Table S1: OD values of E. coli treated with different concentrations of P-doped
CQDs. Table S2: OD values of S. aureus treated with different concentrations of P-doped CQDs.
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