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Abstract: This report examines the heat and mass transfer in three-dimensional second grade non-
Newtonian fluid in the presence of a variable magnetic field. Heat transfer is presented with the
involvement of thermal relaxation time and variable thermal conductivity. The generalized theory
for mass flux with variable mass diffusion coefficient is considered in the transport of species. The
conservation laws are modeled in simplified form via boundary layer theory which results as a
system of coupled non-linear partial differential equations. Group similarity analysis is engaged for
the conversion of derived conservation laws in the form of highly non-linear ordinary differential
equations. The solution is obtained vial optimal homotopy procedure (OHP). The convergence of
the scheme is shown through error analysis. The obtained solution is displayed through graphs and
tables for different influential parameters.

Keywords: viscoelastic material; group similarity analysis; thermal relaxation time; parametric
investigation; variable magnetic field; error analysis

1. Introduction

Fluid flows over stretched surfaces have applications in several fields and has signif-
icant involvement in the practical usage of several items. Scientists and engineers have
made efforts to explore their features and usage in different processes. The mathematical
relations of non-Newtonian materials are different as compared with Newtonian mate-
rial. These materials are divided into different categories according to their properties.
An important non-Newtonian fluid is a second grade fluid [1–7]. It has the following
constitutive relation:

τ∗ = −PI + µF1 + β1F2 + β2F1 ∗ F1, β1 ≥ 0, µ ≥ 0, β1 + β2 = 0.
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Hayat et al. [1] studied the mixed convection in the second grade model over a
stretching cylinder. They modeled the problem in two dimensions with thermal transport
by taking the variable thermal conductivity. They used a homotopy method for the solution.
They studied the contribution of several emerging parameters on the solution through
graphs. They noticed the decrease in velocity field for a mixed convection parameter.
Massoudi et al. [2] reported the study on the second grade model with temperature
dependent viscosity between parallel plates. They presented a comparative study for the
validity of obtained solution through tabular data. An exact solution through an oscillating
sphere for a second grade model was computed by Fetecau et al. [3]. They found that the
solution is periodic and it is independent of initial data. Hankel and Laplace transforms
were engaged by Kamran et al. [4] to handle the modeled equations for fractional second
grade model in cylindrical coordinates. They presented that the fractional model present
the fluid flow phenomenon more accurately as compared with the ordinary derivatives.
Chauhan and Kumar [5] studied the unsteady mechanics for second grade model in
partially filled porous channel. They used a Laplace transform technique to analyze the
solution. They observed the increase in velocity field against time parameter. A rotating
viscoelastic model with ramped wall temperature condition for exact solution was reported
by Mohamad et al. [6]. They plotted the solution against numerous emerging parameters.
They noticed the dual behavior of velocity against the rotation parameter. Hayat et al. [7]
examined the comportment of chemical reaction with solutal and thermal transport in a
second grade model passed over a bi-directional stretched surface. They found the increase
in dimensionless stress against ratio parameter and viscoelastic parameter. Moon et al. [8]
discussed the phenomenon of heat transfer and Weber number including droplets of
xanthan gum solution (non-Newtonian) and DI-water (Newtonian) over a heated surface.
They noted that the DI-water droplet has higher spreading diameter as compared with the
non-Newtonian (droplet) because of variation in fluid difference. German and Bertola [9]
studied free-fall related to the liquid drops due gravity of force. They imagined high speed
of drops based on viscoelastic fluids. They found that shape of the drop is changed under
the action of yield stress. An and Lee [10] experimentally discussed the oscillations (free
falling) of drops (shear-thinning) due to the force of gravity based on viscoelastic fluids
passed over a solid surface. Moon et al. [11] suggested a mixed regime (coalescence occurs)
using sequential images and mixed regime is exaggerated due to volumes of static droplet
volumes, static droplets and Weber numbers. They estimated the film thickness (between
two drops) via lubrication theory. Zhao and Khayat [12] discussed the flow behavior in
view of shear-thickening and shear-thinning of a jet (non-Newtonian) over a flat plate via a
hydraulic jump. Moon et al. [13] considered the features of droplets (non-Newtonian) on
solid surfaces considering various Weber numbers. They considered xanthan gum solution
to produce the droplets (non-Newtonian) measured via spreading diameters and camera
(high speed).

Transportation of heat has applications in different engineering aspects and it is
now a hot topic for researchers working in the field of engineering and applied mathe-
matics. Several researchers are working on transport phenomena actively. For instance,
Naseem et al. [14] worked on third grade nanofluid passed over a Riga plate. They con-
sidered several physical effects while modelling the transport equations and the resulting
equations were simplified via boundary layer theory with the solution approximated an-
alytically. They noticed the rise in velocity profile for modified magnetic parameter and
Reynolds number. Sahoo and Poncet [15] studied the Blasius flow of a fourth grade model
with heat transfer in a porous permeable stretching surface. Heat transfer in MHD viscous
stagnation point dusty fluid with a non-uniform heat source in a porous stretching sheet
was studied by Ramesh et al. [16]. They presented a comparative analysis and solved the
resulting equations with the help of a shooting method. They discussed the contribution
of several parameters on velocity and temperature fields. They noticed the decline in
thermal field against higher Prandtl number. Qiu et al. [17] studied the thermal transport
in channel via finite volume technique. They also reported the analysis of entropy in their
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findings. They discussed the impact of nanoparticles volume fraction on flow and entropy.
Khan et al. [18] studied the heat transfer in a stagnation point Powell–Eyring model in a
stretching cylinder with variable properties analytically. They observed the enhancement
in temperature and velocity fields against the growing values or curvature parameter. Also
they listed the numerical values for heat transfer coefficient against different parameters.
Few recent studies covering non-linear transport problems with different effects have been
reported in [19–25].

The objective of current inspection is to analyze the comportment of variable properties
in heat and mass transportation in a second grade steady incompressible model past over a
bi-directional elongating surface. This article is organized as follows: Section 1 contains the
literature survey; modeling of considered problem is included in Section 2 with important
physical quantities; Section 3 comprises methodology and results with key findings covered
in Sections 4 and 5 respectively.

2. Mathematical Drafting of Viscoelastic Fluid with Thermal and Mass Transport

An analysis of the transport phenomenon on a second grade fluid [7,14] over a bi-
directional elastic surface is presented in Figure 1. It is assumed that the sheet is stretched
along x- and y- directions, respectively, and flow occupies the region normal to x- and y-axis.
The sheet is kept at temperature “Tw” and concentration “Cw”. Along x-axis, the velocity
is “UW = ax” and “VW = by” is along the y-axis. The following important considerations
have been adopted to derive the conservation laws

Figure 1. Geometry of second grade fluid model.

v Three-dimensional flow;
v Bi-directional elastic surface;
v Incompressible fluid;
v Steady flow;
v Viscoelastic second grade fluid;
v Heat flux via generalized theory of Cattaneo–Christov;
v Temperature-dependent thermal conductivity model;
v Space-dependent magnetic field;
v Updated mass flux model with temperature dependent diffusion coefficient;

The flowing resulting equations [7] appears by using the above stated assumptions

ux + vy + wz = 0, (1)

uux + v ∂u
∂y + w ∂u

∂z − ϑ ∂2u
∂z2

+α0

[
u ∂3u

∂x∂z2 + w ∂3u
∂z3 − ∂u

∂x
∂2u
∂z2 − ∂u

∂z
∂2w
∂z2 − 2 ∂u

∂z
∂2u
∂x∂z

−2 ∂w
∂z

∂2u
∂z2

]
+ σ

ρ B2
a(x, y)u = 0,

(2)
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uvx + v ∂v
∂y + w ∂v

∂z − ϑ ∂2v
∂z2

+α0

[
v ∂3v

∂x∂z2 + w ∂3v
∂z3 − ∂v

∂x
∂2v
∂z2 − ∂v

∂z
∂2w
∂z2 − 2 ∂v

∂z
∂2v

∂x∂z

−2 ∂w
∂z

∂2v
∂z2

]
+ σ

ρ B2
a(x, y)v = 0,

(3)

uTx + vTy + wTz + αa


(
uux + vuy + wuz

)
Tx +

(
uvx + v ∂v

∂y + w ∂v
∂z

)
Ty

+
(

uwx + v ∂w
∂y + w ∂w

∂z

)
Tz + 2uvTxy + 2vwTyz

+2uwTxz + u2Txx + v2Tyy + w2Tzz


−∇[KA(T)∇T] = 0

(4)

uCx + vCy + wCz + αb


(

uux + v ∂u
∂y + w ∂u

∂z

)
Cx +

(
uvx + v ∂v

∂y + w ∂v
∂z

)
Cy

+
(

uwx + v ∂w
∂y + w ∂w

∂z

)
Cz + 2uvCxy + 2vwCyz

+2uwCxz + u2Cxx + v2Cyy + w2Czz


−∇[DA(T)∇C] = 0.

(5)

Boundary conditions for the dimensional problem are{
u = UW = ax, v = VW = by, w = 0, T = Tw, C = Cw at z = 0.
u→ 0, v→ 0, T → T∞, C → C∞ f or z→ ∞.

(6)

With the use of the following similarity variables, the governing law reduce to{
u = ax f ′[η], v = ayg′[η], w = −(aϑ)

1
2 [ f [η] + g[η]],

θ[η] = T−T∞
Tw−T∞

, φ[η] = C−C∞
Cw−C∞

, [η] =
( a

ϑ

) 1
2 z,

(7)

−M f ′[η]− f ′[η]2 + ( f [η] + g[η]) f ′′ [η] + f (3)[η] + R( f ′′ [η]( f ′′ [η]− g′′ [η])

−2( f ′[η] + g′[η]) f (3)[η] + ( f [η] + g[η]) f (4)[η]) = 0,
(8)

−Mg′[η]− g′[η]2 + ( f [η] + g[η])g′′ [η] + g(3)[η] + R(( f ′′ [η]− g′′ [η])g′′ [η]

−2( f ′[η] + g′[η])g(3)[η] + ( f [η] + g[η])g(4)[η] = 0,
(9)

( f [η] + g[η])θ′[η] + 1
Pr (1 + γ1θ[η])θ′′ [η]− α1( f [η] + g[η])( f ′[η]

+g′[η]θ′[η] + ( f [η] + g[η])θ′′ [η]) = 0,
(10)

( f [η] + g[η])φ′[η] + 1
Sc (1 + γ2θ[η])φ′′ [η]− α2( f [η] + g[η])( f ′[η]

+g′[η]φ′[η] + ( f [η] + g[η])φ′′ [η]) = 0,
(11)

{
f (0) = 0, g(0) = 0, f ′(0) = 1, g′(0) = δ, θ(0) = 1, φ(0) = 1,
f ′(∞) = 0, g′(∞) = 0, θ(∞) = 0, φ(∞) = 0.

(12)

Physical Quantities

The study of heat, mass transfer rates and dimensionless stress at the boundary has
significant applications and usage in industry. Therefore, scientists and engineers are
keenly observing their features against different physical parameters which influence them
directly. These quantities are defined as:

CXF =
τxz|z = 0

ρ(uw)
2 ,CYF =

τyz
∣∣
z = 0

ρ(vw)
2 , (13)

τxz =

[
µ

∂u
∂z

+ α0

[
u

∂2u
∂x∂z

+ v
∂2u
∂y∂z

+ w
∂2u
∂z2 +

∂u
∂x

∂u
∂z

+
∂v
∂z

∂v
∂x
− ∂w

∂z
∂u
∂y

]]
z=0

(14)



Micromachines 2021, 12, 951 5 of 15

τyz =

[
µ

∂v
∂z

+ α0

[
u

∂2v
∂x∂z

+ v
∂2v

∂y∂z
+ w

∂2v
∂z2 +

∂u
∂y

∂u
∂z

+
∂v
∂z

∂v
∂y
− ∂w

∂z
∂v
∂y

]]
z=0

, (15)

Nuxy =
(x + y)Q∗w

K(T)[Tw − T∞]
, Q∗w = −K(T)

∂T
∂z
|z=0, (16)

Suxy =
(x + y)M∗w

DB(T)[Cw − C∞]
, M∗w = −DB(T)

∂C
∂z
|z=0 (17)

After boundary layer theory, the dimensionless form is:

C∗Fx = f ′′ (0)− R[ f (0) + g(0)] f ′′′ (0) + R
[

f ′(0) + g′(0)
]

f ′(0) + 2R f ′(0) f ′′ (0), (18)

C∗Fy = g′′ (0)− R[ f (0) + g(0)]g′′′ (0) + R
[

f ′(0) + g′(0)
]

g′′ (0) + 2R f ′(0)g′(0) (19)

H∗xy = −
(

Rexy

) 1
2
θ′(0), M∗xy = −

(
Rexy

) 1
2
φ′(0). (20)

3. Numerical Method for Solution

Modelling of the fluid flow problems results in the form of a set of coupled non-linear
differential equations. The derived problem is highly non-linear and coupled. Due to high
non-linearity, an exact solution is not possible. Researchers proposed several schemes to
handle the non-linear complex differential equations. Here, optimal homotopy analysis
procedure (OHAP) [7,14,19–23] is engaged due to its several advantages.

This section covers the necessary steps for the adopted procedure. It has the following steps:

v Linear operator selection;
v Using the boundary data;
v Determination of unknown constants;
v Adopting of initial guesses;

The linear operators with initial guesses are: L∗f =
D3

Dη3 − D
Dη , L∗g = D3

Dη3 − D
Dη ,

L∗t = D2

Dη2 − 1, L∗c = D2

Dη2 − 1,
(21)

{
fq(η) = 1− e−η , gq = γ[1− e−η ],
θq(η) = e−η , φq(η) = e−η ,

(22)

The operators in Equation (21) obeys:

L∗f [Q1 + Q2e−η + Q3eη ] = 0,

L∗g[Q4 + Q5e−η + Q6eη ] = 0,

L∗t [Q7e−η + Q8eη ] = 0,

L∗c [Q9eη + Q10e−η ] = 0.

(23)

where Qb(b = 1, 2, . . . , 10) are unknowns.
Using the concepts of minimization of average squared residual error [7–14,19–23]:

δ
f
m =

1
B + 1

B

∑
r=0

[
S f

(
a

∑
L=0

f̂ (η),
a

∑
L=0

ĝ(η)

)]2

, (24)

δ
g
m =

1
B + 1

B

∑
r=0

[
Sg

(
a

∑
L=0

f̂ (η),
a

∑
L=0

ĝ(η)

)]2

, (25)
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δθ
m =

1
B + 1

B

∑
r=0

[
Sθ

(
a

∑
L=0

f̂ (η),
a

∑
L=0

ĝ(η),
a

∑
L=0

θ̂(η)

)]2

, (26)

δ
φ
m =

1
B + 1

B

∑
r=0

[
Sφ

(
a

∑
L=0

f̂ (η),
a

∑
L=0

ĝ(η),
a

∑
L=0

θ̂(η),
a

∑
L=0

φ̂(η)

)]2

, (27)

where
δt

i = δ
f
i + δ

g
i + δθ

i + δ
φ
i . (28)

The minimum error at second order is 0.00031589832079710834 and optimal values at
third order are B f = −1.2160, Bg = −1.1638, Bθ = −0.9509, Bφ = −0.5871, by fixing the
involved parameters as R = 0.1, Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2, M = 0.1,
δ = 0.8.

f = 1.0− 1.0e−z − 0.6080M2 + 0.6080e−z M2 − 0.6080R + 0.6080e−zR
+ 0.6080e−z M2z + 0.6080e−zRz− 0.4053δ
+ 0.2026e−2zδ + 0.2026e−zδ− 1.0133Rδ
− 0.4053e−2zRδ + 1.4187e−zRδ + 0.6080e−zzδ
+ 0.6080e−zRzδ,

(29)

g = 1.1939δ + 0.1939e−2zδ− 1.3879e−zδ− 0.5819M2δ + 0.5819e−z M2δ
− 0.5819Rδ + 0.5819e−zRδ + 0.5819e−z M2zδ
+ 0.5819e−zRzδ− 0.5819δ2 + 0.5819e−zδ2 − 0.9698Rδ2

− 0.3879e−2zRδ2 + 1.3578e−zRδ2 + 0.5819e−zzδ2

+ 0.5819e−zRzδ2,

(30)

θ = −0.3169e−2z + 1.3169e−z − 0.4754e−zz + 0.47543e−zz
Pr − 0.3169e−2zδ

+ 0.3169e−zδ− 0.4754e−zzδ + 0.11887e−3zα1
− 0.95097e−2zα1 + 0.8321e−zα1 − 0.9509e−zzα1
+ 0.3566e−3zδα1 − 1.9019e−2zδα1 + 1.5453e−zδα1
− 1.4264e−zzδα1 + 0.2377e−3zδ2α1 − 0.9509e−2zδ2α1

+ 0.7132e−zδ2α1 − 0.475497e−zzδ2α1 − 0.3169e−2zγ1
Pr

+ 0.3169e−zγ1,
Pr

(31)

= −0.1957e−2z + 1.1957e−z − 0.2935e−zz + 0.2935e−zz
Sc − 0.1957e−2zδ

+ 0.1957e−zδ− 0.2935e−zzδ + 0.0733e−3zα2
− 0.5871e−2zα2 + 0.5137e−zα2 − 0.5871e−zzα2
+ 0.2201e−3zδα2 − 1.1742e−2zδα2 + 0.9540e−zδα2
− 0.8806e−zzδα2 + 0.1467e−3zδ2α2 − 0.5871e−2zδ2α2

+ 0.4403e−zδ2α2 − 0.2935e−zzδ2α2 − 0.1957e−2zγ2
Sc

+ 0.1957e−zγ2
Sc .

(32)

4. Analysis and Discussion

The assessments of vital applications of thermal energy and mass transport (using
second grade liquid) in industrial and engineering areas are addressed, including various
features. In this current problem, non-Fourier’s theory is investigated in energy and mass
transport equations along with the concept of variable properties (mass diffusion and
thermal conductivity). The motion in nanoparticles is induced because of movement of a
melting 3D-surface. The simulations of temperature, diffusion of mass and flow behavior
are captured in the form of graphs and tables via an analytical approach. The error analysis
is presented with the help of Table 1. The graphical discussions are addressed below:
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Table 1. Computation of averaged squared residuals errors of velocity, temperature, and concentra-
tion solution.

(B) δ
f
B δ

g
B δθ

B δ
φ
B

1 0.0003 0.0001 0.0008 0.0130

4 6.612× 10−6 3.231× 10−6 5.461× 10−6 0.00017

8 3.653× 10−7 1.934× 10−7 1.787× 10−7 8.412× 10−6

12 3.068× 10−8 1.661× 10−8 8.074× 10−9 7.117× 10−7

16 4.169× 10−9 2.265× 10−9 1.063× 10−9 1.076× 10−7

20 5.760× 10−10 3.108× 10−10 1.522× 10−10 1.850× 10−8

Assessments of flow phenomena via physical parameters: the distribution of flow
phenomena is analyzed with respect to magnetic number (M), second grade fluid number
(R) and velocity stretching ratio number (δ). In this current problem, M is considered as
variable magnetic number for measurement of flow behavior in both directions (vertical
and horizontal). The variation strength of a magnetic field is considered during the flow
of particles at the surface of the melting sheet. This effect is analyzed by Figures 2 and 3.
The decreasing character in the motion of particles is noticed via enhancement strength
regarding magnetic field. The declination in flow is due to a negative force called Lorentz
force appeared in momentum equations. The retardation forces play a reducing role in
motion of fluid particles. Therefore, a magnetic number is used to adjust (MBL) mo-
mentum boundary layer thickness. It is noticed that the last terms of dimensionless
momentum equations represent negative Lorentz forces. These negative Lorentz forces
generate hindrance during the flow of fluid particles. The reduction is investigated in veloc-
ity profiles for M = 0.0, 0.2, 0.4, 0.6, 0.8. Therefore, a local minimum trend is noticed for
M = 0.0, 0.2, 0.4, 0.6, 0.8. The parameter related to R is known as a second grade number
whereas the character of R is simulated on the flow behavior. In this case, the reduction in
flow mechanism is conducted through the numerical values of R and this graphical impact
is considered in Figures 4 and 5. It is noticed that the appearance of R is modeled due to the
appearance of second grade fluid in the current model. Meanwhile, flow in the horizontal
and vertical directions is reduced, taking higher values of R. Moreover, flow in the absence
of R is higher as compared with flow situation in the presence of R. Simply, it is included
that flow for the case Newtonian liquid becomes higher than as compared flow for the case
of non-Newtonian liquid. Figure 6 provides the role of δ on distribution of velocities. The
enhancement in velocity profiles is conducted using higher values of δ while the parameter
related to δ is addressed as velocity ration parameter. From these figures, fluid speed is
enhanced via more stretching of melting surface. The large stretching of the surface is the
reason for the more enhancements in fluid motion. Hence, δ is favorable to achieve the
enhancement in motion of the fluid particles.

Assessments of heat energy via physical parameters: the characterization of the
thermal energy mechanism against the variation in Pr, α1, Y1 and R is conducted in
Figures 7–10. In Figure 7, the role of second grade fluid number is considered. The
mechanism of thermal energy is reduced using higher values of R. The thickness of thermal
boundary is also decreased. The characterization of heat energy against the distribution
of very small number (Y1) based on thermal conductivity is measured by Figure 8. The
production of heat energy becomes higher via higher values of Y1. Hence, Y1 plays an
essential role in the enhancement of maximum production of energy. The performance of
Prandtl number versus thermal energy is visualized by Figure 9. The temperature profile is
noticed as reducing the role versus the variation of Pr. This reducing role happens because
of the definition of the Prandtl number. According to the definition of Pr, MBL is enhanced
while the thickness of TBL is increased. Meanwhile, the production of heat energy is
reduced with respect to large values of Pr. Figure 10 illustrates the trend of α1 versus the
temperature profile and α1 is denoted as a relation time parameter. It is investigated how α1
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has appeared due to Cattaneo heat flux theory in the energy equation. The thermal energy
is reduced due to attendance of non-Fourier’s concept whereas thermal energy for the case of
Fourier’s law is higher than thermal energy for the case of the non-Fourier’s concept.

Figure 2. Behavior of f ′(η) for M when R = 0.1, Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2,
δ = 0.8.

Figure 3. Behavior of g′(η) for M when R = 0.1, Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2,
δ = 0.8.
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Figure 4. Behavior of f ′(η) for R when Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2, M = 0.1,
δ = 0.8.

Figure 5. Behavior of g′(η) for R when Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2, M = 0.1,
δ = 0.8.

Figure 6. Behavior of g′(η) for δ when R = 0.1, Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2,
M = 0.1.
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Figure 7. Behavior of θ(η) for R when Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2, M = 0.1,
δ = 0.8.

Figure 8. Behavior of θ(η) for γ1 when R = 0.1, Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ2 = 0.3, M = 0.1,
δ = 0.8.

Figure 9. Behavior of θ(η) for Pr when R = 0.1, Sc = 0.6, α1 = 0.2 = α2, γ2 = 0.3, M = 0.1, δ = 0.8.
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Figure 10. Behavior of θ(η) for α1 when R = 0.1, Sc = 0.6, α2 = 0.2, γ2 = 0.3, M = 0.1, δ = 0.8.

Assessments of mass diffusion via physical parameters: the distribution in transport
of mass diffusion is measured against the variation in Sc, α2 and γ2 via Figures 11–14. The
mechanism related to mass diffusion versus Sc called the Schmidt number is conducted
by Figure 11. From this figure, declination is measured in view of the transport of mass
using large values of the Schmidt number. The transport of mass becomes slow due to the
concept of Sc. According to this definition, the diffusion of mass (ratio between momentum
and mass diffusivities) has an inverse relation with respect to Sc. Hence, the solute slows
down considering enlargement in Sc. Due to this depreciation occurs in the concentration
field. Moreover, the combined enlargement in the Schmidt number and solutal relaxation
time lessen the concentration profile. The decreasing graph of the concentration profile
is observed versus the values of Sc. This decreasing trend and local minimum in solute
particles is occurred due to reduction of mass diffusivity. Physical, large values of Sc reduce
mass diffusivity and this reduction in mass diffusivity is a reason for the local minimum in
solute particles. The better performance of solute is the investigated against variation in
R considering by Figure 12. The range of R is 0.1 ≤ R ≥ 0.8 is used to obtain maximum
production of solute. Figure 13 simulates the variation in mass transport with respect
to values of α2. The decrement in solute is verified considering large values of α2. This
physical parameter has the ability to restore a state of equilibrium resulting in the solute
becoming slow. Figure 14 captures the role of γ2 versus the diffusion of mass. In this figure,
diffusion of mass becomes fast using large values of γ2.

Assessments of Nusselt number, divergent velocity and Sherwood number via
physical parameters: the characterization of surface force, temperature gradient and rate
of solute is analyzed considering large values of second grade fluid, stretching ration and
time relaxation numbers. These simulations are captured by Tables 2 and 3. From Table 2,
it can be noted that an enhancement is addressed in the case of positive values of second
grade fluid and time relaxation numbers. Table 2 presents the comparative analysis of
current model. The remarkable simulations are verified with published work [7]. Table 4
illustrates the impact of time relaxation numbers against the diffusion of mass. The repara-
ble increasing role of the Sherwood number is measured against positive values of the time
relaxation number.
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Figure 11. Behavior of φ(η) for Sc when R = 0.1, α1 = 0.2 = α2, γ2 = 0.3, M = 0.1, δ = 0.8.

Figure 12. Behavior of φ(η) for R when Sc = 0.6, α1 = 0.2 = α2, γ2 = 0.3, M = 0.1, δ = 0.8.

Figure 13. Behavior of φ(η) for α2 when R = 0.1, Sc = 0.6, α1 = 0.2, γ2 = 0.3, M = 0.1, δ = 0.8.
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Figure 14. Behavior of φ(η) for γ2 when R = 0.1, Sc = 0.6, α1 = 0.2 = α2, M = 0.1, δ = 0.8.

Table 2. Comparative analysis for dimensionless stress against R and γ by fixing the other parameters.

R γ −
(

Rexy

) 1
2 C*

Fx

[7]
Present −

(
Rexy

) 1
2 C*

Fx

[7]
Present

0.0 0.1 1.0203 1.0209 0.0669 0.0668

0.15 - 1.6510 1.6519 0.0785 0.0784

0.2 - 1.8970 1.8975 0.0806 0.0803

0.1 0.0 1.3703 1.3707 0.0000 0.0000

- 0.2 1.4798 1.4798 0.1762 0.1769

- 0.5 1.6510 1.6516 0.6317 0.6312

Table 3. Comparative investigation for heat transfer rate against α1.

α1
−
(

Rexy

) 1
2
θ
′
(0)

[7]
Present Results

0.0 0.6051 0.6059

0.2 0.6258 0.6256

0.4 0.6483 0.6489

0.6 0.6727 0.6729

Table 4. Comparative investigation for mass transfer rate against α2.

α2
−
(

Rexy

) 1
2
φ
′
(0)

[7]
Present Results

0.0 0.3668 0.3669

0.2 0.3764 0.3760

0.4 0.3864 0.3862

0.6 0.3973 0.3978

5. Conclusions and Key Findings of the Investigation Performed

The physical occurrence of solute, heat energy and flow phenomena in a second
grade liquid were visualized passing a 3D melting moving surface. The theory of non-
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Fourier’s law was imposed in the current flow model inserting variable properties. The
current complex model was simulated with the help of an analytical scheme. The main
consequences of the current problem are addressed below:

• The improvement in motion of fluid particles was captured via large values of second
grade fluid and stretching ratio numbers while a decrement in flow behavior was
conducted via enlargement in magnetic number;

• The mechanism of heat energy became maximum using higher values of second grade
fluid number but an opposite trend was captured via large values of time relaxation,
Prandtl and very small numbers;

• The solute became fast considering large values of second grade fluid, time relaxation
and very small numbers. The reduction in solute became slow against variation in
Schmidt number;

• An incline in rate of solute and gradient temperature was addressed against higher
values of time relaxation numbers;

• The surface force was enhanced near the wall of the hot surface via large values of
second grade liquid and flow stretching parameters.
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Nomenclature
Symbols Used for Symbols Used for
“UW = ax” and “VW = by” Velocity at wall x, y, z Space coordinates
u, v, w Dimensional velocity ϑ Kinematic viscosity

B2
a(x, y)

Non-uniform magnetic
field

σ
Electrical
conductivity

ρ Fluid density δ
stretching ratio
number

−
(

Rexy

) 1
2
θ′(0) Heat transfer rate −

(
Rexy

) 1
2
φ′(0)

Mass transportation
rate

TBL Thermal boundary layer MBL
Momentum
boundary layer

L∗f =
D3

Dη3 − D
Dη , L∗g = D3

Dη3 − D
Dη ,

L∗t = D2

Dη2 − 1, L∗c = D2

Dη2 − 1,
Linear operators

fq(η) = 1− e−η , gq = γ[1− e−η ],
θq(η) = e−η , φq(η) = e−η ,

Initial guesses

φ(η)
Dimensionless
concentration

θ(η)
Dimensionless
temperature

η
Dimensionless
independent variable

Pr Prandtl number

αb
Concentration relaxation
time

αa
Temperature
relaxation time

Sc Schmidt number f ′[η], g′[η], f [η], g[η]
Dimensionless
velocity

R Fluid parameter M Magnetic parameter
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