
micromachines

Article

Dynamic Information Flow Tracking: Taxonomy, Challenges,
and Opportunities

Kejun Chen 1, Xiaolong Guo 2, Qingxu Deng 1 and Yier Jin 2,*

����������
�������

Citation: Chen, K.; Guo, X.; Deng, Q.;

Jin, Y. Dynamic Information Flow

Tracking: Taxonomy, Challenges, and

Opportunities. Micromachines 2021,

12, 898. https://doi.org/10.3390/

mi12080898

Academic Editor: Basel Halak

Received: 18 June 2021

Accepted: 24 July 2021

Published: 29 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Northeastern University, Shenyang 110016, China;
kejunchen@ufl.edu (K.C.); dengqx@mail.neu.edu.cn (Q.D.)

2 Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA;
guoxiaolong@ksu.edu

* Correspondence: yier.jin@ece.ufl.edu

Abstract: Dynamic information flow tracking (DIFT) has been proven an effective technique to
track data usage; prevent control data attacks and non-control data attacks at runtime; and analyze
program performance. Therefore, a series of DIFT techniques have been developed recently. In this
paper, we summarize the current DIFT solutions and analyze the features and limitations of these
solutions. Based on the analysis, we classify the existing solutions into three categories, i.e., software,
hardware, software and hardware co-design. We discuss the DIFT design from the perspective of
whole system and point out the limitations of current DIFT frameworks. Potential enhancements to
these solutions are also presented. Furthermore, we present suggestions about the possible future
direction of DIFT solutions so that DIFT can help improve security levels.

Keywords: dynamic information flow tracking; data-flow integrity; control-flow integrity; data-flow
analysis

1. Introduction

Dynamic information flow tracking (DIFT) is a technique which leverages metadata
tags to track the information flow among different entities. DIFT can be used to pro-
vide runtime protection for programs; data usage analysis; and performance analysis,
wherein the tag is used to record the security properties of data and instructions. The
program and its data usage profile can be acquired through analyzing and checking the
tag usage. While the implementations of DIFT vary based on the target designs and other
constraints, we can roughly divide DIFT techniques into three types: (i) software-based
DIFT, (ii) hardware-based DIFT and (iii) software and hardware co-design-based DIFT.

The different types of DIFT each have their benefits and limitations. For software-
based DIFT mechanisms [1–14], the tag can be combined with the software context closely
through binary code instrumentation and source code modifications. Since one does not
have to modify the hardware components, the software-based DIFT design provides better
flexibility, customization and scalability. However, software solutions often introduce
high performance overheads because additional instructions are added to support DIFT.
Meanwhile, hardware assisted DIFT design [15–30] can extract sufficient runtime data from
the hardware level to enforce different security rules. By modifying the hardware, all DIFT-
related operations are implemented as hardware logic to accelerate the tag propagation
and tag checking. An exception is raised once the security rules are violated. This type of
design reduces the high performance overhead but at its own cost. Hence, it is difficult to
deploy hardware assisted DIFT in a real system, especially in modern commercial systems.
The hardware-based DIFT design may not provide much flexibility and scalability after
deployed. The hardware overhead usually cannot be handled by resource-constrained
devices, e.g., low-end embedded systems.

Micromachines 2021, 12, 898. https://doi.org/10.3390/mi12080898 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-5185-6306
https://doi.org/10.3390/mi12080898
https://doi.org/10.3390/mi12080898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12080898
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12080898?type=check_update&version=1

Micromachines 2021, 12, 898 2 of 16

In addition to the above DIFT design, the hardware and software co-design [31–35]
is a good option for enforcing DIFT rules. This type of design can extract information
from a special hardware interface and associate the software context with the data from
hardware. Flexible and fine-grained security check rules can be enforced in this type of
design. There are some open questions. For example, it is difficult to decide on how to
design a suitable tag when considering both software and hardware. Security rules on
the software side need to be translated into tags. The hardware needs to be extended or
modified to support the tags. Additionally, tag design needs to support rule updating after
the system is deployed. It is difficult to balance both flexibility and hardware overheads at
the same time.

The above discussion briefly compared the different DIFT types. Additionally, there
are some surveys about existing DIFT works. Berner et al. in [36] summarized and
analyzed several DIFT works. Ormeir et al. in [37] aimed at analyzing the existing methods
of malware detection and analysis. Additionally, this work does not involve static methods.
Yan et al. in [38] mainly focused on the DIFT works on mobile malware detection. They
did not give a comprehensive analysis on existing DIFT works on different application
environments. Yan et al. in [39] analyzed the precision and soundness of existing software-
based DIFT works. D’Elia et al. in [40] analyzed existing dynamic binary instrumentation
(DBI) methods. Additionally, they discussed the usage of DBI in the DIFT framework.
Still, a more detailed comparison between different DIFT solutions is needed to guide the
use of these solutions. Thus, in this paper, we analyze and systematize all three types
of DIFT design—hardware-based, software-based and software and hardware co-design.
The implementations of these three types of DIFT design cover different computer system
layers. Specifically, for hardware-based designs, we mainly discuss the gate-level-based
DIFT design and micro-architecture-level-based DIFT design. For software-based solutions,
we focus on information flow tracking techniques targeting the software and the operating
system. For software and hardware co-designs, we cover a variety of DIFT solutions which
use both software and hardware to enforce information flow tracking. Table 1 shows a
high-level comparison among all DIFT solutions mentioned herein. Based on the analysis,
we further discuss the possible solutions to help overcome these limitations. We also
discuss potential research directions for better DIFT techniques.

The main contributions of the paper are summarized as follows.

• We summarize a variety of existing DIFT solutions and classify them according to
their designs and implementations as hardware-based, software-based or software
and hardware co-designed.

• We analyze the advantages and limitations of different DIFT solutions. Based on the
analysis, we present a comparison between different DIFT implementations.

• We discuss possible solutions to the limitations of the current work. New research
directions for DIFT techniques are also presented.

Table 1. Details of dynamic information flow tracking techniques. CFI, DFI and NI are abbreviations of control-flow
integrity, data-flow integrity and new infrastructure, respectively.

Tag Type CFI DFI NI Performance Hardware

[7] 1 bit/byte SW-Program level × � × 650% -
[12] 1 byte, 1 bit/byte SW-Program level × × × 224–700% -
[10] variable tag SW-Program level × × � 3000–5000% -
[11] 32 bit/variable SW-Program level × � × 14% -
[13] Process level SW-Program Level × × � 5.35% -
[1] kernel object label SW-OS Level × × � Unspecified -
[6] object label SW-System Level × � � 5600% -
[2] 2 bit/byte SW-Offloading × × � 48% -
[15] gate logic HW-Gate Level × � × Unspecified 70% ALUT
[21] 4 bit/word HW-In Core � � × 234% 22% BRAM, 42% LUT

[22] 1 bit/byte HW-In core × � × Negligible 12.5% BRAM, 0.82% LUTs,
≤1% Area

Micromachines 2021, 12, 898 3 of 16

Table 1. Cont.

Tag Type CFI DFI NI Performance Hardware

[23] 4 bit/register HW-In core � × × - -
[27] 1 bit/word HW-Off Core × × � 1–3.7% Unspecified
[28] 4 bit/word HW-Off Core × × � 0.79% 16% BRAM, 7.64% LUTs

[24,25] 1 bit/word HW-Off core � � × 1.6% 60% BRAM, 28.36% LUTs
[34] 1 bit/tens of bytes HW-Off core � � × 50–60% 4–5% Memory, 5% Power
[32] 1 bit/byte HW-Inter Core × × � 9.7–12% Unspecified
[19] bus request tag HW-IP wrapper × � × Unspecified 31% Area
[20] variable tag size HW-SoC DIFT × × � 7.25% Unspecified
[31] Extra tag register HW-SW Codesign × � × 0–100% Unspecified
[41] 1 bit/word HW-SW Codesign � × × Unspecified 3.125% Memory

[33] pointer-sized
tag/word HW-SW Codesign � � � 10–40% Unspecified

[29] single bit HW-Tagged Memory × � � 5% 15.4% logic elements
[30] 2 bit HW-Tagged Memory � � � 25.2% 6.25% Memory

2. Background

In this section, we introduce the background and basic knowledge about the DIFT
framework regarding tag setup, propagation and checking.

2.1. Tag Size and Granularity

The size and format of a tag decides the maximum amount of security rules which
can be supported. As shown in Table 1, different types of DIFT designs have different
tag structures. For hardware-based gate-level and register transfer level (RTL) DIFT
designs [15,16], logic gates and registers are extended to support the extra tag. For a
gate-level-based DIFT design, an extra tag tied to a logic gate is added according to the
original gate logic. The information flow in software running on such hardware logic will
be tracked. The customization of security policy cannot combine the software context with
the gate logic directly. As a result, false positives may be caused. For example, the benign
data will be tainted following an OR tag propagation rule. Further, the security check is
significantly influenced by the tag computing rules. For micro-architecture-level DIFT
design [21,22], the basic granularity of the tag depends on the data width of processor.
There are two common granularities, word-level tags and byte-level tags. In a simple
implementation, the tags represent two basic states of data, i.e., trusted and untrusted. In
this case, it is difficult to differentiate the source of untrusted data. Moreover, this type of
tag cannot be used to represent multiple-level security policies. To overcome this limitation,
a simple method is to adopt more fine-grained and larger tag sizes such that more security
policies can be supported. However, a larger tag size may cause a waste of tag storage,
since not all data are involved in computing. Many tag bits may not be used at runtime.
In addition to representing the states of data, the tag can also be used to indicate different
security policies with different instruction types [21]. Different tag propagation and tag
check rules are customized according to corresponding instruction types.

For software-based DIFT designs, the tag design is more flexible than for their
hardware-based counterparts. The authors of [10] designed a variable-length tag structure
to support flexible and programmable security policies. The authors of [1] assigned tags to
different objects in the operating system instead of data. However, a flexible tag structure
introduces large performance overheads and increases the complexity of tag storage.

2.2. Tag Storage

In gate-level DIFT design, the tag is stored in an extra gate logic. For micro-architecture-
level DIFT design [21,22,28], the tag is often stored in registers or memory of a modern
processor. Therefore, the register files and memory need to be extended to support tags. In
addition, the processor pipeline stages need to be modified to transfer the tag in parallel

Micromachines 2021, 12, 898 4 of 16

with the instructions bein executed. There are two basic types of tag storage, normal
storage and shadow storage. For normal storage, the register files need to be extended
to support the corresponding tags. Thus, the normal memory can be partitioned into
normal data memory and tag memory. Extra access controls on tag memory should be
enforced to prevent illegal tag modifications. In shadow storage, extra storage are allocated
to store tags. Normal instructions cannot access the storage, as the shadow storage is not
connected to the data bus. However, this type of storage is difficult to expand, especially
after deployment. For system-on-chip (SoC)-level DIFT design, tag storage can be allocated
to either IP wrappers or other dedicated hardware components and is often customized
based on the target IP.

For software-based DIFT methods, the tag is stored in the same storage space as
other data. For instance, the DIFT solution proposed in [11] stores the tag adjacent to
data for spatial locality. This may cause large performance and storage overheads, as the
tag fetching requires extra clock cycles for memory access. Even adopting byte-level tags
introduces a 25% storage overhead on a 32-bit processor. In addition, extra security checks
need to be performed on tag storage to prevent illegal tag accesses and modifications.

For a software and hardware co-design-based DIFT framework, the tag storage can
use normal storage or shadow storage. New instructions may be inserted to support the
tag management [33] and to access the shadow storage [35].

2.3. Tag Propagation

One fundamental and important operation in DIFT is the propagation of the tag
from source to destination. In the hardware-based DIFT, the tag propagation can be
divided into two types: (i) the tag propagation operation accompanied with instruc-
tions in the pipeline [21,22]; and (ii) dedicated hardware logic for tag propagation, e.g.,
coprocessors [24,25,27,28]. Within the scope of hardware-based DIFT, in gate-level DIFT
methods, the tag is propagated in parallel with the data flow through gate logic. For
micro-architecture-level DIFT design, the tag is propagated between registers and memory.
For SoC-level DIFT design, the tag is propagated through the bus in parallel with the
corresponding bus request or data transfer. In order to support the tag propagation, the
bus needs to be extended. Alternatively, the tag may be transmitted at the bus transaction
initialization phase.

In software-based DIFT design, the information related to the target program is
extracted using binary instrumentation or static analysis. Then the DIFT-related instructions
are inserted to propagate the tag from one entity to another entity. The granularity of an
entity depends on the implementation details, e.g., variables, basic blocks and threads [2].
Tag propagation in software and hardware co-design needs the cooperation between
software and hardware. Extra DIFT-related ISA [31] is introduced to perform the tag
propagation in the hardware. Additionally, the security policy can be defined using
software and the tag propagation is automatically executed at the hardware layer according
to the defined security policy.

For software and hardware co-design-based DIFT, the tag is often implemented at
the hardware level. The DIFT operations are inserted into the target program to instruct
the processes of tag propagation and tag checking. The authors in [31] used binary instru-
mentation to convert all implicit flows into explicit flows. Every instruction in standard
ISA is assigned corresponding IFS ISA to instruct the tag-related operations at the micro-
architecture level. In addition to the extended ISA, the authors in [41] modified the kernel to
support a timestamp which defines the life cycles of corresponding data. Furthermore, the
tag at the micro-architecture level will be propagated according to the timestamp defined
at the kernel level. In [33], DIFT operations are converted to symbolic values instead of
actual instructions. Processor pipelines will be extended to support the symbolic execution
and corresponding tag propagation.

Micromachines 2021, 12, 898 5 of 16

2.4. Tag Checking

The security rules are enforced at the tag checking stage. In hardware-based DIFT
designs, the tag checking operation is implemented using dedicated hardware logic. The tag
checking rules are configured through either global registers [21] or custom instructions [27].
The software-based methods execute tag checking combined with software context closely.
Note that the tag checking uses extra instructions and will cause extra clock cycles. The
hardware tag and software context are combined closely in co-design-based DIFT. The
security policy in the software part can be expressed as the combination of tag operations
in the hardware layer.

The handling of the exception is another essential part in the tag checking stage. In
software-based methods, an exception is raised through a software interrupt in the target
program that monitors the program in other threads [2]. The hardware-based DIFT design
may add a new hardware interrupt or extend the current hardware exception signal to
support the exception handling when executing DIFT operations. However, the normal
interrupt and exception handling may engross the whole OS due to the high performance
overhead. In order to reduce the overhead caused by exception, the authors in [21] adopted
the user-level exception and extra machine mode. In software and hardware co-design-
based DIFT, a hardware exception is raised in the hardware layer when the tag checking
fails. This exception will be handled at the software level with the intervention from the
user or the developer.

3. Hardware-Assisted Dynamic Information Flow Tracking

In this section, we discuss the hardware-based DIFT designs, including gate-level
DIFT designs and micro-architecture-level DIFT designs. The gate-level DIFT designs
include gate-level netlist and RTL designs. For micro-architecture-level design, we mainly
focus on in-core DIFT (the tag-related operations are integrated into the processor pipeline)
and off-core DIFT (the tag-related operations are packaged at the back end of the commit
stage in the processor pipeline). We discuss the offload DIFT, wherein target applications
and DIFT applications run on different processor cores, in Sections 4 and 5.

3.1. Gate-Level DIFT

Tiwari et al. in [15] presented a DFIT scheme on gate-level netlist to track all infor-
mation flows. This design resolves the problem of implicit flow and coverts flow to some
extent because all tracking logic is implemented as gate logic. The tracking gate logic
can reflect how untrusted data influence trusted data in different branches. Both data
and code can be tracked because all information flow is visible from the viewpoint of
the hardware. The tracking operations run in parallel with the normal operations. The
information flow checking operations are combined with the basic ISA. Therefore, the
software does not need to be instrumented or modified. The gate-level DIFT can be easily
configured to enforce different security rules. However, extra tracking operations introduce
high hardware overheads.

Tiwari et al. in [16] presented an architectural framework to support verifiable infor-
mation flow tracking. The whole system is partitioned into a trusted part and an untrusted
part. Based on the partition, the time needs to be multiplexed between the trusted part and
the untrusted part to prevent the sensitive information leakage. In order to support the
above functionality, this framework includes a verifiable critical function in gate-level im-
plementations, e.g., pipeline, cache and I/O systems. Moreover, the microkernel contains a
scheduler to support the context switch between trusted and untrusted partitions.

Ardeshiricham et al. in [17] presented an information flow tracking (IFT) method
to support the verification of security properties in RTL code. This work provides two
tracking libraries with different precision levels to generate information flow tracking logic.
However, the IFT logic introduces false positives/negatives due to the tag propagation
rule, e.g., through the OR rule and the AND rule. For example, the OR rule introduces a
high false positive value because the security tag is set whenever one of the inputs is set.

Micromachines 2021, 12, 898 6 of 16

Tiwari et al. in [18] presented an architecture to enforce non-interference between
trusted entities and untrusted entities and allow the related security properties be verified
at gate level. They designed an execution lease between a caller (leaser) and a callee (leasee).
The control flow is bounded between two contexts using a timer. The program counter is
reset to restore PC once the timer expires. Additionally, the address space is bounded by
using extended instructions to enforce access control on different parties.

3.2. Micro-Architecture-Level DIFT Design
3.2.1. Dynamic Information Flow Tracking on SoC

Piccolboni et al. in [19] proposed an IP wrapper to protect access to IPs from software.
The DIFT operations are implemented as hardware logic in the IP wrapper to check for
malicious access. The tag is issued with accompanying with the memory access. They
provide three types of DIFT logic in the IP wrapper: (i) configuration logic for checking
the data in the configuration register; (ii) load logic for checking the input data; and (iii)
storage logic for generating the tag for output data. Porquet et al. in [20] enforced DIFT
operation on a bus and IP through a whole design. In this work, every IP was assigned a
wrapper to receive the tag from the bus. They extended the bus interconnect to acquire the
tag from normal memory. The data and tag were stored separately in normal memory. A
two-level table for tag management was adopted. The first-level tag was used to indicate
whether the current page was tagged. The second level tag indicated word-granularity
in page.

3.2.2. In-Core DIFT Design

Dalton et al. in [21] presented a DIFT architecture to support a flexible security configu-
ration at runtime. Differently from common DIFT design and the tag-based architecture, the
tag in [21] was used to represent the security policy for propagation and check instead for
data states, e.g., trusted vs. untrusted. In order to support flexible software programming,
the authors provided two global configuration registers, i.e., the tag propagation register
(TPR) and the tag check register (TCR), to configure the security policy at runtime. The
configuration register could be configured only in trusted mode. Moreover, the tag propa-
gation and check could only be disabled in trusted mode. Further, user-level exceptions
were used to reduce the overhead of crashing the whole OS. The OS switches to trusted
mode but keeps the address space once the DIFT exception is raised. However, the security
policy is difficult to update when the architecture is deployed. The processor pipeline,
register and memory system need to be extended to support DIFT operations. Similarly
to [21], Palmiero et al. in [22] also adopted global configuration registers to customize
the rule of tag propagation and checking. Note that the rule customization depends on
the instruction type. Different types of instructions have different rules. Their method
provides more fine-grained tracking than [21]. However, it lacks enough flexibility for
security policy reconfiguration for different program contexts. The DIFT schemes proposed
in [21,22] need to extend or modify the original pipeline stages to support the DIFT-related
operations. For the same reason, this type of DIFT design is difficult to be deployed on
modern commercial processors. The scalability of customization of security policies is also
a challenge for this type of DIFT design.

Differently to above in-core based design, Li et al. in [23] simplified the common
DIFT framework to only track registers. The states of registers are analyzed to determine
whether return oriented programming (ROP) attacks happened. In order to reduce the
modifications to existing processor architecture, the taint related information is stored in
the shadow renaming tables and reorder buffer.

3.2.3. Off-Core DIFT Design

Lee et al. in [24,25] used the core debug interface (CDI) to extract a trace of a program
at runtime from a processor core. The CDI is mainly used as a special interface for functional
verification and program performance analysis. This interface is normally connected to

Micromachines 2021, 12, 898 7 of 16

on-chip debuggers which allow the programmer to analyze the contents and states in the
register memory. Based on this dedicated component, this work proposes a DIFT engine
as a hardware IP attached to a shared interconnector. The runtime trace is extracted from
the processor and sent to the DIFT engine for further processing. A heuristic analysis
method is applied to decide whether control-flow integrity and data-flow integrity are
violated. Similarly, Wahab et al. in [26] used the ARM CoreSight debug component to
extract the trace. However, the commercial core debug component could only extract
limited information about the program executing on the processor. As a result, the target
programs needed to be instrumented to recover the complete program trace. To achieve
this goal, tag dependency instructions were generated through static analysis to instruct
the corresponding tag operations, e.g., tag propagation and tag checking. Note that extra
storage needs to be added to save the tag dependency instructions.

Venkataramani et al. in [27] used an dedicated coprocessor to perform DIFT operations.
This type of design does not involve many processor pipeline modifications, which are
often complex tasks. Instead, the processor pipeline only needs to be extended slightly to
output the committed instructions from the commit stage of pipeline. Additionally, this
design decouples the tag and data. It uses a dedicated L1 cache as tag storage to reduce the
hardware overhead. Custom instructions are also added to support flexible configurations
that adapt to security rules at runtime. However, the design also brings in a new problem,
i.e., inconsistency between data and tags on multiprocessors. Each processor is assigned one
accelerator to support DIFT operations and it is difficult to manage multiple accelerators
on chip multiprocessor (CMP) platforms. Following in the work in [27], Kannan et al.
in [28] designed a coprocessor interface which is used to collect the program profiling and
machine states from the main processor, e.g., program counter value, memory address
and instruction encoding. After receiving the above runtime information, the four-stage
pipeline coprocessor analyzes the committed instructions and executes the corresponding
tag-related operations. The tag is saved in the dedicated tag cache of the coprocessor to
help accelerate the process of tag fetch.

3.3. Tagged Memory Architecture

Robert et al. in [29] proposed a complete tagged memory architecture to support
information flow tracking and security analysis. A single-bit tag shadow space is used
to record the metadata at runtime. An in-DRAM tag table and tag cache are utilized to
manage the tag in the whole system. Weiser et al. in [30] presented a new tagged memory
architecture to combine compartmentalization (e.g., Intel SGX [42]) and isolated execution
environments (e.g., TrustZone [43]). Two extra tag bits are utilized to differentiate privilege
levels and security domains. A dedicated piece of hardware serves as the trust root to
enforce security policies in terms of tag and finish security domain switching. Additionally,
extra tag-aware instructions are added to support flexible tag management.

4. Software-Based Dynamic Information Flow Tracking

In this section, we will introduce common software-based DIFT designs. We clas-
sify the software-based DIFT designs into two types: (i) system-level DIFT design; and
(ii) program level DIFT design. For system-level DIFT design, the security analysis are
operated on real scenarios, e.g., Operating System and CMP platforms. Furthermore, the
inconsistencies between the original data and metadata (tag) need to be solved efficiently.
The program-level DIFT design uses target software through binary instrumentation and
source code modifications to support DIFT operations.

4.1. System-Level Dynamic Information Flow Tracking

Zeldovich et al. in [1] presented an operating system supporting information flow
tracking. They tried to accomplish the following two goals: (i) reducing the amount of code
that needs to be trusted; and (ii) separating the trusted function from untrusted functions.
The tag design of their work is different from the common DIFT design, as their method

Micromachines 2021, 12, 898 8 of 16

assigns a tag for the basic kernel object type, e.g., thread, address space, segments, gates,
containers and devices. The tag is checked and accompanied with the information flow
between different objects. A container is used to enforce access control and tag allocation
on different objects. This work combines the information flowing tracking with operating
system abstraction effectively. However, a new programming model is required to enforce
security rules on target programs.

Nagarajan et al. in [2] presented a new infrastructure for DIFT operations on CMPs.
Supported by this infrastructure, the DIFT operations are performed in a helper thread
and the target program runs on the main thread. This work uses a dynamic binary
translator (DBT) to manage the helper thread and the main thread. The DBT is responsible
for generating additional code in the main thread, and the helper thread is used for the
communication between these two threads. The main thread communicates with the helper
thread through the shared memory. Exceptions and interrupts are raised in the helper
thread once any security rules are violated. This design introduces higher performance
overhead for two reasons: an inter-thread communication overhead and the instructions
required for DIFT operation. The helper thread needs to follow the main thread’s control
flow and only execute the DIFT-related instructions.

Differently from the sequential DIFT tools in [2], Ruwase et al. in [3] presented
a parallelized DIFT framework to speed up the tag checking on CMPs. They adopted
multiple worker (or helper) threads to check the tag in order to reduce the performance
overhead. However, the serial dependencies need to be solved before executing DIFT
operations. Their method tracks the tag symbolically rather than tracking the tag values.
The tag symbols are saved temporarily in the symbolic inheritance table until the tag value
can be determined explicitly. The binary operation presents a new challenge because each
node relies on the tag value from two nodes. To solve the limitation, leveraging the log
based architecture (LBA), a master thread is introduced to assign the task to worker threads
and wait for the summary from worker threads. Additionally, every worker thread is
responsible for the unary node.

In addition to the software solution to solve inconsistency on data and its metadata,
Kannan et al. in [4] used hardware to track the data and enforce the same ordering on
metadata. Every instruction is assigned an ID shared between the main thread and the
worker (or helper) thread. According to the ID, worker threads deal with the requests and
follow the instruction order. Moreover, Nightingale et al. in [5] decoupled the program and
replayed the program in other cores. They used a function fork to copy the runtime states
of the program from the target core to other cores when a security check was executed. The
target program can then be continued on other cores. Next, the security check operation
was executed in the manner of speculative execution. The affected states can be rolled back
once the security check fails. However, this method may introduce other speculation based
attacks such as the Spectre [44].

Arefi et al. in [6] proposed a whole system-level DIFT framework to resist in-memory
injection attacks, which are difficult to be detected using current malware analysis solutions.
In order to capture the indirect flow in security applications, they introduced different types
of tag instead for expressing different security policies in terms of similar tag structure.
Besides, tags convey rich provenance information, e.g., the lifetime of a data byte and
activities associated with the data byte. Further, indirect flows can be processed in different
security policies according to the tag type. Similarly to other system-level DIFT solutions,
significant performance and memory overheads are incurred (56x performance slowdown
was introduced in a QEMU-based simulator platform).

4.2. Program-Level Dynamic Information Flow Tracking

Cheng et al. in [7] proposed an instrumentation method to track the tag for the target
program and shared libraries dynamically. This system includes four parts: a configuration
file, shadow memory, a program monitor and a loader. The configuration file is responsible
for security policy configuration. Shadow memory is a special structure to hold the tag.

Micromachines 2021, 12, 898 9 of 16

The program and its metadata are loaded at the initial stage using the loader. The program
monitor activates the customized security policies and raises an exception when the tag
check fails. This type of method may incur a high performance overhead for two reasons:
an instrumentation overhead and a runtime overhead. The influence of the instrumentation
overhead is relatively small because of modern storage capabilities. The runtime overhead
comes from register spilling, tag mapping and tag propagation. In order to further reduce
the whole performance overhead, the runtime overhead needs to be optimized. Chen
et al. in [8] presented an efficient static information flow tracking method in order to
reduce the performance overhead. Instead of using DBI-based methods, they adopted
static binary instrumentation (SBI) to scan sources of taint and select the instructions need
to be implemented and monitored. They proposed an approach to statically identify the
instructions that will involve tainted memory or registers through value set analysis (VSA).

Similarly, Castro et al. in [9] presented a basic software framework to enforce data-flow
integrity. This framework includes two basic steps: i) using static analysis (reaching defini-
tion analysis) to generate a data-flow graph (DFG); ii) running the target program to ensure
the data flow follows the DFG at runtime. This method introduces a high performance
overhead and many false negatives because of the more conservative static analysis.

To support more flexible and programmable dynamic taint analysis, Clause et al.
in [10] presented a framework to perform data-flow and control-flow taint analysis. This
framework provides variable tags for different types of program data, including variables,
memory locations, function calls and I/O streams. Therefore, a software programmer
can specify different tags for different data to perform various analyses, e.g., program
debugging, program testing and vulnerability detection. Further, the data can be assigned
multiple tags at the same time for different usages. The tag checking and propagation
rules can be configured to examine different tags. The flexible tag design introduces
a high performance overhead caused by programmable tag checking and propagation
rules at runtime, and a storage overhead. Enck et al. in [11] presented an IFT system for
smartphones to provide adequate control over user’s privacy information. The main goal of
this system is to monitor the usage of sensitive user information on third-party applications.
Therefore, multiple sources of sensitive data need to be tracked at runtime. This IFT
system provides four basic granularities of data tracking, i.e., variable-level, method-
level, message-level and file-level, to enforce complete data tracking on smartphones. For
variable-level tracking, every variable is assigned a bit vector to hold 32 different taint
markings. The tags are stored adjacent to variables to provide spatial locality. Additionally,
the size of stack frame allocated is doubled. The message-level tracking is responsible
for the messages between different processors. The method-level tracking is used for
system-provided native libraries. The consistency of taint metadata is ensured by file-level
tracking. The tag propagation logic for object reference, native code, IPC and secondary
storage is implemented in the virtual machine (VM) interpreter.

The authors in [12] aimed to provide a shared dynamic flow tracking (DFT) library for
commodity software without modifications. This framework uses three types of locations,
including instructions, function calls and system calls. The user defined callbacks will be
injected into the target program to instruct the tag propagation and checking. The injected
code is translated via just-in-time (JIT) compiler to ensure that the injected code runs.

Ji et al. in [13] used record–replay technology to develop a log based system to
record the system call events and related activities. Based on the log collected at runtime,
a provenance graph is constructed to improve the system performance. The unrelated
instructions and processes are filtered out using reachability analysis on the provenance
graph. However, the memory overhead introduced is an additional 50%.

In addition to software-based DIFT design, Ferraiuolo et al. in [14] verified practical
security architecture through static information flow analysis. The target security archi-
tecture can be verified with information flow control (IFC) at the level of the hardware
description language (HDL). The main goal of IFC HDLs is to guarantee the security
property noninterference at the design stage.

Micromachines 2021, 12, 898 10 of 16

5. Software and Hardware Co-Design-Based Dynamic Information Flow Tracking

In this section, we will discuss the hardware and software co-design DIFT framework.
This type of design combines the features of both software DIFT and hardware DIFT.
Using the binary instrumentation and modified compiler, the hardware and software co-
design DIFT framework can provide flexible security rule configuration and fine-grained
protection. Meanwhile, the dedicated hardware logic is used to reduce the software
performance overhead significantly. Furthermore, the target program can be protected at
runtime through cooperation between software and hardware.

Vachharajani et al. in [31] used binary instrumentation and architectural support to
enforce information flow security policies at runtime. The conventional ISA is translated
into information-flow security (IFS) ISA through the dedicated binary translator. Every
instruction in the standard ISA has a corresponding instruction in IFS ISA. Every instruction
in IFS ISA is assigned extra security registers to hold the tag. The IFS ISA space is divided
into four basic types, i.e., ALU, store, load and branch. The semantic of the standard ISA
does not change. Additionally, the information flow check is performed in parallel with the
standard instruction. For implicit flow, the binary translator appends the security registers
of branches to the possible operands of all instructions that may use the values influenced
by the branch.

Santos et al. in [32] presented a new infrastructure to solve the coherence issue
between normal data and metadata processing. The processor core, coprocessor and
memory hierarchy are modified in this new infrastructure to enforce metadata coherence. A
coherence unit is added to track all data access events on the shared bus from the processor
core. Furthermore, the access from multi-cores is synchronized in the coherence unit.
However, this design introduces high complexity compared to the hardware DIFT design.

Dhawan et al. in [33] proposed a flexible and programmable tag-based architecture
model for security policy customization. The security policy is defined as a function
mapping between the input set and output set under a specified operation. The security
policy is enforced at the level of instructions to enforce memory safety, control-flow integrity,
data flow integrity and separation between code and data. Meanwhile, the enforcement
of security policy includes the collaboration between symbolic rules in the software layer
and concrete rules in the hardware layer. Furthermore, the security policy customized
by software developers can express the security policy using abstract symbolic tags. In
addition, this architecture supports multiple orthogonal policies at the same time because
the rules can be achieved by pointers to the tag tuples.

Townley et al. in [34] analyzed the temporal locations of DIFT operations on tagged
data in regard to two features: (i) the number of instructions manipulating tagged data
and (ii) the duration of taint-free epochs. They found the distribution of tag access across
memory and the accuracy of coarse-grained tags may influence the DIFT design. Based on
these observations, they used the feature of strong temporal locality to design a lightweight,
coarse-grained DIFT hardware module. The dedicated DIFT module receives the com-
mitted instructions from the pipeline. Then, the DIFT-related operations are finished in
the dedicated hardware module. The dedicated hardware module can be combined with
software DIFT on the single-core and multi-core platform to significantly reduce the perfor-
mance overhead. The dedicated hardware module will also reduce the hardware overhead.
However, it is difficult to apply this framework to general computing platforms. The
different access behavior of the program may introduce false positive rates. Additionally,
coarse-grained designs may not provide enough protection for the target program.

Liu et al. in [35] enforced data-flow integrity through an open-source tagged memory
architecture based on RISC-V SoC. This work included a hardware extension of RISC-V
SoC and static analysis to generate CFG. They combined the in-core design and off-core
design to finish tag propagation and tag checking at runtime. Through static analysis, the
extended instructions were executed to indicate how to propagate tag between memory
locations and registers. Additionally, the custom coprocessor instructions are inserted to
inform the coprocessor to check the specified tags.

Micromachines 2021, 12, 898 11 of 16

6. Discussion and Prospect

In this section, we discuss the benefits and limitations of existing DIFT works. We also
present some promising future directions for more efficient DIFT frameworks.

6.1. DIFT Works on Different Layers of Whole Systems

As shown in Figure 1, we give an overview of DIFT techniques on different layers of
whole systems. In the program-layer, the target program is modified further to support the
DIFT-related operations through binary instrumentation and compiler aided methods. In
the OS layer, the target program and DIFT operations are divided and placed into different
threads (main thread and helper threads) on different processor cores. The synchronization
between the main thread and helper threads is finished through shared memory and a
special hardware channel, e.g., a FIFO message queue. The hardware-assisted methods pro-
vided in the architecture layer help accelerate the DIFT-related operations. The corresponding
hardware components and modules are extended to support the tag-related operations.

IF ID MEM EX WBTag

RegFile Tag

Memory Controller Tag

Tag Shadow Storage

DRAM Tag

Processor Core

Processor CoreExtra Hardware Channel

Main
thread

Main
thread

Main
thread

Worker
thread

Synchronization

Original
Program

Modified
Program

Binary Instrumentation

Compiler Aided

Architecture
Layer

OS
 Layer

Program
 Layer

Coprocessor

Figure 1. The DIFT works on different layers of whole systems.

Full-system-based design is a good candidate for DIFT frameworks because this type
of design acquires the essential information from the three layers mentioned above and
combines the benefits from both software and hardware DIFT designs. In addition to
the tag-related logic in the architecture layer, this layer also needs to provide isolation an
environment for secure execution. The storage of data and corresponding tag need to be
protected properly. Using a hypervisor may be a good method to protect the tag storage and
DIFT-related handler. Based on the architectural support, the OS enforces the security rules
and provides a mechanism to ensure the security features provided from the architecture
layer can be used in a safe manner. For example, it is possible to implement an extra
machine mode, e.g., monitor mode, orthogonal to the user mode and supervisor mode.
Further, the DIFT-related operations can only be finished in this monitor mode. Finally,
the program in the program layer is used to run the instructions, execute the tag-related
operations and invoke the extra machine mode provided by the OS.

Micromachines 2021, 12, 898 12 of 16

6.2. Overtaint on DIFT

The problem of overtaint refers to the tag polluting other data when the tag is propa-
gating at runtime without being restricted. Furthermore, it is the main cause of high false
positive rates. For example, the tag is propagated to the general purpose register through
ALU instructions. The data in the memory location are also tagged when executing mem-
ory instructions, e.g., store operations. Similarly, the data in the general purpose register
are also polluted by tagged data from memory. In this case, the benign data are also tagged
once they are involved in DIFT operations. As a result, the exception is raised even if there
are no actual attacks or security risks. Even worse, multiple processors’ data in CMPs
platform are polluted because they share the same data sources, e.g., memory or a cache
data page.

A better solution to this problem is to restrict the valid region for a tag. The authors
in [18] used a watchdog timer to ensure that the control flow is bounded between trusted
entities and untrusted entities. However, this type of design is not suitable for tag-based
systems because you cannot make sure the exact time bounds for different system events,
e.g., system calls, exception handling and memory access. The target program needs to be
analyzed and be divided into entities of different granularities, e.g., task, function, basic
block and variable. Furthermore, different tags are assigned to different entities to indicate
their granularity. In addition to recording the entity type, the tag also needs to record the
data source, e.g., using a unique identifier in a limited scope to represent a different source.
The tag design also needs to be combined with the actual software context. For example,
the security-critical function is treated especially and using a special tag.

6.3. Implicit Flow and Explicit Flow

The problem of implicit flow is an open problem in DIFT design. The authors in [31]
pointed it out that identifying all implicit flows is a very complex problem. As shown in
Listing 1, the explicit information flow cannot track nor determine whether the variable y
is influenced by the branch statement when x is not equal to true. In order to determine all
implicit flows, the statements influenced by control-flow related instructions need to be
identified. The common methods for dealing with implicit flow include: (i) static analysis
in [45] to find all implicit flows and assign tag operations to the corresponding instructions
and data; and (ii) transforming the implicit flow into explicit flow through the static and
dynamic method in [31]. However, the above methods work at the cost of performance
overheads and precision. Therefore, how to identify all implicit flows and track the implicit
flow at a reasonable cost is still a challenge for DIFT designs.

Listing 1. An example of implicit flow.

if(x == true)
y = true;

else
y = false;

6.4. A Flexible Tag-Based System

For in-core DIFT design, the adopted global security policy configuration registers
provide flexible customization for security policies to some extent. However, the global
configuration register is not suitable for the actual software context. The security policy
needs to be configured frequently at runtime to adapt to different program environments.
In some cases, this type of design may incur high false positive rates. That is, the security
policy customized by global configuration registers cannot provide fine-grained protection
which is suitable for the actual context.

Therefore, fine-grained tags are designed to express the atomic tag operation, e.g.,
the tag bit operation, tag fetch and update. The security policy can be expressed using a
combination of multiple atomic tag operations. In addition to the flexible expression of
tags, the variable length of a tag is considered to support multiple security policies at one

Micromachines 2021, 12, 898 13 of 16

time. At the hardware layer, the tag-related operations are executed in extended processor
pipeline stages or added coprocessor. For the extended processor pipeline, extra tag-related
instructions are executed to finish tag-related operations. Therefore, the extra software
performance overhead is introduced. A better solution to this problem is to adopt parallel
hardware pipeline stages to process the tag-related instructions instead of extending the
original pipeline stages. In the coprocessor, the extra tag-related instructions are counted as
nor-operation instructions in the processor pipeline. However, this also influences the per-
formance overhead. A possible solution is to divide the normal instructions and tag-related
instructions and place them in different memory locations. Then, the coprocessor can
receive the committed instructions from the processor and fetch the tag-related instructions
according to the committed instructions.

6.5. SoC-Level DIFT Design

Most DIFT designs focus on protecting the target software running on the proces-
sor. Only a few methods have been proposed for SoC-level DIFT designs to protect the
information flow between third party IPs (3PIPs). The current DIFT design can provide
protection for information flow between the processor and 3PIPs because most IPs can be
accessed in the form of memory mapped I/O (MMIO) registers. The security check can be
enforced on the corresponding memory regions. However, the information flow between
IPs is also an important part in any SoC environment. The 3PIPs play an important role
in data computation acceleration and some security-critical functions, e.g., encryption
and hashing.

The authors in [20] extended the bus to support extra tag transmission, although this
DIFT design may not be deployed in real-world systems. A possible solution is to attach
one DIFT-oriented IP to the bus. The IP is responsible for monitoring the information flow
between IPs and provide a summary to the DIFT engine in the processor or coprocessor
for further processing. In addition, an extra bus topology can be added to support the
tag transmission at runtime. The extra bus topology can be used for propagating the tag
about information flow between processor and IP. The tag propagation between IPs can
also leverage this new bus topology. The DIFT engine in the processor and coprocessor can
serve as a management unit for information flow in the whole SoC.

6.6. Future Research

Software and hardware co-design is a good future direction. This type of design
can combine the benefits of both hardware-based design and software-based design. Fur-
ther, off-core-based design can package all DIFT operations into one dedicated hardware
component and introduce few modifications to the processor core. The target software is
instrumented through binary instrumentation mechanisms or compiler aided tools. The
inserted auxiliary instructions are utilized to instruct the dedicated hardware component
to accomplish tag propagation and checking. In addition, the problem of implicit flow can
be processed at the software side.

The common tag designs include single-bit, multi-bit and policy oriented. In order to
enforce security policy in terms of combinations of tags, the granularity of tags should be
defined according to the types of system resources, e.g., process, even, file and variable.
Additionally, the tag should record the lifetime and the specific activity of the corresponding
resource. It can serve as a log and enable the programmer or user to replay the action on
specified resource. Therefore, the possible security risks can be analyzed.

Along with protecting the target software at runtime, the security of SoC should also
be considered. Modern SoC includes a lot of third-party IPs which may compromise the
security of the whole system. Tracking the information flow on the whole SoC can help
the system designer define suitable security policy. For the bus, the tag can be transmitted
in parallel with the shake signal between IPs. Additionally, the bus can be extended to
support the tag transmission. For security checking, the corresponding operations can be
packaged into one dedicated hardware component or accomplished in IP wrapper.

Micromachines 2021, 12, 898 14 of 16

7. Conclusions

In this paper, we analyzed a large number of DIFT designs and reviewed all those
designs in the context of three categories, software DIFT, hardware DIFT and hardware-
software co-design DIFT. We discussed the advantages and disadvantages of each DIFT
framework with focuses on the performance overheads and security protection levels.
Based on our discussion, we presented new research directions in this area. We hope that
this survey will help researchers in related areas to develop more efficient DIFT frameworks
to help track information flow within the computing systems.

Author Contributions: Conceptualization, K.C.; methodology, K.C.; investigation, K.C.; resources,
K.C., Q.D. and Y.J.; data curation, K.C.; writing—original draft preparation, K.C.; writing—review and
editing, K.C., X.G. and Y.J.; supervision, Q.D. and Y.J.; project administration, Y.J. and Q.D.; funding
acquisition, Q.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zeldovich, N.; Boyd-Wickizer, S.; Kohler, E.; Mazieres, D. Making information flow explicit in HiStar. Commun. ACM 2011,

54, 93–101. [CrossRef]
2. Nagarajan, V.; Kim, H.S.; Wu, Y.; Gupta, R. Dynamic information flow tracking on multicores. In Proceedings of the Workshop

on Interaction between Compilers and Computer Architectures, Salt Lake City, UT, USA, 20–23 February 2008.
3. Ruwase, O.; Gibbons, P.B.; Mowry, T.C.; Ramachandran, V.; Chen, S.; Kozuch, M.; Ryan, M. Parallelizing dynamic information

flow tracking. In Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, Munich,
Germany, 14–16 June 2008; pp. 35–45.

4. Kannan, H. Ordering decoupled metadata accesses in multiprocessors. In Proceedings of the 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), New York, NY, USA, 12–16 December 2009; pp. 381–390.

5. Nightingale, E.B.; Peek, D.; Chen, P.M.; Flinn, J. Parallelizing security checks on commodity hardware. ACM SIGARCH Comput.
Archit. News 2008, 36, 308–318. [CrossRef]

6. Arefi, M.N.; Alexander, G.; Rokham, H.; Chen, A.; Faloutsos, M.; Wei, X.; Oliveira, D.S.; Crandall, J.R. Faros: Illuminating
in-memory injection attacks via provenance-based whole-system dynamic information flow tracking. In Proceedings of the 2018
48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Luxembourg, 25–28 June 2018;
pp. 231–242.

7. Cheng, W.; Zhao, Q.; Yu, B.; Hiroshige, S. Tainttrace: Efficient flow tracing with dynamic binary rewriting. In Proceedings of the
11th IEEE Symposium on Computers and Communications (ISCC’06), Cagliari, Italy, 26–29 June 2006; pp. 749–754.

8. Chen, S.; Lin, Z.; Zhang, Y. SELECTIVETAINT: Efficient Data Flow Tracking With Static Binary Rewriting. In Proceedings of the
30th USENIX Security Symposium (USENIX Security 21), Vancouver, BC, Canada, 11–13 August 2021.

9. Castro, M.; Costa, M.; Harris, T. Securing software by enforcing data-flow integrity. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, Seattle, WA, USA, 6–8 November 2006; pp. 147–160.

10. Clause, J.; Li, W.; Orso, A. Dytan: A generic dynamic taint analysis framework. In Proceedings of the 2007 International
Symposium on Software Testing and Analysis, London, UK, 9–12 July 2007; pp. 196–206.

11. Enck, W.; Gilbert, P.; Han, S.; Tendulkar, V.; Chun, B.G.; Cox, L.P.; Jung, J.; McDaniel, P.; Sheth, A.N. Taintdroid: An
information-flow tracking system for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS)
2014, 32, 1–29. [CrossRef]

12. Kemerlis, V.P.; Portokalidis, G.; Jee, K.; Keromytis, A.D. libdft: Practical dynamic data flow tracking for commodity systems. In
Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments, London, UK, 3–4 March 2012;
pp. 121–132.

13. Ji, Y.; Lee, S.; Downing, E.; Wang, W.; Fazzini, M.; Kim, T.; Orso, A.; Lee, W. Rain: Refinable attack investigation with on-demand
inter-process information flow tracking. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 377–390.

14. Ferraiuolo, A.; Xu, R.; Zhang, D.; Myers, A.C.; Suh, G.E. Verification of a practical hardware security architecture through
static information flow analysis. In Proceedings of the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, Xi’an, China, 8–12 April 2017; pp. 555–568.

15. Tiwari, M.; Wassel, H.M.; Mazloom, B.; Mysore, S.; Chong, F.T.; Sherwood, T. Complete information flow tracking from the gates
up. In Proceedings of the 14th International Conference on Architectural Support for Programming Languages and Operating
Systems, Washington, DC, USA, 7–11 March 2009; pp. 109–120.

http://doi.org/10.1145/2018396.2018419
http://dx.doi.org/10.1145/1353534.1346321
http://dx.doi.org/10.1145/2619091

Micromachines 2021, 12, 898 15 of 16

16. Tiwari, M.; Oberg, J.K.; Li, X.; Valamehr, J.; Levin, T.; Hardekopf, B.; Kastner, R.; Chong, F.T.; Sherwood, T. Crafting a usable
microkernel, processor, and I/O system with strict and provable information flow security. In Proceedings of the 2011 IEEE 38th
Annual International Symposium on Computer Architecture (ISCA), San Jose, CA, USA, 4–8 June 2011; pp. 189–199.

17. Ardeshiricham, A.; Hu, W.; Marxen, J.; Kastner, R. Register transfer level information flow tracking for provably secure hardware
design. In Proceedings of the IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland,
27–31 March 2017; pp. 1691–1696.

18. Tiwari, M.; Li, X.; Wassel, H.M.; Chong, F.T.; Sherwood, T. Execution leases: A hardware-supported mechanism for enforcing
strong non-interference. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
New York, NY, USA, 12–16 December 2009; pp. 493–504.

19. Piccolboni, L.; Di Guglielmo, G.; Carloni, L.P. Pagurus: Low-overhead dynamic information flow tracking on loosely coupled
accelerators. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 2685–2696. [CrossRef]

20. Porquet, J.; Sethumadhavan, S. WHISK: An uncore architecture for dynamic information flow tracking in heterogeneous
embedded SoCs. In Proceedings of the 2013 IEEE International Conference on Hardware/Software Codesign and System
Synthesis (CODES + ISSS), Montreal, QC, Canada, 29 September–4 October 2013; pp. 1–9.

21. Dalton, M.; Kannan, H.; Kozyrakis, C. Raksha: A flexible information flow architecture for software security. ACM SIGARCH
Comput. Archit. News 2007, 35, 482–493. [CrossRef]

22. Palmiero, C.; Di Guglielmo, G.; Lavagno, L.; Carloni, L.P. Design and implementation of a dynamic information flow tracking
architecture to secure a RISC-V core for IoT applications. In Proceedings of the 2018 IEEE High Performance Extreme Computing
Conference (HPEC), Boston, MA, USA, 25–27 September 2018; pp. 1–7.

23. Li, W.; Ma, Y.; Yang, Q.; Li, M. Hardware-Based Adversary-Controlled States Tracking. In Proceedings of the 2018 IEEE 4th
International Conference on Computer and Communications (ICCC), Chengdu, China, 10–13 December 2018; pp. 1366–1370.

24. Lee, J.; Heo, I.; Lee, Y.; Paek, Y. Efficient dynamic information flow tracking on a processor with core debug interface. In Proceed-
ings of the 2015 IEEE 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 7–11 June 2015;
pp. 1–6.

25. Lee, J.; Heo, I.; Lee, Y.; Paek, Y. Efficient security monitoring with the core debug interface in an embedded processor. ACM Trans.
Des. Autom. Electron. Syst. (TODAES) 2016, 22, 1–29. [CrossRef]

26. Wahab, M.A.; Cotret, P.; Allah, M.N.; Hiet, G.; Lapotre, V.; Gogniat, G. ARMHEx: A hardware extension for DIFT on ARM-based
SoCs. In Proceedings of the 2017 IEEE 27th International Conference on Field Programmable Logic and Applications (FPL), Gent,
Belgium, 4–8 September 2017; pp. 1–7.

27. Venkataramani, G.; Doudalis, I.; Solihin, Y.; Prvulovic, M. Flexitaint: A programmable accelerator for dynamic taint propagation.
In Proceedings of the 2008 IEEE 14th International Symposium on High Performance Computer Architecture, Salt Lake City, UT,
USA, 16–20 February 2008; pp. 173–184.

28. Kannan, H.; Dalton, M.; Kozyrakis, C. Decoupling dynamic information flow tracking with a dedicated coprocessor. In Proceed-
ings of the 2009 IEEE/IFIP International Conference on Dependable Systems & Networks, Portland, OR, USA, 24–17 June 2009;
pp. 105–114.

29. Joannou, A.; Woodruff, J.; Kovacsics, R.; Moore, S.W.; Bradbury, A.; Xia, H.; Watson, R.N.; Chisnall, D.; Roe, M.; Davis, B.; et al.
Efficient tagged memory. In Proceedings of the 2017 IEEE International Conference on Computer Design (ICCD), Boston, MA,
USA, 5–8 November 2017; pp. 641–648.

30. Weiser, S.; Werner, M.; Brasser, F.; Malenko, M.; Mangard, S.; Sadeghi, A.R. TIMBER-V: Tag-Isolated Memory Bringing Fine-
grained Enclaves to RISC-V. In Proceedings of the Network and Distributed Systems Security (NDSS) Symposium 2019, San Diego,
CA, USA, 24–27 February 2019.

31. Vachharajani, N.; Bridges, M.J.; Chang, J.; Rangan, R.; Ottoni, G.; Blome, J.A.; Reis, G.A.; Vachharajani, M.; August, D.I. RIFLE:
An architectural framework for user-centric information-flow security. In Proceedings of the 37th IEEE International Symposium
on Microarchitecture (MICRO-37’04), Portland, OR, USA, 4–8 December 2004; pp. 243–254.

32. Martínez Santos, J.C.; Fei, Y. Micro-architectural support for metadata coherence in multi-core dynamic information flow tracking.
In Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy, Tel-Aviv,
Israel, 23–24 June 2013; pp. 1–8.

33. Dhawan, U.; Vasilakis, N.; Rubin, R.; Chiricescu, S.; Smith, J.M.; Knight, T.F., Jr.; Pierce, B.C.; DeHon, A. Pump: A programmable
unit for metadata processing. In Proceedings of the Third Workshop on Hardware and Architectural Support for Security and
Privacy, Minneapolis, MN, USA, 15 June 2014; pp. 1–8.

34. Townley, D.; Khasawneh, K.N.; Ponomarev, D.; Abu-Ghazaleh, N.; Yu, L. LATCH: A Locality-Aware Taint CHecker. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, Columbus, OH, USA, 12–16 October 2019;
pp. 969–982.

35. Liu, T.; Shi, G.; Chen, L.; Zhang, F.; Yang, Y.; Zhang, J. TMDFI: Tagged memory assisted for fine-grained data-flow integrity
towards embedded systems against software exploitation. In Proceedings of the 2018 17th IEEE International Conference on
Trust, Security and Privacy in Computing Additionally, Communications/12th IEEE International Conference On Big Data
Science Additionally, Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp. 545–550.

http://dx.doi.org/10.1109/TCAD.2018.2857321
http://dx.doi.org/10.1145/1273440.1250722
http://dx.doi.org/10.1145/2907611

Micromachines 2021, 12, 898 16 of 16

36. Berner, F.; Sametinger, J. Dynamic Taint-tracking: Directions for Future Research. In Proceedings of the 16th International Joint
Conference on e-Business and Telecommunications (ICETE 2019), Prague, Czech Republic, 26–28 July 2019; pp. 294–305.

37. Or-Meir, O.; Nissim, N.; Elovici, Y.; Rokach, L. Dynamic malware analysis in the modern era—A state of the art survey. ACM
Comput. Surv. (CSUR) 2019, 52, 1–48. [CrossRef]

38. Yan, P.; Yan, Z. A survey on dynamic mobile malware detection. Softw. Qual. J. 2018, 26, 891–919. [CrossRef]
39. Yan, L.K.; Yin, H. SoK: On the Soundness and Precision of Dynamic Taint Analysis. Formal. Taint 2017, 2017, 1–15.
40. D’Elia, D.C.; Coppa, E.; Nicchi, S.; Palmaro, F.; Cavallaro, L. SoK: Using dynamic binary instrumentation for security (and how

you may get caught red handed). In Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security,
Auckland, New Zeland, 7–12 July 2019; pp. 15–27.

41. Crandall, J.R.; Chong, F.T. Minos: Control data attack prevention orthogonal to memory model. In Proceedings of the 37th IEEE
International Symposium on Microarchitecture (MICRO-37’04), Portland, OR, USA, 4–8 December 2004; pp. 221–232.

42. McKeen, F.; Alexandrovich, I.; Berenzon, A.; Rozas, C.V.; Shafi, H.; Shanbhogue, V.; Savagaonkar, U.R. Innovative instructions
and software model for isolated execution. Hasp@isca 2013, 10, 1–8.

43. TrustZone Technology for ARMv8-M Architecture. Available online: https://developer.arm.com/documentation/100690/latest/
(accessed on 28 July 2021).

44. Kocher, P.; Horn, J.; Fogh, A.; Genkin, D.; Gruss, D.; Haas, W.; Hamburg, M.; Lipp, M.; Mangard, S.; Prescher, T.; et al.
Spectre attacks: Exploiting speculative execution. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP),
San Francisco, CA, USA, 19–23 May 2019; pp. 1–19.

45. Shin, J.; Zhang, H.; Lee, J.; Heo, I.; Chen, Y.Y.; Lee, R.; Paek, Y. A hardware-based technique for efficient implicit information flow
tracking. In Proceedings of the 35th International Conference on Computer-Aided Design, Austin, TX, USA, 7–10 November 2016;
pp. 1–7.

http://dx.doi.org/10.1145/3329786
http://dx.doi.org/10.1007/s11219-017-9368-4
https://developer.arm.com/documentation/100690/latest/

	Introduction
	Background
	Tag Size and Granularity
	Tag Storage
	Tag Propagation
	Tag Checking

	Hardware-Assisted Dynamic Information Flow Tracking
	Gate-Level DIFT
	Micro-Architecture-Level DIFT Design
	Dynamic Information Flow Tracking on SoC
	In-Core DIFT Design
	Off-Core DIFT Design

	Tagged Memory Architecture

	Software-Based Dynamic Information Flow Tracking
	System-Level Dynamic Information Flow Tracking
	Program-Level Dynamic Information Flow Tracking

	Software and Hardware Co-Design-Based Dynamic Information Flow Tracking
	Discussion and Prospect
	DIFT Works on Different Layers of Whole Systems
	Overtaint on DIFT
	Implicit Flow and Explicit Flow
	A Flexible Tag-Based System
	SoC-Level DIFT Design
	Future Research

	Conclusions
	References

