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Abstract: Artificial intelligence algorithms need an external computing device such as a graphics
processing unit (GPU) due to computational complexity. For running artificial intelligence algorithms
in an embedded device, many studies proposed light-weighted artificial intelligence algorithms
and artificial intelligence accelerators. In this paper, we propose the ASimOV framework, which
optimizes artificial intelligence algorithms and generates Verilog hardware description language
(HDL) code for executing intelligence algorithms in field programmable gate array (FPGA). To verify
ASimOV, we explore the performance space of k-NN algorithms and generate Verilog HDL code to
demonstrate the k-NN accelerator in FPGA. Our contribution is to provide the artificial intelligence
algorithm as an end-to-end pipeline and ensure that it is optimized to a specific dataset through
simulation, and an artificial intelligence accelerator is generated in the end.

Keywords: artificial intelligence; k-NN; embedded system

1. Introduction

The performance of the artificial intelligence algorithm is overwhelming compared
with other algorithms. Due to the high performance of artificial intelligence algorithms,
convolutional neural networks and recurrent neural networks are applied to other prob-
lem tasks, such as computer vision and time–series data processing [1–4]. Recently, the
sophisticated results of artificial intelligence algorithms such as generative pretrained
transformer (GPT), DeepFake, and Deep Voice have had a high social impact to the extent
that problems of ethics arise [5–7]. The artificial intelligence algorithm has increased in
computational complexity over time and computed a device such as a GPU to consume
power, almost >100 W [8]. It is an obstacle that the artificial intelligence algorithm applies
to the embedded system or mobile device.

To reduce the computational complexity of artificial intelligence algorithms, many
studies propose lightweight artificial neural network algorithms. The pruning method re-
moves unnecessary neurons from neural networks [9–11]. Knowledge distillations transfer
refined knowledge of well-trained models to smaller, untrained models [12–14], and the
bit quantization methods quantize 32-bit or 64-bit floating-point weights to 2 to 8-bit
integer weights in a neural network [15–17]. To reduce power consumption, many studies
propose the artificial neural network accelerator. FINN-R explores binary neural network
architecture space and executes a binary neural network in Xilinx FPGA (Xilinx, Inc, San
Jose, CA, USA) [18]. The accelerator for channel gating neural networks removes the
unnecessary feature map from neural networks [19]. ALAMO generates RTLs for AlexNet
or NiN convolutional neural network architectures and allows the exploration of various
convolutional neural network structures [20]. VIBNN equips a random number generator
for executing a Bayesian neural network in the artificial neural network accelerator [21].

Studies show that lightweight artificial intelligence algorithms and accelerators have
a purpose in running artificial intelligence algorithms in an embedded system or mobile
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device. In actuality, the artificial intelligence accelerator has benefit in power consumption,
not computational complexity [22,23]. Therefore, we need an accelerator that supports
general artificial intelligence algorithms for benefit of power consumption and computa-
tional complexity.

In this paper, we propose the ASimOV framework, which optimizes the artificial
intelligence algorithm and generates Verilog HDL code for executing the artificial algorithm
in FPGA. The simulator in ASimOV allows us to explore the performance space of artificial
intelligence algorithms for problems, and the HDL code generator in ASimOV allows for
executing optimized artificial intelligence algorithms at simulation phase in FPGA. To
verify ASimOV, we explore the performance space of the k-NN accelerator in the image,
speech-recognition dataset, and execute the generated k-NN accelerator optimized in the
simulation phase in FPGA.

The rest of this paper is organized as follows. Section 2 describes the AI algorithms.
Section 3 describes ASimOV framework that was composed of a simulator and HDL code
generator. Section 4 provides the experiment result of the artificial intelligence algorithms’
simulation at various parameter settings. Section 5 summarizes the proposed framework,
and presents the future work.

2. Background

The parametric method and non-parametric method are methods that estimate proba-
bility density function from sampling data. The non-parametric method has two advan-
tages. First, the risk of choosing the wrong parametric assumption is small. Second, it is
less sensitive to outliers. The histogram method is one of the representative non-parametric
methods. A total number of bins has exponential scaling with D when we divide each
variable in a D dimensional space into M bins. Sampled high dimensional data have a
property that represents sparse in high dimension space. To estimate the probability density
at a particular location, we need data points that lie within some local neighborhood of
that point. Therefore, it is hard for that histogram method to apply to high-dimensional
data. To overcome this limitation, we can use kernel density estimation using the kernel
function. The parameters defining the kernel are the same for all kernels when density
estimation is performed through the kernel estimation method. If a large parameter is used,
it is excessively smoothed and it is difficult to reveal the original structure of the probability
density. If a small parameter is used, the noise is reflected in the probability density for
regions with low data density. Therefore, the kernel optimal parameter value of kernel
density estimation is bound to be dependent on its location in the data space. This problem
can be solved through k-NN, which allows parameters to be adjusted according to the data
density. k-NN can be used as a classifier because it can obtain the posterior probability of
which class the data belong to by applying the Bayesian Theorem to the density estimation
equation of kernel density estimation.

k-NN is a nonparametric method and used for classification or regression problems.
During training, k-NN stores all training data. In the process of inference, when new
data come in, the distances of the stored data are all compared, and the nearest data point
is returned. Therefore, k-NN is a memory-intensive algorithm with fast learning, slow
inference, and storing all data. The k-NN classifier selects one category by voting for the
selected data candidate group. The k-NN regressor averages and uses the values of the
data candidates. Algorithm 1 below shows the pseudocode of the k-NN classifier. The
parameters of the k-NN algorithm are divided into two types: the number of neighbors
to be searched (k), and the distance measurement method. When the k-value is small,
the local characteristics of the data are excessively reflected, and when the k-value is too
large, it is over-normalized. For the distance measurement methods such as Euclidean
and Manhattan, Mahalanobis correlation distance is used according to the definition of the
problem. When trying to classify or regress high-dimensional data, the k-NN algorithm
has a limitation in that the average distance between neighboring neighbors and the
average distance between all data become similar, resulting in poor prediction performance.
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To solve this problem, the problem is solved by projecting high-dimensional data in a
low-dimensional manner through a dimensional reduction technique such as principal
component analysis (PCA) [24–27].

Algorithm 1. Pseudo-code for the k-NN Algorithm.

Input:
X: training data
Y: class labels of X
x: unknown sample
S: instance set
k: number of nearest neighbor

Output: predicted class label
1: //train phase
2: for i = 1 to length(X) do
3: Store training instance X[i], class label Y[i] into instance set S[i]
4: end for
5:
6: //inference phase
7: for i = 1 to length(X) do

8:
Calculate distance between the unknown sample and the stored training instance
d(X[i], x)

9: Store calculated distance values into D
10: end for
11:
12: Find k minimum distance values
13: Vote which class is the most among k minimum distance values
14:
15: Return the class that has been voted by the majority

The k-NN is divided into structureless k-NN, which overcomes memory limitations
during learning, and structure-based, which reduces computational complexity during
inference. Structure-based k-NN utilizes the tree structure and uses an approach that forms
a tree data structure during learning and reduces search time during inference. At this time,
the characteristics vary depending on which tree structure is used [28–30]. Structureless
k-NN is improved from the condensed nearest neighbor, which removes duplicate patterns
during training [31–33], and the reduced nearest neighbor, which removes even patterns
that do not affect the training dataset result [24,34], and WkNN, which adds weight to
distance values [35]. Most of the problems that AI algorithms deal with change their
approach depending on the dataset. Depending on the dataset, classes can be imbalanced,
and there can be a lot of data with similar patterns. Moreover, a certain feature point
may contain a lot of meaningful information. When it is solving a specific problem, the
AI algorithm is affected by the data characteristics, and this influence also affects the AI
accelerator. Therefore, before designing a k-NN accelerator, it is necessary to review and
optimize the structure of a k-NN accelerator suitable for a specific problem. It is similar to
testing hardware logic in FPGA before application-specific integrated circuit (ASIC) [36–38].
Therefore, in order to overcome this problem, this study proposes an ASimOV framework
that examines and optimizes various k-NN accelerators to generate HDL code that can be
executed directly on the FPGA.

3. Methodology

The proposed framework consists of a simulator and generator. As the resource of
an embedded system is limited, we analyze how to exploit the resource efficiently by the
proposed simulator. Based on the analyzed results, the HDL code generator generates
a hardware model with high efficiency of resources, even the limited resource of the
embedded system. In this paper, we generate the hardware model by the proposed
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framework and construct an embedded system by connecting the hardware model to an
embedded processor.

3.1. ASimOV Framework

The hardware model generated by ASimOV’s HDL generator is designed to support
pure k-NN. Therefore, the simulator only supports structureless-based k-NN. This is
achieved by injecting custom Python source code into the simulator. When the user
navigates through the various parameters related to the design, the user chooses a passive
method and automatic method. This changes greatly depending on what type of code the
user is using. For the passive method, for example, users can insert custom Python code
that analyzes k-NN’s performance after one training and inference and manually changes
the parameters. In the case of the automatic method, the user can insert the Python source
code which automatically finds the best parameters.

Figure 1 shows the design sequence of the proposed framework. The first line is the
explanations of ASimOV framework sequence, the second line is the images for description
and the last line is the execution results. Before designing the embedded AI system, the
user decides the application and available hardware resources. Testing the embedded
AI system by implementing hardware shows high accuracy, but it also requires high
testing costs. Moreover, when they change the application of hardware resources, it is
inefficient because it needs to be tested again. Therefore, simulating the AI system using
the proposed simulator reduces the cost of the system. The user of the ASimOV generates
a simulation model that has the same specification as the target embedded system or
FPGA. The parameters are determined by the available resources of the target FPGA. In the
sequence of generating the simulation model, the user sets the maximum number of neuron
cells according to the amount of memory available and the logic size of the FPGA. After
the generating simulation model, the user gets an optimized configuration through the
repeated simulation. As a result, the ASimOV makes the user get an optimized hardware
model for the dataset they use.
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For example, we can explore the performance space of artificial intelligence algorithms,
given datasets and hardware specs. This exploration has an advantage that reduces
exploration cost when we explore different domain problem at the same algorithms. After
the simulation, the proposed HDL generator generates a hardware model that changed
some components such as memory, given hardware parameters from the simulator. As
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a result, the proposed framework possibly allows user to use an optimized embedded
AI system.

The overall sequence of the framework is as follows. First, the users decide what
dataset they use for the embedded system. When the users decided the dataset, users also
decide the specification of the embedded system, such as memory for the AI accelerator.
The determined size of memory influences the generation of simulation models in the next
step. Depending on the size of the memory, the user checks the results of the simulation,
depending on the number of possible cells and the amount of memory a cell has. Based
on the number of optimized cells and the memory size of the cells from the result of the
simulator, users generate a hardware model using the HDL generator.

The last line of Figure 1 is the result of generating an MNIST classification model
using the ASimOV framework. First, the user decides the dataset they want to use and
the hardware resource they can use. In accordance with the hardware resource, the user
makes a simulation model with various configurations of the number of cells and the
size of the vector. When the parameters are decided, the simulator finds an optimized
configuration of the number of cells and the size of the vector. The simulation result shows
all of the configurations of precisions, recalls, and f-1 sources. The user chooses one of
the configurations and inputs the configuration data to the HDL generator. The result of
the HDL generator generates Intel Quartus Prime 17.1 project, but the user can exploit
only the register-transfer level (RTL) codes. If the user uses the Quartus Prime project,
the user can exploit the AI accelerator by just compiling and uploading the design on
FPGA. The generated AI accelerator is controlled through serial peripheral interface (SPI)
communication with the main processor.

3.2. AI Simlator

The proposed simulator is designed to emulate the AI algorithms for implementing on
hardware. Therefore, the proposed simulator enables the user to construct the optimized
embedded AI system for application without implementing the hardware. When the
system has already been implemented in the hardware, the performance verification using
the simulators has the advantage of reducing the design costs. In this paper, we construct
the AI accelerator with a distance-based AI algorithm, k-NN. The simulation consists of
Python code and is designed to take advantage of custom Python code. The simulation
only provides an interface for training, inference, and HDL generation.

In order to emulate the hardware as much as possible, the proposed simulator is
designed to imitate the functionality of modules in the AI accelerator. Figure 2a shows
the construct of the proposed simulator and Figure 2b shows the architecture of the AI
accelerator. Because optimizing hardware has high cost, the proposed simulator consists
of emulating each module of Figure 2b. The proposed simulator generates an imitation
neuron, which is responsible for the main function in hardware and conducts a simulation
by entering input vectors for learning and inference. The imitate neuron consists of train,
inference, and core which is the set of cells. The train and the inference emulate classifier
in hardware and the cell emulates the neuron-cell of the neuron core module. The cell
includes the vector mem. to store training data, a status registry for indicating the status of
the neuron, and the calculator for performing distance calculations.

The proposed simulator provides artificial intelligence algorithms based on k-NN.
Because the hardware model follows the pure k-NN algorithms, the simulator also follows
the pure k-NN algorithms. Therefore, the simulator only applies methods that have
not changed operation manner, such as a condensed nearest neighbor, reduced nearest
neighbor, and WkNN method. In this paper, we focus on pure k-NN algorithms. When
generating an imitate neuron, the AI simulator needs the information about the number of
cells to configure neuron core and the size of the input vector to store in the vector mem.
The product of the number of cells and the size of the data corresponds to the memory cell
of the hardware. Because the number of cells is related with the number of categories and
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the size of the input vector is related with the detail of data, the neuron core needs to be
generated in appropriate configurations in accordance with the application.
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At the learning stage of the AI simulator, data are stored in a cell with category
information. As the train resizes the data according to the size of vector mem., the proposed
simulator enables the user to test the various configuration of memory without additional
modification. In the inference stage, the proposed simulator receives the recognition data
and calculates the distance with trained data in cells according to information of status
registry. The inference returns a category of cells with a minimum distance by comparing
all the distance values of the cells.

The learning/inference process of the simulation allows you to find the optimal com-
bination of the vector mem. and the number of cells. This optimal combination is passed to
the HDL generator to generate the hardware model.

3.3. HDL Code Generator

The HDL code generator generates a hardware model based on the optimized con-
figuration obtained from the AI simulator. The architecture of the generated hardware
model is shown in Figure 2b. The proposed AI accelerator consists of the interface module,
neuron core module, which is set of neuron cells, and the classifier module. The interface
module communicates with embedded processor to get the learning data and to send the
recognition result by the serial communication. The classifier module determines the result
category in accordance with the selected AI algorithm.

During the training, the entered data are stored in each cell by the scheduler with
the category data. Each cell has memory for storing input data. The number of cells and
the size of memory are generated in an optimized number and size obtained from the
simulator, and data are stored directly in memory through the scheduler. When performing
the inference, the recognition data are sent to all activated cells simultaneously and distance
computation results are sent to the classifier. The classifier transmits the results category
according to the algorithm used. The framer assists the AI algorithm by organizing the
distance result and the category of the cells. In this paper, we use the k-NN algorithm
that determines the result category with the shortest distance of neuron cell. When the
inference is over, the result MUX transmits the result data to the interface module to send
to the embedded processor.

In order to verify the proposed framework, we exploited an FPGA of the Intel MAX10
series and designed prototype board shown in Figure 2c. The proposed HDL code generator
generates not only the HDL codes, but also the project of Intel Quartus Prime 17.1, including
the FPGA information. The memory model of the HDL generator is based on 1-port RAM
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that is provided by the Quartus Prime IP. The RTL except memory is not tied to such
vendors, therefore users can implement the HDL codes by changing the memory model
they want to use. For the experiments of proposed HDL codes, we adopt ARM Cortex-A
series as the main processor and control the processor using C programing. The main
processor is not included.

4. Experiments

In order to validate the proposed framework, we used image datasets and speech
datasets. The image model is tested with MNIST, Fashion MNIST, CIFAR-10, and STL-
10 [39–42]. The speech model is tested with the google speech command dataset and VCTK,
with three different pre-processing methods [43,44]. We simulated 16 KB and 64 KB of
memory for the proposed framework. In this paper, 3-fold cross-validation was used to
evaluate the algorithm performance in each dataset. Since the simulation of the proposed
framework performs the same functions as the implemented hardware, we did not add
the hardware result separately. The results in Tables 1–4 are the same for both software
and hardware.

Table 1. Simulation result of image datasets with 16 KB of memory.

Vector Length Number of Cell MNIST Fashion MNIST CIFAR-10 STL-10

8 2048 46.3% 47.6% 16.5% 23.6%
16 1024 79.0% 72.9% 22.1% 22.3%
32 512 78.9% 75.8% 21.7% 23.0%
64 256 83.9% 76.6% 20.3% 23.8%
128 128 82.3% 77.4% 20.9% 22.8%
256 64 77.9% 72.1% 18.9% 19.8%
512 32 69.0% 68.9% 15.9% 17.8%

1024 16 56.0% 58.8% 16.5% 17.2%
2048 8 53.3% 48.9% 13.2% 13.4%

Table 2. Simulation result of image datasets with 64 KB of memory.

Vector Length Number of Cell MNIST Fashion MNIST CIFAR-10 STL-10

8 8192 47.7% 48.3% 16.2% 17.1%
16 4096 81.1% 75.4% 24.1% 24.8%
32 2048 83.6% 78.7% 23.1% 25.2%
64 1024 90.3% 80.0% 23.2% 25.5%
128 512 89.6% 79.2% 22.0% 25.0%
256 256 85.5% 77.2% 20.5% 24.8%
512 128 81.5% 76.4% 20.7% 22.7%

1024 64 77.3% 73.6% 19.0% 19.7%
2048 32 68.3% 69.8% 15.8% 17.9%

Table 3. Simulation result of speech datasets with 16 KB of memory.

Vector Length Number of
Cell

Google Speech Command VCTK

STFT MEL MFCC STFT MEL MFCC

8 2048 80.5% 59.1% 51.8% 57.3% 40.0% 48.7%
16 1024 87.4% 86.7% 62.8% 82.7% 76.7% 66.7%
32 512 87.2% 86.6% 63.6% 82.7% 82.7% 74.0%
64 256 84.1% 83.6% 65.6% 86.7% 80.0% 61.3%
128 128 84.4% 82.1% 66.0% 83.3% 77.3% 62.7%
256 64 81.9% 78.9% 63.5% 79.3% 76.0% 61.3%
512 32 79.5% 74.2% 61.8% 70.0% 62.7% 53.3%

1024 16 74.4% 69.7% 65.1% 76.7% 56.7% 54.7%
2048 8 69.6% 66.1% 59.1% 53.3% 52.7% 49.3%
4096 4 66.7% 59.5% 51.0% 42.0% 43.3% 39.3%
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Table 4. Simulation result of speech datasets with 64 KB of memory.

Vector Length Number of
Cell

Google Speech Command VCTK

STFT MEL MFCC STFT MEL MFCC

8 8192 80.9% 56.7% 51.2% 57.3% 40.0% 48.7%
16 4096 90.2% 90.5% 65.4% 82.7% 76.7% 66.7%
32 2048 90.7% 89.7% 67.0% 79.3% 86.0% 68.7%
64 1024 89.5% 89.3% 68.0% 84.0% 77.3% 68.0%
128 512 88.3% 88.4% 74.6% 84.0% 76.7% 66.7%
256 256 85.4% 85.3% 73.8% 83.3% 80.7% 71.3%
512 128 84.8% 84.4% 69.2% 82.0% 79.3% 67.3%

1024 64 82.1% 78.0% 74.0% 76.7% 70.7% 67.3%
2048 32 79.5% 73.3% 72.6% 68.0% 57.3% 60.0%
4096 16 74.0% 69.6% 65.3% 62.7% 56.0% 54.0%

4.1. Image Dataset

For the test of the proposed framework, we used MNIST, Fashion MNIST, CIFAR-10,
and STL-10. Tables 1 and 2 show the accuracy of the simulation and generated hardware by
framework with 16 KB memory and 64 KB of memory, respectively. The MNIST, Fashion
MNIST, CIFAR-10, and STL-10 show the best result at 64 bytes with 256 cells, 128 bytes
with 128 cells, 16 bytes with 1024 cells, and 64 bytes with 256 cells respectively. The vector
length of the best result in MNIST, CIFAR-10 and STL-10 is same regardless of the total
memory size. However, the best configuration of Fashion MNIST is changed from 128 bytes
with 128 cells to 64 bytes with 1024 cells when the total system memory was 64 KB. The
simulation results indicate that when the total memory size is changed, the performance
of the distance-based algorithms changes according to not only the vector size but also
the number of cells. Therefore, the proposed framework optimizes and improves the
performance of the AI accelerator.

4.2. Speech Dataset

Tables 3 and 4 show the accuracy of the simulation and generated hardware by the
framework using speech models with 16 KB memory and 64 KB memory, respectively.
For better performance on speech recognition, we exploited short-time Fourier transform
(STFT), Mel spectrum, and Mel-Frequency Cepstral Coefficient (MFCC). The google speech
command result using STFT of 16 KB memory model shows the highest performance at
87.4% with 16 bytes vector length and 1024 number of neuron cells. However, the 64 KB
memory model has the best performance at 90.7% on 32 bytes vector length and 2048
neuron cells. The increase in the number of neuron cells increases 2.8%p. The VCTK also
shows the highest performance at different configuration as memory increases. Therefore,
the ASimOV framework has more chances to increase performance with various memory
configurations.

4.3. Other Method

There are two kinds of k-NN. One is called structure method, which reduces computa-
tional complexity during inference using tree data structure. The other is a structureless
method that overcomes memory limitations during training by removing similar data.
Hardware that supports the structure approach must be suitable for tree-like data struc-
tures. However, as there is no structured way to overcome the memory limit by removing
similar data, this does not require any hardware changes.

Hardware has a limitation in which it is difficult to change the internal structure
dynamically as needed. Therefore, ASimOV that has limitations equally with hardware
supports the structureless method, which does not change only the internal structure.
Table 5 shows the accuracy of the simulation by structure les method with 16 KB memory
in the MNIST dataset.
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Table 5. Simulation result of structureless method with 16 KB of memory in MNIST datasets.

Vector Length Number of Cell Condensed k-NN Weighted k-NN k-NN

8 2048 24% 27% 28%
16 1024 62% 74% 73%
32 512 66% 81% 80%
64 256 68% 81% 82%

128 128 78% 73% 76%
256 64 48% 63% 69%
512 32 36% 53% 60%

1024 16 29% 44% 49%
2048 8 13% 31% 19%

The weighted, calculated distance of weighted k-NN achieves 81% at vector length 32,
64, with the number of cells at 512, 256. Condensed k-NN, which removes similar data,
achieves 78% accuracy at vector length 128, with the number of cells at 128. Pure k-NN
achieves 82% at vector length 64, with the number of cells at 256.

The weighted k-NN method showed 81% accuracy with a vector length of 32 and 512
cells, which means that the weighted k-NN operates at a lower resolution than pure k-NN.
Condensed k-NN had a 4% performance drop compared to pure k-NN, but it is not clear
what this means.

Condensed k-NN is a down sampling technique that removes unnecessary data or
balances data in unbalanced data. Condensed k-NN is difficult to obtain meaningful
results when there is minimal data for classification. To confirm this, the distribution of
the MNIST dataset was checked, and Condensed k-NN was applied to all MNIST datasets
without considering hardware specifications. Figure 3 shows the distribution of the MNIST
dataset, and Table 6 shows the accuracy of Condensed k-NN and pure k-NN for the entire
MNIST dataset.
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Table 6. Simulation result of Condensed k-NN, k-NN in MNIST datasets.

Vector Length Number of Cell Condensed k-NN k-NN

128 7693 86% -
128 60,000 - 96%

Figure 3 describes the MNIST data as uniform data. The number of cells of the
condensed k-NN in Table 6 is the same as the number of remaining MNIST datasets after
unnecessary data has been removed with the condensed k-NN. As a result of comparing
the performance of condensed k-NN and k-NN, it can be seen that condensed k-NN learns
with about eight times less data, and that the accuracy is 10% lower when compared with
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k-NN that has learned the entire data. Through this, it can be confirmed that condensed
k-NN is a technique that can be used when a trade-off between the number of datasets and
performance is required.

4.4. Power Consumtion

AI algorithms utilize external computing devices such as GPUs. A GPU consumes
more than 100 W of power. The power consumption of external computing devices such as
GPUs makes it difficult to apply AI algorithms to embedded systems or mobile devices.

In order to confirm that the ASimOV proposed in this paper is more efficient in power
consumption compared to other AI algorithms, the power consumption of the ASimOV
simulator, hardware, and AI model was measured and compared. Table 7 shows the power
consumption of the simulator, hardware and AI model of ASimOV.

Table 7. Power consumption of Asimov simulator, hardware and AI model.

Simulator Hardware AI Model (LeNet)

power consumption 1.54 W 0.77 W 8.03 W

The experimental environment for measuring the power consumption of ASimOV is
divided into a software measurement environment and a hardware measurement environ-
ment. Since the simulator and AI model are software, power consumption was measured
in a desktop environment. At this time, the desktop configuration used is Intel i9-11900 K,
94.2 GB Memory, Nvidia RTX-3090 (Nvidia Corporation, Santa Clara, CA, USA). In the
desktop environment, the power usage was estimated using the powertop application
of Linux. The power consumption of hardware was measured by measuring the current
entering the accelerator and multiplying the operating voltage. To measure and compare
the power consumption of ASimOV, the simulator and hardware used the k-NN algo-
rithm in the MNIST dataset, and the AI model used LeNet, a representative convolutional
neural network.

As a result, it was confirmed that Simulator 1.54 W, Hardware 0.77 W, AI Model
8.03 W was used. Through this, it was confirmed that the hardware generated by ASimOV
uses less power compared to the AI model.

5. Conclusions

In this paper, we propose ASimOV, an end-to-end framework that allows optimization
of the artificial intelligence accelerator in the specific dataset. The ASimOV framework
consists of two parts: an AI simulator and an HDL code generator. The AI Simulator in
ASimOV finds the optimal parameter for aiming maximum performance such as accuracy
in the parameter search space of the artificial intelligence accelerator and algorithms. The
HDL code generator in ASimOV generates a hardware model using optimal parameters
of the artificial intelligence accelerator and algorithm. The hardware model implements
functional testing purposes in FPGA. The ASimOV reduces the cost of design of the artificial
intelligence accelerator in the specific dataset, as a provided semi-automatic procedure with
a simulator and HDL code generator. In Section 4, we perform functional verification of
ASimOV in small artificial intelligence algorithms, such as character recognition, clothing
recognition, speech recognition, etc. For the AI accelerators using k-NN, ASimOV shows
up to 90.7% performance in total with 64 KB memory. In future work, we will add
various artificial intelligence algorithms such as a support-vector machine, decision tree,
and analysis or preprocessing tools such as principal component analysis for ASimOV.
From the viewpoint of accelerator architecture, we will research multi-core accelerator
architecture. This architecture needs to be managed, and that management to be scheduled
to single-core due to task priority. We expect that ASimOV facilitates a fast fail in simulation
environments, and an easy-to-apply artificial intelligence accelerator in various domains.
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