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Abstract: People’s health has been threatened by several common food hazards. Thus, it is very
important to establish rapid and accurate methods to detect food hazards. In recent years, biosensors
have inspired developments because of their specificity and sensitivity, short reaction time, low cost,
small size and easy operation. Owing to their high precision and non-destructive characteristics, cell-
based electrochemical detection methods can reflect the damage of food hazards to organisms better.
In this review, the characteristics of electrochemical cell-based biosensors and their applications in
the detection of common hazards in food are reviewed. The strategies of cell immobilization and 3D
culture on electrodes are discussed. The current limitations and further development prospects of
cell-based electrochemical biosensors are also evaluated.
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1. Introduction

In recent years, people are more and more interested in food safety because of the
frequent occurrence of food problems caused by harmful substances around the world.
Common hazards in food mainly include biological hazards, chemical hazards and phys-
ical hazards [1]. These hazards mainly refer to organisms (especially microorganisms)
themselves and their metabolic processes, and the pollution of metabolites (such as toxins)
caused by parasites, their eggs and insects to the processing process and products of food
materials. Food components (allergens), antibiotics, heavy metals and other hazardous
substances in food are also food hazards [2].The incidence rate of foodborne diseases re-
ported by many developed countries has been on the rise recently. Unsafe food containing
these common hazards can cause more than 200 diseases. Eating these foods can lead to
diarrhea, cancer and even death. According to the data provided by the World Health
Organization, about 600 million people around the world get sick every year because of
the contaminated foods, and 420,000 die as a result. Two-fifths of the population suffering
from foodborne diseases are children, and about 125,000 children die every year. The
Centers for Disease Control and Prevention (CDC) estimated that about 48 million people
in the United States are infected with foodborne diseases every year, while 128,000 people
required hospital treatment and 3000 died from foodborne illness [3]. Diarrhea caused
by eating contaminated food is a common disease in food safety incidents, which causes
550 million people to become sick and 230,000 people to die each year. Therefore, it is
of great significance to realize the accurate and rapid monitoring of food hazards in the
process of food production and consumption [4].

Recently, biosensors have developed rapidly, owing to their high sensitivity, excellent
accuracy and fast analysis speed. A biosensor is an instrument that senses a biological
substance and converts its concentration into an electrical signal. A biosensor is an an-
alytical tool composed of identification elements including enzymes, antibodies, cells
and other biologically sensitive materials, signal amplification devices, and appropriate
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physical and chemical transducers such as oxygen electrodes, photosensitive tubes, field
effect tubes, and piezoelectric crystals [5]. The function of the transducer is to convert
various physical, chemical and biological signals into electrical signals, and then, obtain
the corresponding results through data analysis and processing. The sensor can produce
intermittent or continuous digital signals, and the strength of the signal is proportional to
the analytical device.

Biosensors can be divided into cell-based biosensors, molecular biosensors, and tissue
biosensors on the basis of their recognition elements [6,7], and cell-based electrochemical
sensors have a more outstanding performance. A cell-based electrochemical biosensor is
a sort of biosensor that uses cells as sensitive identification elements, which can respond
to external stimuli or environmental changes. When cells feel external stimuli, the signal
generated by molecular recognition and cell signal transduction go through chemical or
physical transducers [8]. The transducer is transformed into a quantifiable and processable
electrical signal, which is amplified and output by the secondary instrument. Then, the
existence and concentration of the substance to be measured can be known. Cell biosensors
based on electrochemical detection can analyze and evaluate cells by measuring current,
potential, impedance, conductivity, capacitance and other electrochemical signals, which
has become a research hotspot in the field of biosensors [9–12]. In recent years, with the
development of nanotechnology and the enhancement of the interface between sensors
and cells, a series of cell-based electrochemical biosensors have been constructed to study
cell type, concentration, vitality, proliferation, apoptosis and molecular distribution inside
and outside cells. On the other hand, cell-based biosensors can use fixed living cells as
sensing elements by stimulating a specific reaction to change physiological state of cells,
which can be used for the detection of hazards in food.

In view of this, we focused on the characteristics and performance of electrochemical
cell sensors and their applications in the detection of common food hazards. In addition, we
mainly studied the surface modification of electrodes, commonly used nanomaterials, cell
immobilization and 3D culture. We also discussed the limitations of its commercialization,
and provided prospects for the further development of cell-based electrochemical sensors.

2. Cell-Based Electrochemical Sensors
2.1. Characteristics of Cell-Based Electrochemical Sensors

A living cell can be properly described as an electrochemical kinetic system. Due to
various oxidation–reduction reactions and changes in ionic composition and concentration
in biological processes, cell life activities are accompanied by electron generation and
charge transfer [13]. Electrochemical methods can be used to reflect the change in cell
function and the growth and development of cells. In this case, biochemical parameters
such as the concentration of inorganic ions (H+, K+, Na+, Ca2+, Cl−, etc.), morphological
changes, membrane potential and redox potential can be detected by electrochemistry.
Figure 1 shows the basic principle of cell-based electrochemical sensors.
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Electrochemical impedance spectroscopy (EIS) is the most commonly used technique
in the application of cell-based electrochemical sensors to detect usual hazards in food. EIS
is an electrochemical technique that can monitor cell adhesion, diffusion and movement in
real time [14]. When the cells fixed on the electrode contact with the harmful substances in
food, the number, morphology or metabolism of the cells adhering to the electrode surface
will change, resulting in a change in electrode interface impedance [15].

2.2. Electrode Surface Modification

The successful construction of a cell-based electrochemical sensor mainly depends
on the type of electrode used. Choosing the right electrode can effectively improve the
performance of the sensor. At present, there are four types of electrodes for cell sensors,
namely, glassy carbon electrodes, ITO electrodes, screen-printed electrodes and flexible
electrodes. Glassy carbon electrodes are the most basic electrode in electrochemical research,
but with the development of cell sensors, the shortcomings of glassy carbon electrodes
gradually appear. The shape of the traditional glassy carbon electrode is rod-shaped, and
the central position is a conductive carbon rod. Because the conductive interface is vertical
and downward when the rod electrode is used for detection, the cells fixed on the electrode
easily fall off, and the biological activity of the cells is difficult to maintain; therefore, the
electrical conductivity of the sensor will be affected. Moreover, the conductive interface
area of the glassy carbon electrode is relatively small, and the response signal is relatively
low compared with other electrodes. ITO electrodes are fabricated by magnetron sputtering
on a base of sodium calcium or silicon boron substrate glass. ITO electrodes have a large
conductive interface, which can effectively improve the response signal, but there are
also some problems. The modified material on the electrode is difficult to clean, and it
is easy to damage the conductive film, resulting in a decline in the conductivity of the
electrode. Therefore, ITO electrodes have a shorter service life than other types of electrodes.
Flexible electrodes are usually based on flexible materials such as polydimethylsiloxane or
polyethylene terephthalate, on which conductive materials and bioactive materials are used
to incubate cells for the detection of target substances [16,17]. Screen-printed electrodes
are the most commonly used electrodes in cell-based electrochemical sensors. The most
common substrate of screen printing electrodes is paper, and then, the conductive ink
is printed on the paper surface by wax printing and screen printing [18]. As the main
component of paper is plant fiber, it has porosity, which can provide more anchor points for
cell immobilization. At the same time, after modifying some nanomaterials and hydrogels,
cells have a better physiological status on the electrodes, which greatly improves the
sensor’s ability. In addition, paper-based electrodes are simpler and more low cost, which
greatly promotes the development of cell-based electrochemical sensors.

In the process of construction of cell-based electrochemical sensors, adopting different
methods to improve the response strength of cell-based sensors is a crucial consideration
because certain resistance of a cell will weaken the electrical signal. With the rapid devel-
opment of biosensors, more and more nanomaterials are applied to biosensors, which also
provides some ideas for improving the performance of cell sensors. For instance, some
functional nanomaterials such as graphene, carbon nanotubes and gold nanoparticles have
been applied to cell-based sensors [19–22]. These functional nanomaterials can not only
improve the response signal, but also provide good compatibility, so that cells can be fixed
on the electrode more stably.

In recent years, carbon nanotubes (CNTs) have been widely studied and applied in
the field of cell-based electrochemical sensors. According to the number of walls, carbon
nanotubes can be divided into single-walled carbon nanotubes (SWCNTs) and multiwalled
carbon nanotubes (MWCNTs) [23]. Recent studies have illustrated that CNTs can maintain
and promote the electrical activity of neurons in cultured cell networks. Cellot et al. [24]
reported a mechanism explaining the effect of CNTs on the collective electrical activity
of neural networks. Selhuber-Unkel et al. [25] studied the growth of cells in the network
structure of MWCNTs. Compared with SWCNTs, MWCNTs have attracted extensive
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research interest due to their better electronic, photonic and mechanical properties [26–28].
At the same time, some studies have demonstrated that metal nanoparticles (such as gold,
platinum and silver) can be adsorbed on the surface of MWCNTs, thus greatly improv-
ing the performance of the sensor [29]. Gu et al. [30] decorated platinum nanoparticles
on the surface of MWCNTs modified electrode, which greatly improved the conductiv-
ity of the electrode and the electron transfer rate, and constructed a sensor with better
analytical performance.

Graphene is a two-dimensional nanomaterial with single atom thickness. Due to its
excellent electrical conductivity, graphene has shown great prospects in the development
of various sensitive cell-based electrochemical sensors [31,32]. One research study reported
that intelligent functional graphene films covalently bound with RGD peptides can en-
hance cell adhesion and growth, and thus, real-time detection of nitric oxide released by
adherent human cells stimulated by various drugs. In this study, RGD peptides were cova-
lently bound to pyrene butyric acid-functionalized graphene films to construct biomimetic
graphene-based films, which promoted cell attachment and growth [21]. Jiang et al. devel-
oped an electrochemical paper-based sensor for the indirect detection of lipopolysaccharide
in the outer wall of Gram-negative bacteria. Nafion/polypyrrole/graphene oxide compos-
ites have excellent selectivity, high conductivity and good biocompatibility, which can be
enhanced by electrochemical polymerization on the working electrode. Mouse macrophage
cells encapsulated in alginate hydrogel were used as biological cognitive elements to im-
mobilize Nafion/polypyrrole/graphene oxide screen-printed carbon electrodes in paper
fibers [33].

Noble metals have become one of the most popular nanomaterials for modified
electrodes due to their good conductivity and catalysis. Noble metals have become one of
the nanomaterials for modified electrodes due to their good conductivity and catalysis; the
most commonly used noble metal for sensors is gold nanoparticles. Gold nanoparticles
can provide binding sites for the coupling of a variety of molecules (enzymes, antibodies,
cells), which can be more stable on the surface of the electrode [34]. Therefore, electrodes
modified by gold nanoparticles have good stability. Jiang et al. immobilized cysteine on
electrodes by combining gold nanoscale and cysteine molecules. Then, cells were adsorbed
on the electrode surface by the molecular interaction between cysteine and the hydrogel
coated with the cells, and an electrochemical cell sensor with excellent performance was
constructed [35]. Due to the good catalytic performance of gold nanoparticles for reactive
oxygen species, some researchers have realized the detection of hydrogen peroxide and
nitric oxide released by cells by using the characteristics of gold nanoparticles [36,37].

2.3. Immobilization and 3D Culture of Cells on Electrodes

Cell-based sensors can be mainly divided into animal, bacterial, and yeast cell-based
sensors and bacterial and yeast combination cell-based sensors. The most widely used sen-
sors are animal cell-based sensors and bacterial cell-based sensors based on electrochemical
technology to detect food hazards. Cells that are often used in sensors are shown in the
table that follows.

The success or failure of a cell-based electrochemical sensor depends on the stability of
cell immobilization on the electrode surface. In the current literature, the most commonly
used method is to form a uniform adhesion layer on the surface of the electrode, so as to
ensure that the cells can be stably fixed on the surface of the electrode. Therefore, the key
of cell sensing analysis is to modify the sensing interface by adhesion factors, so that it can
specifically adhere to cells without affecting cell function [38]. Cell immobilization materials
for cell-based electrochemical sensors are listed in Table 1. Extracellular matrix (ECM)
components, peptides, self-assembled monolayer (SAM) and nanomaterials have been
used to improve cell immobilization efficiency and performance, as shown in Figure 2.
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Table 1. Cell immobilization materials in electrochemical cell-based sensors.

Immobilization Materials Electrode Interface Cell Type Ref

Collagen Gold electrode Mast cell [35]

Laminin Screen-printed electrode

Mouse tongue isolated taste bud
(MTITB) cells and human
embryonic kidney 293 cell

lines (HEK293)

[39]

Laminin Screen-printed electrode Hep G2 cells [40]
RGD peptide Graphene film Human umbilical vein endothelial cells [21]
RGD peptide ITO electrode Human lung cancer cell A549 [41]

MAST peptide Gold electrode Human umbilical vein endothelial cells [42]
lysine–arginine–glycine–aspartic

acid peptide Gold electrode Mouse fibroblast cells [43]

Alkanethiols and polymeric
poly-L-lysine-grafted-poly (ethylene glycol) Gold–silicate interfaces MCF-7 cells [44]
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The cells fixed on the electrode surface are the core part of the whole cell sensor, whose
status directly determines the performance of the sensor. So far, most of the sensors for food
hazard detection have employed traditional two-dimensional (2D) monolayer cell cultures.
Although using 2D cell cultures has proven to be a valuable cell research method with a
long history, its limitations are increasingly being recognized. Since almost all cells are
surrounded by other cells and extracellular matrix in three dimensions in vivo, the natural
three-dimensional (3D) environment of cells is not fully considered in 2D cell cultures.
Because the monolayer formed in 2D cultures is different from the multilayer formed in 3D
cultures, the inhibition of cell-to-cell contact may hinder the original morphological and
functional characteristics of cells. Conversely, 3D cell models can simulate cell conditions
in vivo because they have 3D scaffolds that support cell growth and cell functions, includ-
ing morphogenesis, cell metabolism and intercellular interactions [45]. Therefore, 3D cell
culture has become an important technology in the construction of cell sensors.

3D culture mainly depends on the interaction between cells and extracellular matrix
substrate. The extracellular matrix is an important material for 3D cell culture, which
can act as a scaffold. Recently, a variety of 3D cell scaffolds have emerged. Different
types of scaffolds can be used derived from the conditions and expected goals [46]. The
development of 3D cell culture technology provides more insight into 3D cell culture



Micromachines 2021, 12, 837 6 of 14

scaffolds to simulate the environment of cells in vivo [47]. Wang et al. [48] developed
microsphere porous alginate beads (PABs), which can be connected to porous alginate
structures by the emulsion of a two-phase aqueous phase (ATPS). The emulsion of two
kinds of biocompatible implants of cell/dextran and alginate (Alg)/polyethylene glycol
(PEG) is stabilized by mPEG-BSA particles to form ATPS emulsion. Moreover, the pore size
of PABs can be adjusted by changing the emulsifying frequency and the volume ratio of the
emulsion to the PEG-Alg solution. In addition, due to the good biocompatibility of ATPS,
cells can be directly wrapped in interconnected pores. Compared with the cells coated with
general alginate beads, HeLa and human hepatoma cells coated with ATPS have stronger
cell activity (95%), proliferation and function enhancement. Sun et al. [35] used collagen
as a scaffold for cell culture and fixed it on the electrode to detect allergens in shrimp.
Jiang et al. [49] designed a paper-based sensor for detecting casein, a common allergen in
milk. In their research, cells were coated with gelatin methacryloyl hydrogen and fixed on
the working electrode. At the same time, the paper itself had a certain spatial structure so
that the growth environment of cells was closer to nature. On the strength of certain spatial
structure and low-cost characteristics, paper-based cell sensors have gradually become a
research hotspot [50].

3. Application of Cell-Based Electrochemical Sensor in Detection of Hazardous
Substances in Food

In recent years, food safety has become a key public health problem. Common hazards
in food lead to too many safety accidents. At present, common food hazards mainly include
some allergens, bacteria and mycotoxins, antibiotics, pesticide residues and some heavy
metals. The toxicity of these hazards is also different. After some hazards are ingested
by the human body, they may cause fever, allergy, shock or even death. Therefore, the
early detection of food hazards becomes very vital. In the past two decades, food safety
monitoring technology has made significant progress, and various monitoring methods,
including electrochemical methods, have been developed and applied. This section mainly
summarized the application of cell sensors based on electrochemical methods in the detec-
tion of typical food hazards such as allergens, toxins, antibiotics and other common food
hazards in recent years.

3.1. Food Allergen

With the development of society, food allergies are receiving considerable attention as a
food safety problem. Food allergies are mainly caused by allergen-specific immunoglobulin
E (IgE)-mediated immune hypersensitivity, usually for some food proteins, glycoproteins
(antigens), cell-mediated (non-IgE) or mixed IgE/cell-mediated. In IgE-mediated food
allergies (also known as “real” food allergies), the antigen is recognized by allergen-specific
immune cells and causes an immediate allergic reaction after a sensitization stage. In this
process, IgE antibodies bind to the surface of effector cells, such as mast cells in tissues or
basophils in blood. When the same food allergen comes into contact again, the allergen will
bind to mast cells or basophil-bound IgE and crosslink at least two IgE antibodies, which
leads to the destruction of the cell membrane and the release of secretions from mast cells
and basophil granules such as histamine, neutral protease, and proteoglycan contained
in the medium, and triggers classical allergic symptoms. The main mechanism of allergic
symptoms is shown in Figure 3.

It is well known that the strategy of building a cell-based electrochemical sensor has
become the mainstream method to detect allergens in food. This section listed some typical
examples of different allergies, which are exhibited in detail in Table 2. In recent studies,
mast cells were most commonly used as sensitive elements of cell-based electrochemical
sensors. Mast cells are a kind of basophilic cell, which are widely distributed in mammalian
epithelial and connective tissues. The cells are round or oval, and the cytoplasm contains
uniform and evenly distributed granular materials [51]. Mast cell anaphylaxis is mediated
by specific IgE antibodies, which is needed to activate mast cells before cell immobilization,
so that allergens can be accurately identified and detected [52]. When mast cells come
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into contact with allergens, the cells will degranulate, so we can detect food allergens
by monitoring the impedance signal of mast cells. Sun et al. [35] have developed an
electrochemical biosensor based on mast cells to quantify tropomyosin and evaluate its
IgE-mediated hypersensitivity. In this work, the mast cells of rat basophil leukemia (RBL-
2H3) were used. The researchers first dispersed the cells in collagen, and then, used the
interaction between gold nanoparticles, L-cysteine and collagen to make the cells stably
fixed on the electrode surface, which greatly improved the performance of the sensor.
The mast cells were sensitized by nitrophenol bovine serum albumin (DNP-BSA). Then, a
mast cell-based biosensor was applied to the quantitative detection of shrimp allergens
sensitized by shrimp tropomyosin IgE. The results of EIS showed that the detection limit
was 0.15 µg/mL in the range of 0.5–0.25 µg/mL. Jiang et al. [49] designed a paper-based
sensor based on mast cells and developed a sensor that can sensitively detect the major
allergenic casein in milk. In this study, RBL-2H3 cells were used as sensitive elements, and
graphene (GN)/carbon nanofiber (CN)/GelMA was used as a modified material to improve
electrical conductivity. At the same time, the paper is used as the working electrode to
provide more anchor points for cell 3D growth on the electrode. This greatly improves the
stability of the sensor. The results showed that the linear range of casein concentration
was from 1 × 10−7 g/mL to 1 × 10−6 g/mL, and the detection limit was 3.2 × 10−8 g/mL.
Some other common food allergens, such as the fish allergen parvalbumin and wheat
allergens, are gradually detected by cell-based electrochemical sensors [53,54].
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Table 2. Application of electrochemical cell-based sensor in detection of food allergens.

Cell Types Analyst Food Methods Performance Ref.

RBL-2H3 mast cell
(RBL-2H3) tropomyosin shrimp EIS Linear range: 0.5–0.25 µg/mL

Detection limit: 0.15 µg/mL [35]

RBL-2H3 casein milk differential pulse
voltammetry (DPV)

Linear range: 1 × 10−7–1 × 10−6 g/mL
Detection limit: 3.2 × 10−8 g/mL

[49]

RBL-2H3 tropomyosin
parvalbumin

shrimp
fish

EIS Detection limit: 0.03 µg/mL
Detection limit: 0.16 ng/mL [53]

RBL-2H3,
ANA-1macrophages

dinitrophenylated
bovine serum albumin - EIS Cell co-culture model

Detection limit: 10−1 ng/mL [55]

RBL-1 wheat protein wheat cyclic voltammetry (CV) Linear range: 0.01–0.5 µg/mL [54]
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3.2. Toxins in Food

Toxins in food have also become an important factor affecting food safety. The main
sources of these toxins are the toxins existing in food itself, and the toxins produced by
some microorganisms in the process of food production and processing due to improper
operation. In the past few years, safety incidents caused by food toxins were mainly caused
by some fungal toxins. Some typical toxins are mainly produced by Aspergillus, Penicillium
or Fusarium, which can cause a series of toxic reactions when ingested above a certain
concentration [56]. Therefore, the establishment of a series of simple and effective detection
methods for the detection of common toxins in food has become a hot spot. This section
listed some typical examples for different toxins, which are exhibited in detail in Table 3.

It is worth noting that cell-based electrochemical sensors have aroused extensive
research interest. Gu et al. [20] constructed an electrochemical cell-based sensor to study
the cytotoxicity of deoxynivalenol (DON) and zearalenone (ZEN). BEL-7402 cells with good
activity and collagen were selected as the recognition elements and scaffold to maintain
the cell activity of the sensor, respectively. The cells adhered to the electrode through high
affinity between the folate receptor and folate selectivity. EIS was established to evaluate
the single and combined toxicity of DON and ZEN. Xia et al. [40] have developed an
electrochemical cell biosensor to detect the single or combined toxicity of DON, ZEN and
Aflatoxin B1 (AFB1) to Hep G2 cells. In this research, cells interacted with laminin to form
a close cell electrode contact and collagen was used to maintain cell adhesion and viability.
EIS was used to evaluate the toxicity of mycotoxin. Jiang et al. [57,58] developed an
electrochemical sensor based on mast cells to evaluate the N-3-oxododecanoyl homoserine
lactone signal molecules of spoilage bacteria populations in freshwater fish. The researchers
used alginate/graphene oxide hydrogel-encapsulated mast cells RBL-2H3 and fixed them
in screen-printed carbon electrode, and then, dripped the Pseudomonas aeruginosa quorum-
sensing molecule N−3-oxododecanoyl homoserine lactone onto the electrode to record
the effect on cell impedance signal. The results show that the sensor has a good linear
relationship in the range of 0.1–1 µmol/mL. Therefore, the biosensor can be used as a rapid
and accurate detection method, which provides a new way for the real-time monitoring of
spoilage bacteria in freshwater fish production. Wang et al. [59] designed an impedance
cell sensor using neuroblastoma cells as sensing cells to detect paralytic shellfish-poisoning
toxins. The results show that the detection limit of the biosensor is as low as 0.03 ng/mL.
The successful establishment of the cell-based electrochemical sensor provides a good
method for screening paralytic shellfish poisoning toxins. Ponsonnet et al. [60] designed
an impedance cell sensor to detect lipopolysaccharide. Jiang et al. established a paper-
based cell sensor for rapid and accurate detection of lipopolysaccharides. The specific
experimental steps are shown in Figure 4. In this work, the researchers printed conductive
graphite on paper by the screen-printing method to prepare a paper-based cell sensor. The
mixture consisting of cell, cell culture medium and alginate hydrogel was dropped onto
the electrode, so that cells immobilized on the electrode had a good physiological state.
Compared with Ponsonnet’s design [60], the cells can have a better physiological state to
detect lipopolysaccharide. The sensor has a good detection effect on lipopolysaccharides;
the detection limit of the sensor is 3.5 × 10−3 ng/mL and the linear detection range is
1 × 10−2 to 3 ng/mL [33].
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Table 3. Application of electrochemical cell-based sensors in detection of food toxins.

Cell Types Analyst Food Methods Performance Ref.

RBL-2H3 N-acyl-homoserine-lactones fish EIS Linear range: 0.1–1 µmol/L
Detection limit: 0.034 µmol/L [57]

HeLa & HepG2 cell okadaic acid shellfish Electrical cell-substrate
impedance sensing (ECIS) Detection limit: 10.2 µg/L [61]

Neuroblastoma cell saxitoxin, ouabain,
veratridine shellfish EIS Detection limit: 0.03 ng/mL [59]

BEL-7402 cell DON, ZEN - EIS

Linear range: 0.1–20 µg/Ml,
0.1–50 µg/mL

Detection limit: 0.03 µg/mL,
0.05 µg/mL

[20]

Hep G2 cell DON, ZEN, AFB1 - EIS Linear range: 0.01–20, 0.1–50
and 0.1–3.5 µg/mL [40]

Raw264.7 macrophage cells lipopolysaccharide juice DPV Linear range: 1 × 10−2–3 nmol/L
Detection limit: 3.5 × 10−3 ng/mL

[33]

3.3. Other Common Food Hazards

In addition to the common allergens and toxins, there are a number of other hazards
such as antibiotics, agricultural and veterinary drug residues, toxic compounds and heavy
metals in our diet, which also pose a certain threat to food safety [62,63]. Therefore, cell-
based electrochemical biosensors were also chosen to detect these hazards. This section lists
some typical examples of the detection of common antibiotics, agricultural and veterinary
drug residues, toxic compounds and heavy metal ions in Table 4.
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Table 4. Application of cell-based electrochemical sensors in the detection of antibiotics, agricultural and veterinary drug
residues, toxic compounds and heavy metals in food.

Cell Types Analyst Food Methods Performance Ref.

S. oneidensis MR-1 3,5-dichlorophenol water Amperometric i–t curve half maximal inhibitory concentration:
14.5 mg/L [67]

microalgae Chlorella sp. Zn2+ water DPV Linear range: 10−12–10−10 mol/L
Detection limit: 10−11 mol/L

[65]

plant cell (protoplasts) Cd2+, Pb2+ soybean EIS

Linear range: 45–210 µmol/L,
120–360 µmol/L

Detection limit: 18.5 nmol/L,
25.6 nmol/L

[66]

E. coli cell ciprofloxacin - DPV
the binding constant of

E. coli membrane
protein F and CIP log Kf = 12.1

[64]

BPAECs lindane drinking
water ECIS Detection limit: 0.1 mmol/L [68]

Arthrospira platensis cell Cd2+, Hg+ water Lock-in amplifier method Linear range: 10−20–10−6 mol/L
Detection limit: 10−20 mol/L

[69]

P. aeruginosa cell cephalosporin group of antibiotics - - Linear range: 0.1–11 mmol/L [70]

Satpati et al. [64] studied the effect of the antibiotic ciprofloxacin (CIP) on E. coli. In
this experiment, E. coli. was added to the test solution and its volt-ampere peak potential
and current were detected by DPV to obtain the interaction pattern between the E. coli.
and antibiotic CIP. The results showed that E. coli gradually cleaved with the increase
in CIP concentration. This work provides a potential method to evaluate the toxicity of
common antibiotics in food. Mittal et al. [65] used BSA and glutaraldehyde to crosslink
and immobilize whole chlorella cells on the platinum surface, and prepared a cell-based
electrochemical sensor for detecting heavy metal ions. The principle of the experiment
was that alkaline phosphatase in the cell membrane will form a stable metalloenzyme
complex with heavy metal ions, thereby reducing the activity of the enzyme. When the
activity of the enzyme decreases, it in turn causes the concentration of added phosphate
substrate to decrease. This has led to a decrease in the production of p-nitrophenol.
When the electroactive nitrophenol was oxidized on the platinum electrode, it caused the
current to change, so the detection of heavy metal ions could be realized. Wang et al. [66]
constructed a plant cell-based biosensor based on the principle of complexation between
alkaline phosphatase and metal ions to monitor the effects of cadmium or lead on plant
cells. In this work, the researchers first modified L-cysteine on glassy carbon electrodes,
and then, modified anti-IgG-Au antibodies. Then, the cells incubated in vitronectin-like
proteins were dropped onto the electrode to explore the damage of heavy metal ions to
cells according to the change in impedance. The experimental scheme provides a reference
method for the detection of heavy metal ions in food. Yang et al. [67] developed a new
type of biosensor using the electrochemical activity of S. oneidensis MR-1 cells as a toxicity
indicator and 3,5-dichlorophenol as a model toxic compound. In this work, the construction
method of this cell sensor is different from other electrochemical cell sensors. The sensor
uses a carbon cloth (1 cm × 2 cm) as the working electrode. Then, the electrode was put
into the suspension of S. oneidensis MR-1 cells for 3,5-dichlorophenol detection. The half
maximum inhibitory concentration of 3,5-dichlorophenol measured by the biosensor was
about 14.5 mg/L. Thus, this study provides an accurate reference method for evaluating
water toxicity.

4. Limitations of Cell-Based Electrochemical Sensors

Although cell-based electrochemical sensors have demonstrated great progress and
have shown broad application prospects in the field of food, they still face some problems
that affect their development [71]. Some of these major problems are further discussed.

The specificity of cell-based electrochemical sensors is a major problem in the detection
and analysis of common hazards in food. Due to the complexity of the sample matrix, cell
damage may be the result of multiple factors. Therefore, it is difficult to detect specific
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analytes in complex matrixes only depending on the characteristics of cell damage. At
present, researchers have taken some measures to ensure the specificity of cell-based
electrochemical sensors. Jiang et al. [35] used the mechanism (see Figure 3) of allergy to
realize the specific detection of tropomyosin in shrimp. In order to enable mast cells to
specifically recognize the target allergen antigen, the researchers first used tropomyosin
antibody IgE to incubate mast cells at 37 ◦C for 30 min. By co-incubation, IgE antibody
was combined with the specific mast cell surface receptor FcεRI to activate the mast cells
and enable them to recognize Tropomyosin quickly and accurately [72]. The establishment
of this method provides a good idea for the determination of hazardous substances in
food. Maintaining the stability of electrochemical cell sensors is also one of the challenges.
Because cells are fragile, they are easily affected by temperature, pH and other factors.
Therefore, maintaining cell activity on the electrode has become an important direction of
cell sensor research.

Moreover, there are some limitations in the commercialization of cell-based electro-
chemical sensors, mainly as follows: (1) When cell sensors are removed from the laboratory
environment, cell delivery and preservation techniques can be problematic. The develop-
ment of cell-based electrochemical sensors is mainly used for on-site monitoring and testing,
and living cells have extremely stringent requirements for the environment. (2) Signal
separation has always been a bottleneck of the development of biosensors, and cell-based
electrochemical sensors are no exception. Living cells can respond to a variety of substances
according to their own receptors and ion channels. It is difficult to separate the signal
from the target because of a large number of different substances in food which limits the
application of cell sensors. The problems of signal separation, analysis, signal drift and
reproducibility need to be solved. (3) The cost of cell culture is relatively high. In addition,
disposable cell-based electrochemical sensors greatly increase production costs. At present,
the price of commercial electrochemical cell sensors is relatively expensive, and the mass
production of sensors is still in its infancy. With the development of sensing technology
and the increasing demand for cell sensors, the price of cell-based electrochemical sensors
will also decrease in the future.

5. Conclusions and Future Perspectives

In summary, cell-based electrochemical sensors have become a promising alternative
to traditional technologies over the past few decades. As a powerful piece of analytical
equipment, sensors play an important role in food quality and safety, proving fast, econom-
ical, high-sensitivity and specific measurements. With the development of microelectronic
processing technology and cell culture technology, cell-based electrochemical sensors based
on living cells have been developed rapidly. They have shown broad application prospects
in the field of food, including the fermentation industry, food safety detection, food sensory
bionics (biological nose, biological tongue), shelf-life assessment, food factory environmen-
tal monitoring, and so on. Cells provide a series of natural receptors, in which enzymes,
receptors, channels and other signaling proteins can be the sites of action of analytes. The
unique signal sequence of electrochemical cell sensors has different sensitivity to different
kinds of stimuli, which can quantitatively measure and analyze information—that is, deter-
mine the existence and concentration of certain substances. Compared with other sensors,
it can more realistically reflect the impact of external stimuli.

Cell-based electrochemical sensors have shown great vitality and attractive devel-
opment prospects in the field of food, and constantly stimulate the research enthusiasm
of food scientists and biologists. How to further develop cell immobilization and manip-
ulation methods is of far-reaching significance for cell proliferation and differentiation,
detection and analysis. Research at the single-cell level can obtain more accurate and
comprehensive information reflecting the physiological state and process of cells. Cell
function analysis is becoming more and more important for cell-based electrochemical
sensors. Only when cell function is studied clearly can it be more conducive to the devel-
opment of cell-based electrochemical sensors. In the future, the development direction of
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electrochemical cell sensors will be to use living tissues, such as biological tissues and cells,
as sensitive elements. Combined with microelectronic processing technology, integrated
chips are developed to provide an environment suitable for cell survival and growth, and
the sensor can be applied to on-site monitoring and analysis. Cell-based electrochemical
sensors will become an indispensable tool for food safety, environmental monitoring, drug
screening and national defense in the future.
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