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Abstract: Shape memory polymers (SMPs) have been applied in aerospace engineering as deployable
space structures. In this work, the coupled finite element method (FEM) was established based
on the generalized Maxwell model and the time–temperature equivalence principle (TTEP). The
thermodynamic behavior and shape memory effects of a single-arm deployment structure (F-DS)
and four-arm deployment structure (F-DS) based on SMPs were analyzed using the coupled FEM.
Good consistency was obtained between the experimental data and simulation data for the tensile
and S-DS recovery forces, verifying that the coupled FEM can accurately and reliably describe the
thermodynamic behavior and shape memory effects of the SMP structure. The step-by-step driving
structure is suitable for use as a large-scale deployment structure in space. This coupled FEM provides
a new direction for future research on epoxy SMPs.

Keywords: shape memory polymers; finite element method; time–temperature equivalence principle;
shape memory characteristics; space structure

1. Introduction

SMPs, as programmable phase change materials, can be deformed to a temporary
shape under given conditions and then reversed to their original permanent shape upon
external stimulus [1–4]. Compared with other traditional SMPs, such as shape memory
alloys and shape memory ceramics, SMPs have the advantages of light weight, low cost,
good biocompatibility, and great deformation recovery [5–15]. Taking into account these
excellent characteristics of SMPs, many researchers have applied them in the fields of
aerospace [16–19], biomedical research [20–22], intelligent textiles [23], and self-healing
materials [24–26].

SMPs, due to their advantages described herein, can be developed into technology plat-
forms that allow the tailored multifunctional design. In this way, defined movements of im-
plants triggered either directly or indirectly [27,28]; tailored mechanical properties [29,30];
and capability for sterilization [31,32], biodegradability [33], biocompatibility [34,35], and
controlled drug release [33,36,37] can be achieved [20]. Lendlein et al. introduced a group
of degradable thermoplastic polymers that were able to change their shape when the
loaded temperature was increased, whereby the shape memory capability of the specimens
enabled bulky implants to be placed in the body through small incisions and allowed
complex mechanical deformation processes to be performed automatically [33]. Yakacki
et al. developed novel SMP networks with capability for free recovery at body tempera-
ture, which were suitable for specific applications in minimally invasive cardiovascular
devices [36]. Neffe et al. developed a ureteral stent using SMPs that can be anchored in the
ureter, which could have a significant impact in terms of controlled drug release [38].
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SMPs can be temporarily fixed and readily formed because they are strong below the
glass transition temperature and deformable above the glass transition temperature [4,39–41].
The aforementioned excellent performance means that SMPs have great application potential
in aerospace, especially for large deployable antenna structures in aerospace satellites, includ-
ing hinges, solar panels, deployable panels, suspenders, and reflector antennas [42,43]. Leng
et al. designed and fabricated a deployable hinge based on SMPs and used it in a deployable
driving structure for deployable space solar panels [44]. A smart deployable space antenna
with a diameter of 10 m based on SMPs was studied by NASA’s Air Propulsion Laboratory,
in which the antenna could be deployed in orbit and the shape of the antenna was further
maintained after deployment [45].

There have been many theoretical studies on SMPs [46], which can be categorized into
studies on rheological models [9,47–49] and phase transition models [41,50–54]; however,
the above models might be difficult to popularize to a certain degree, as they are hindered
by the complexity of the parameter determination process [55]. Tao et al. simulated the
shape memory effects of deployable hinged shells of SMPs using the UMAT compiled by
ABAQUS [56]. The variable stiffness of an integrated SMPC hinge at different temperatures
was calculated and simulated by Liu’s group, in which good shape memory performance
was obtained [57]. Liu et al. simulated the bending and recovery process of a cylindrical
tube using finite element analysis, and the stress distribution of the cylindrical tube in the
bent state was obtained [58]; hence, in order to maintain the stability and reliability of a
spacecraft in space, it is necessary to fully characterize the mechanical properties of space
deployment structures based on SMPs. It is particularly important to develop a complete
and reliable method of simulation analysis.

In this paper, a coupled FEM was established based on the generalized Maxwell model
and TTEP. The mechanical deformation of the SMPs was decomposed into the hyperelastic
part (which was expressed using the neo-Hookean model) and viscoelastic part (which
was expressed using the generalized Maxwell model and Williams–Landel–Ferry (WLF)
equations), considering the large deformation behavior of the studied object. The TTEP
was used to describe the response characteristics of SMPs at different temperatures. Based
on the experimental data from the tension and relaxation tests of the E-SMP, the numerical
model parameters were calculated using ABAQUS. The accuracy of the numerical analysis
model was verified by calculating the same analysis model as in the tensile experiment. The
thermodynamic behavior and shape memory effect of the S-DS and F-DS of the electrically
driven epoxy resin SMPs prepared in the laboratory were studied and analyzed. The
variations of the torque in the X-axis and bending angle of the S-DS in the response process
were calculated. The relative internal energy and stress cloud map of the F-DS during
simultaneous and step-by-step driving were obtained.

2. Mechanical Characterization of the E-SMP

SMPs possess viscoelastic properties typical of polymers and unique shape memory
properties. The materials considered in this paper were electrothermal E-SMP materi-
als based on epoxy resin. According to the synthesis method for epoxy resin outlined
in [41,53,54], multi-walled carbon nanotubes and carbon fiber powder were introduced
into the material to enhance the mechanical and electrical properties of the E-SMPs.

2.1. Dynamic Mechanical Analyzer (DMA)

In order to obtain the high- and low-temperature moduli and glass transition tempera-
ture for E-SMP, the samples were tested by DMA. The sample size for E-SMP was 30 mm ×
5 mm × 1 mm. According to the experimental references [59,60], the DMA measurements
of the E-SMP material were obtained by increasing the temperature from 25 ◦C to 250 ◦C
with a heat rate of 2 ◦C/min and applying sinusoidal alternating stress with an oscillation
frequency of 1 Hz and a load of 0.01 N. Through experimental analysis, the maximum tan
delta (phase angle) was obtained when the temperature reached up to 110 ◦C. It can be
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seen in Figure 1 that the E-SMPs had a glass transition temperature (Tg) of 110 ◦C, a high
storage modulus of 2350 MPa (below Tg), and an electric driving effect.
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Figure 1. Dynamic thermomechanical analysis curve for the E-SMP material.

2.2. Relaxation Test

In order to study the relaxation characteristics of E-SMP at different temperatures, the
tensile testing machine with an environmental box was used to test the stress relaxation of
the sample. The sample size for E-SMP was 30 mm × 5 mm × 1 mm. The test temperature
range was from 30 ◦C to 150 ◦C, with temperature intervals of 10 ◦C. In the test, the loading
rate was set to 2 mm/min, while the tensile elongation was 1 mm, which was kept for
1800 s. The relaxation data for E-SMP are shown in Figure 2.
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Figure 2. Relaxation test curves under different test temperatures: (a) relaxation test curves under different temperatures;
(b) relaxation test curves under high temperatures.

In Figure 2a, it can be seen that under the given pre-strain conditions, the stress of
the specimen at 30 ◦C was about 2971 MPa, which declined to 2534 MPa within 30 min.
At lower temperatures, the material showed glassy properties and higher strength. When
the temperature further exceeded 50 ◦C, E-SMP began to exhibit significant viscoelastic
properties and the relaxation modulus decreased rapidly with the increase of the tempera-
ture. When heated to 110 ◦C, E-SMP changed to a rubbery state with high elastic strain,
resulting in the modulus being basically unchanged. The test data were smoothed and
filtered, as shown in Figure 2b. When the temperature was higher than the glass transition
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temperature of E-SMP, the material was in a rubber state. As derived from the curve, the
modulus of E-SMP was very low at this time. The modulus of the material was between 20
and 45 MPa after 30 min attenuation.

2.3. Tensile Test

Here, uniaxial tensile tests were carried out on the samples of E-SMP materials using
a tensile testing machine with an environmental box. The test temperature includes 20, 50,
80, 100, 110, 130, 150, and 170 ◦C. The sample was stretched to the maximum measuring
range of 18 N at a rate of 15 mm/min. The experimental data are shown in Figure 3.
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Figure 3. Tensile tests for E-SMP at different temperatures: (a) tensile characteristic curves of E-SMP at different temperatures;
(b) tensile characteristic curves near the glass transition temperature.

It can be seen from the curves that the E-SMP material went through a glass state,
viscoelastic state, and highly elastic rubber state. With the increases of temperature, the
modulus of the E-SMP decreased gradually. When the temperature exceeded Tg, the E-
SMP was in a highly elastic state and had almost no bearing capacity. Since the maximum
measuring range of the instrument is only 18 N, the sample could not be broken.

2.4. Thermal Expansion Test

The linear thermal expansion coefficient was used to measure the thermal expansion
coefficient of E-SMP. The equation is as follows:

α =
1
L
× ∆L

∆T
(1)

where L is the original length of the sample, ∆L is the rate of length change of the sample,
and ∆T is the rate of temperature change.

The thermal expansion coefficients of E-SMP at different temperatures were measured
using a thermomechanical test. The test temperature range was 25~250 ◦C, the heating rate
was 1 ◦C/min, the pre-load was 2 N, and the material expanded freely. The experimental
results are presented in Figure 4. It can be seen that the linear thermal expansion rate for
E-SMP was relatively low at low temperatures (25~100 ◦C) because the material was glassy,
while the linear thermal expansion rate increased sharply when the temperature increased
to 100 ◦C owing to the E-SMP material transforming from a glassy state to a highly elastic
state. The linear thermal expansion rate of the E-SMP material is high above the glass
transition temperature (110 ◦C), at which temperature the material is in a rubber state.
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3. Constitutive Modeling of the E-SMP

E-SMP has appealing shape memory effects. The constitutive equation used to char-
acterize these effects is interesting. Referring to the deformation behavior of the material
studied in this paper, the generalized Maxwell model and TTEP method outlined in [9,61]
were used to describe the shape memory behavior of SMPs. The generalized Maxwell
model consists of Maxwell and hyperelasticity components. It is assumed that the effect of
the thermal expansion on SMPs is independent of the mechanical behavior, as shown in
Figure 5, where E0 is the Young’s modulus of the elastic term, Ei is the Young’s modulus of
the Maxwell element, τi presents the relaxation time of the Maxwell element, and n denotes
the number of Maxwell components.
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The strain Equation in the above model can be deduced as follows:

εTotal = εM + εT (2)

where εTotal denotes the total strain of the model, εM denotes the mechanical strain, and εT
denotes the thermal strain.

The thermal strain is defined as:

εT = α
(
T − Tg

)
(3)

where α is the coefficient of thermal expansion, Tg is the glass transition temperature, and
T is the current temperature.
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According to the theoretical model in [9], the constitutive model in the coupled FEM
can be derived as:

σTotal(t) = E0ε(t) + ε(t)
n

∑
i=1

Eie−t/τi (4)

where σTotal(t) is the total stress; E0 is the Young’s modulus of the elastic term; Ei and τi
are the Young’s modulus and relaxation time of the Maxwell element, respectively; ε(t) is
the strain of the model; t is the real time; and n is the number of Maxwell components.

The mechanical deformation of E-SMP is decomposed into hyperelastic and viscoelas-
tic parts; thus, the total strain energy can be expressed as the sum of the two parts [62]:

Wtotal = WA + WB (5)

where WA denotes the free energy of the rubbery state of the material and WB is the free
energy of the viscoelastic part of the material.

For WA, a hyperelastic term (instead of an elastic term) is added to enable a better
agreement because of the large strain of the space expansion structure of SMPs [22]. Here,
we chose the neo-Hookean hyperelastic equation:

WA = C10
(

I1 − 3
)
+

1
D1

(Jel − 1)2 (6)

where I1 is the first stress invariant, C10 and D1 are the temperature correlation coefficients,
and Jel is the elastic volume strain, which can be obtained by fitting the experimental data.

Herein, the generalized Maxwell model and WLF equations were used to express WB.
According to the literature, the generalized Maxwell model and the WLF equation show
the relationship between time and temperature. In addition, the model has already been
shown to be reliable under a large deformation range [63]. In the generalized Maxwell
model, the relaxation modulus G(t) can be expressed using the Prony series:

G(t) = G∞ +
nG

∑
i=1

Gie−τ/τG
i (7)

where G∞ is the shear modulus in infinite time and Gi is the shear modulus of the Maxwell
element.

To obtain the effective relaxation modulus G(t), a Fourier transform is applied in
Equation (7):

G(ω)2 = Gs(ω)2 + Gl(ω)2 (8)

Gs(ω) = G0 +
n

∑
i=1

Giτ
2
i ω2

1 + τ2
i ω2

(9)

Gl(ω) =
n

∑
i=1

Giτiω

1 + τ2
i ω2

(10)

where Gs(ω) is the storage modulus, Gl(ω) is the loss modulus, G0 is the initial shear
modulus of the material, and Gi and τi are a series of relaxation moduli and relaxation times,
which can be obtained by fitting the force relaxation curve data at different temperatures.

To describe the response characteristics of SMPs at different temperatures, the TTEP
was introduced [64]. It is known that prolonging the observation time and increasing the
temperature are equivalent to the motion of molecules and the viscoelastic behavior of
polymers; therefore, the WLF equation can be used to describe the time temperature effect
of SMPs [65], which is shown as follows:

lg(aT) =
−C1(T − T0)

C2 + T − T0
(11)
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where aT(T) is the time temperature superposition shift factor in the WLF equation, C1
and C2 are material parameters, and T0 is the reference temperature, which can be obtained
by fitting the experimental data.

The relaxation time τ of the SMPs in the non-isothermal response process can be
expressed by the following equation:

dτ

dt
=

1
aT(T(t))

(12)

The theoretical model parameters mentioned above can be processed using the mate-
rial module in ABAQUS. By using ABAQUS [66,67], the analysis efficiency of the E-SMP
structure can be greatly improved.

4. Material Parameters Calibration
4.1. Hyperelastic Parameters Calibration

In order to obtain the elastic parameters of E-SMP, the evaluation parameters of E-SMP
at 50, 80, 100, and 130 ◦C were obtained using the ABAQUS material evaluation module.
The evaluation results are shown in Figure 6 and the specific parameters are listed in
Table 1. These parameters were used in the finite element model.
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Table 1. Evaluation of neo-Hookean parameters.

Temperature (◦C) C10

50 5.548
80 2.285
100 5.99 × 10−4

130 4.25 × 10−4

4.2. Viscosity Parameters Calibration

According to the stress relaxation test data for E-SMP, by assuming that the volume of
the E-SMP sample remains constant before and after the loading, the curves of each group
of test data were obtained, then the logarithmic transformation of the horizontal axis and
vertical axis was carried out, as shown in Figure 7. Based on the TTEP [65,68], the obtained
values at various temperatures were converted into the values at 30 ◦C through time scale
conversion, as shown in Figure 8. The following master curve of the relaxation modulus
at a reference temperature of 30 ◦C was obtained, as depicted in Figure 9. The relaxation
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modulus curve for E-SMP at a reference temperature of 30 ◦C was obtained by processing
the coordinate axis, as shown in Figure 10.

During the process of translation, according to the TTEP, we obtained the shift factor
values of the relaxation at other temperatures when the reference temperature was 30 ◦C, as
shown in Table 2. According to [49,65], the shift factor–temperature value can be expressed
by the WLF equation. According to Equation (10), the parameters C1 and C2 can be
obtained through curve fitting, which are shown in Figure 11. The parameters C1 and C2
were obtained as 14.664 and 77.636, as shown in Table 3, respectively.
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Figure 8. Translational change of the modulus at 30 ◦C.
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Table 2. Shift factor values at different temperatures with a reference temperature of 30 ◦C.

Temperature (◦C) Shift Factor Temperature (◦C) Shift Factor

30 0 90 −5.71
40 −2.01 100 −6.68
50 −3.14 110 −7.48
60 −4.22 120 −8.01
70 −4.82 130 −8.20
80 −5.42 150 −8.86

To obtain the viscoelastic parameters of E-SMP, according to Equation (6), the value
of the master curve of the relaxation modulus at the reference temperature of 30 ◦C was
fitted, as shown in Figure 11. For convenience of calculation, the relaxation modulus was
normalized and G∞ was equal to 0.3 MPa. The modulus Gi and relaxation time τi can be
descried by the Prony series values of the E-SMP material, as shown in Table 4. The fitting
curve of the Prony series value of the E-SMP material was compared with the relaxation
modulus curve and the fitting effect was found to be feasible, as shown in Figure 12.
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Table 3. Parameters of the WLF equation.

Reference Temperature (◦C) C1 C2

30 14.664 77.636

Table 4. Prony series fitting values of E-SMP materials.

g_iProny tau_iProny

9.89 × 10−4 436.82
0.191 9056.2
0.215 1.006 × 105

0.295 8.416 × 105
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5. Verification of Numerical Analysis

To verify the accuracy of the theoretical method, the three-dimensional model structure
used for simulation was the same as that in the experiment. As shown in Figure 13, in
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order to match equipment range and for convenience of preparation, the model size was
30 mm × 5 mm × 1 mm. In the experiment, 10 mm sections at the two ends of the test
piece were clamped and the middle 10 mm sections was tested in the actual experiments.
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To maintain the same effect as that in the experiment, the two ends of the structure
measuring 10 mm were constrained by MCP in the FEM. In the simulation, a 0.1 mm grid
(C3D8RH; with an 8-node linear brick, hybrid and constant pressure, reduced integration,
and hourglass control) was used. The software version was DS Simulia suite 2018, Multi.x64,
run in Windows. Moreover, the specific material parameters were obtained from the above
test data. The hyperelastic parameters are shown in Table 1, viscosity parameters in Table 4,
WLF parameters in Table 3, and thermal expansion coefficients in Figure 4.

The simulation model was the same as that used in the actual test. A tensile rate
of 15 mm/min was used in the tensile tests. The tensile simulation models at a low
temperature of 30 ◦C, medium temperature of 80 ◦C, and high temperature of 130 ◦C were
calculated and the results are shown in Figure 14. In the stress relaxation simulation at
30 ◦C, the loading rate was 2 mm/min, the tensile distance was 1 mm, and the strain was
retained for 1800 s, the results for which are displayed in Figure 15. In Figures 14 and 15,
the simulation data are highly consistent with the experimental data; hence, the accuracy
of the theoretical and simulation methods is demonstrated.

Furthermore, the mesh independence was verified. Tensile test data at 50 ◦C were
selected and grids with dimensions of 1 mm, 0.5 mm, 0.25 mm, and 0.1 mm were used.
The results are presented in Figure 16. It can be seen from the figure that the smaller the
grid, the closer the simulation results were to the experimental results; hence, to improve
the computational efficiency, a 0.25 mm grid was selected.
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6. Design and Analysis of Deployable Structure
6.1. Design and Analysis of the S-DS

In space, lightweight and highly resilient driving components are extremely important
for the deployment of large structures [18,19]. In this paper, E-SMP was used to design S-DS
and F-DS. The structures not only possess a shape memory function, but also have a higher
glass transition temperature (110 ◦C) and higher modulus (2350 MPa) at low temperatures.
In addition, the E-SMP structure can be electrically driven and the deployment steps and
process of the F-DS can be controlled by the loading voltages; therefore, the E-SMP structure
material is suitable for the components of the space structure. The structure of the S-DS
and the specific deformation process are illustrated as shown in Figure 17.

(1) Finite element analysis

The above calculation method and fitting parameters were used in the simulation
model of the S-DS. In this simulation, the grid type was C3D8RH, with a size of 0.25 mm.
The left end was fitted with a completely fixed restraint, while the right section was
subjected to a 90◦ bending moment load during loading. The material parameters were
the same as those used in the validation analysis and the thermal expansion effect was
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considered. According to the flow chart in Figure 17, the analysis was carried out in four
steps, as follows:

(1) Loading at high temperature: At 150 ◦C, one end of the driving structure was fixed
and the other end was loaded and bent to 90◦, for which the analysis time was 100 s;

(2) Load carrying with cooling: Keeping the load unchanged when the temperature was
reduced from 150 ◦C to 30 ◦C, the analysis time was 100 s;

(3) Unloading at low temperature: The temperature was kept at 30 ◦C, then the material
was cooled for 1800 s and unloaded;

(4) Recovery with heating: There was no external load interference, the temperature
increased from 30 ◦C to 150 ◦C, and the analysis time was 100 s.
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Figure 17. Shape memory flow chart for E-SMP: (a) the initial or permanent state; (b) the state of
loading at high temperature; (c) the state in which one end is bent to 90◦. The shape of S-DS recovers
from state (d) to state (a) under thermal effect, when the S-DS samples are heated by electrification.

(2) Analysis of results

The response characteristics of S-DS were obtained and the response curves of the
temperature–time and bending angle–time relationships are shown in Figure 18. According
to [55], the effect of the heating rate on the recovery of E-SMP can be ignored, further
leading to the linear behavior of the temperature curves in Figure 18a. It can be seen from
Figure 18b that in step 1, the structural material was rubberized at the temperature of the
driving structure, which was maintained at 150 ◦C, while the structure bent to 90◦. In
step 2, the structure material was glassy when keeping the loading unchanged and the
temperature was reduced to 30 ◦C. In step 3, the sample was kept in isothermal state at
30 ◦C for 1800 s in order to be cooled sufficiently, then the load was removed. Because
of the high strength of the material at low temperatures, the structure recovered under a
low-temperature elastic force when the load was removed. In step 4, the S-DS gradually
reversed to the initial state under the thermal effect by increasing the temperature.

To describe the shape memory characteristics of the S-DS in a clear manner, the torque
in the X-axis direction–temperature curve and bending angle–temperature curve for one
end of the S-DS were plotted, as shown in Figure 19. The shape memory characteristics of
the S-DS under the action of temperature can be clearly observed in the figure. As shown
in Figure 19a, when the structure was loaded at a high temperature, the X-axis torque of
the loading end was 0.05 N·mm. After cooling, the torque reached 0.98 N·mm. As shown
in Figure 19b, the structure rebounded from 90◦ to 57◦ under a low-temperature elastic
force when the load was removed. These results demonstrate that the shape retention rate
of E-SMP needs to be improved.
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The recovery force at one end of S-DS was measured when it was heated and recovered.
The specific measurement method is shown in Figure 20. One end of the S-DS was fixed
and the other end was loaded and bent to 90◦. The bent end was measured by force sensor
when S-DS was electrified and heated. The measured recovery forces are shown in Table 5.
The average recovery forces was 0.049 N; however, the recovery force was 0.045 N in the
simulation, while the X-axis torque of S-DS with bending radius of 22 mm was 0.98 N·mm,
as shown in Figure 19a. Compared with the experimental results, the error of the numerical
calculation of the recovery force at one end of S-DS was 8%. This also indirectly proved the
feasibility of the numerical calculation method.

Table 5. Measurement data for the recovery forces.

Group Recovery Force (N)

1 0.041
2 0.045
3 0.047
4 0.052
5 0.055
6 0.058

Average value 0.049
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Furthermore, the simulation model for the S-DS was compared with the experimental
verification. In this study, we mainly observed the deformation of the S-DS with the
temperature increase (Figure 21a–d) and compared the simulated stress cloud diagram
(Figure 21e–h) and the experimental temperature test (Figure 21i–l), which are shown in
Figure 21. In Figure 21, the dynamic deformation of the S-DS at 30, 50, 80, and 150 ◦C
can be visually observed. The main deformed parts of the actual structure (red box in
the figure) were simulated and the results are depicted in Figure 21e–h. The simulated
deformation was consistent with the actual structure, proving the effectiveness of the
calculation method.
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Figure 21. Simulation analysis chart and temperature field diagram for E-SMP during recovery:
(a–d) deformation of the S-DS at 30, 50, 80, and 150 ◦C; (e–h) simulated stress cloud diagram of the
S-DS at 30, 50, 80, and 150 ◦C; (i–l) experimental temperature test at 30, 50, 80, and 150 ◦C.

6.2. Design and Analysis of the F-DS

The three-dimensional F-DS driving model of the E-SMP is shown in Figure 22, in
which the thickness of the sample is 1 mm. The red frames in the figure represents the
main driving component. In A-X, X is the number of single arms.
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F-DS decreased sharply. The response of the internal energy was obvious at low 
temperatures owing to the large modulus of the F-DS. The deformation was even easier 
at high temperatures, which was ascribed to the smaller modulus. To summarize, the F-
DS released the external force load at high temperatures and the internal energy changed 
sharply at low temperatures in step 3. Step 4 was referred to as the recovery process with 
heating, in which the loaded temperature was increased from 30 to 150 °C. The high-
temperature recovery stress cloud map of F-DS is shown in Figure 24. At this time, the 
four arms of the F-DS returned to their initial state under the action of thermal stress. 
Moreover, the internal energy tended to increase with the increase of temperature. The F-
DS became rubber-like at high temperatures (>110 °C). The corresponding structure 
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(1) Analysis of the simultaneous driving process

The calculation method and material parameters were consistent with those of the
S-DS and the analysis steps of the F-DS were the same as the S-DS.

The F-DS was analyzed with ABAQUS based on the coupled FEM. Based on Equa-
tion (5), the relative internal energy curve of the F-DS in the response process was obtained,
as shown in Figure 23. To more clearly express the changes in F-DS under temperature
and external load, it was assumed that the internal energy of F-DS at normal atmospheric
temperature was 0 mJ. The internal energy of the F-DS increased when the temperature
increased or the external load was applied. In Figure 23, the ambient temperature was
increased in step 1-a. In this process, the temperature was increased from 30 to 150 ◦C and
the internal energy of the F-DS increased gradually. Step 1-b was the high-temperature
loading stage. In this process, the internal energy of the F-DS increased gradually under
the action of an external force. At this time, the force diagram of the F-DS was as shown in
Figure 24a. Step 2 was the load carrying with cooling stage. In this process, the force of the
F-DS remained unchanged and the temperature decreased from 150 to 30 ◦C. Owing to the
change in the temperature field, the internal energy of the F-DS gradually decreased. Step 3
involved the cooling and unloading stages. The cooling was designed to relax the F-DS
stress at a low temperature. After unloading, the internal energy of the F-DS decreased
sharply. The response of the internal energy was obvious at low temperatures owing to the
large modulus of the F-DS. The deformation was even easier at high temperatures, which
was ascribed to the smaller modulus. To summarize, the F-DS released the external force
load at high temperatures and the internal energy changed sharply at low temperatures in
step 3. Step 4 was referred to as the recovery process with heating, in which the loaded
temperature was increased from 30 to 150 ◦C. The high-temperature recovery stress cloud
map of F-DS is shown in Figure 24. At this time, the four arms of the F-DS returned to their
initial state under the action of thermal stress. Moreover, the internal energy tended to
increase with the increase of temperature. The F-DS became rubber-like at high tempera-
tures (>110 ◦C). The corresponding structure returned to its original shape and lost internal
energy, meaning the internal energy curve tended to increase at the starting stage and then
decrease in the step 4.
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(2) Analysis of the step-by-step driving process

In this section, the step-by-step driving process of the F-DS was calculated and ana-
lyzed using the calculation method and material parameters that were used for the S-DS.
The internal energy curve of the F-DS in the response process was obtained, as shown
in Figure 25. In the figure, steps 1 to 3 were the same as the simultaneous driving of the
F-DS; however, in step 4-a, A-1 was heated to characterize the recovery process. The stress
diagram for A-1 at a certain time in the recovery process is shown in Figure 26a,b. At
this time, the internal energy of the F-DS increased under the action of the thermal effect;
however, the material became rubbery with the increase in temperature and internal energy
was released to restore its original shape. The internal energy of the F-DS first increased and
then decreased during this process. Similarly, step 4-b was the heating recovery process for
A-3. The stress cloud in this process is shown in Figure 26c. Step 4-c was the process for
heating A-2 and A-4 simultaneously. The stress cloud in this process is shown in Figure 26d.
It can be clearly seen that the overall internal energy of the F-DS increased gradually with
the step-by-step temperature loading.
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7. Conclusions

Consequently, in this study we established a coupled FEM based on the generalized
Maxwell model and TTEP. The thermodynamic behavior and shape memory effects of
the S-DS and F-DS of the electrically driven epoxy resin SMPs prepared in the laboratory
were studied and analyzed using this method. Through comparison of the experimental
and simulation data of the tensile and S-DS recovery forces, the coupled FEM based on
the generalized Maxwell model and TTEP was able to accurately and reliably describe
the thermodynamic behavior and shape memory effect of the SMP structure, with an
error of about 8%. The F-DS can be driven step-by-step under the same environment
and temperature and can be used in large deployable structures in space satellites. This
method can be used to provide novel ideas to facilitate future research on epoxy-shaped
memory composites.
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There are also some shortcomings in this paper. The effect of the heating rate on the
recovery of the E-SMP was ignored and the shape recovery rate was low, which will be
comprehensively considered in our future studies.
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Nomenclature

DMA Dynamic mechanical analyzer
E-SMP Shape memory polymer materials based on epoxy resin
FEM Finite element method
F-DS Four-arm deployment structure
SMPs Shape memory polymers
S-DS Single-arm deployment structure
SMPC Shape memory polymer composite
TTEP Time–temperature equivalence principle
UMAT User-defined material subroutine
WLF Williams–Lendel–Ferry equation
Tg Glass transition temperature
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