micromachines

Article

Optimal Method for Test and Repair Memories Using
Redundancy Mechanism for SoC

Suleman Alnatheer and Mohammed Altaf Ahmed *

check for

updates
Citation: Alnatheer, S.; Ahmed, M.A.
Optimal Method for Test and Repair
Memories Using Redundancy
Mechanism for SoC. Micromachines
2021, 12, 811. https://doi.org/
10.3390/mi12070811

Academic Editor: Wen-Jyi Hwang

Received: 7 June 2021
Accepted: 7 July 2021
Published: 10 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Computer Engineering, College of Computer Engineering & Sciences, Prince Sattam Bin
Abdulaziz University, Al-Kharj 11942, Saudi Arabia; s.alnatheer@psau.edu.sa
* Correspondence: m.altaf@psau.edu.sa or altafacel@gmail.com

Abstract: The current system-on-chip (SoC)-based devices uses embedded memories of enormous
size. Most of these systems’ area is dense with memories and promotes different types of faults
appearance in memory. The memory faults become a severe issue when they affect the yield of the
product. A memory-test and -repair scheme is an attractive solution to tackle this kind of problem.
The built-in self-repair (BISR) scheme is a prominent method to handle this issue. The BISR scheme is
widely used to repair the defective memories for an SoC-based system. It uses a built-in redundancy
analysis (BIRA) circuit to allocate the redundancy when defects appear in the memory. The data
are accessed from the redundancy allocation when the faulty memory is operative. Thus, this BIRA
scheme affects the area overhead for the BISR circuit when it integrates to the SoC. The spare row
and spare column-based BISR method is proposed to receive the optimal repair rate with a low area
overhead. It tests the memories for almost all the fault types and repairs the memory by using spare
rows and columns. The proposed BISR block’s performance was measured for the optimal repair
rate and the area overhead. The area overhead, timing, and repair rate were compared with the other
approaches. Furthermore, the study noticed that the repair rate and area overhead would increase by
increasing the spare-row /column allocation.

Keywords: SoC; BISR; BIRA; memory test and repair; repair-rate

1. Introduction

The recent SoC-based devices play a more important role as technology enhances
day by day. These modern SoC designs are dense with memory, and the users need more
promising features from their devices. A smooth-functioning memory-test algorithm and
architecture are required to maintain the product’s reputation. Present system-on-chip
(SoC) designs consist of embedded memory in a large portion. The embedded memory
area in recent SoC-based devices is higher and is approximately equal to 95% of the total
chip area [1-3]. Due to the high density of memory, there is a high probability of defects in
SoC.

Furthermore, the memories are more prone to faults than the actual logic, as memories
do not consist of the logic elements such as flip-flops [3,4], and the defects in the embedded
memory of the devices or the systems can cause a critical error. Therefore, regress testing
embedded memories in today’s complex SoC-based systems becomes necessary to retain
the products’ reputation in the market. Thus, the SoC-based product yield is drastically
affected by the memory in the chip. The effective yield-improvement method becomes
essential for SoC design. Testing memories for faults and repairing defected memory
methods play a vital role in improving the SoC design yield [5]. Memory-fault test and
repair are popular techniques for yield improvement [6], and the built-in self-repair (BISR)
is a widespread scheme to enhance the yield of the memory-based product.

Memory test and repair are two separate processes involved in yield enhancement for
any modern SoC design semiconductor memories. Memory built-in self-test (MBIST) is

Micromachines 2021, 12, 811. https://doi.org/10.3390/mi12070811

https://www.mdpi.com/journal /micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-0355-7835
https://doi.org/10.3390/mi12070811
https://doi.org/10.3390/mi12070811
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12070811
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12070811?type=check_update&version=1

Micromachines 2021, 12, 811

2 of 20

a verified and reliable method for testing embedded memory [7-10], whereby memories
are tested for fault and the fault types using sophisticated March algorithms. The MBIST
controller usually works on test algorithms for finding defects and their types in embedded
memories [11,12]. Testing the embedded memories by the test-pattern generator (TPG),
using a scan chain method, is proposed in the research [13,14] to target less power consump-
tion. Test time and test power are analyzed by the proposed scan chain architecture and
LFSR. The LFSR is used to produce the test pattern by using a set of vectors for achieving
the timing to test.

The failure information generated by the MBIST design during the testing process is
available for the built-in self-repair (BISR) block after completing the test. The BISR circuitry
uses this memory failure information to repair the defective memory cell. The BISR method
is common and popular for memory yield improvement in SoC [15-19]. Commonly BISR
method uses a built-in self-test (BIST) and the built-in redundancy analysis (BIRA) to test
and repair the memory in any SoC design. Conventionally memory repair was carried out
by two methods, memory tester and laser equipment [20]. Both of these methods are very
expensive, time-consuming, and use extra hardware to repair the memory for fault, thus
not in use. Therefore, the only BISR is the recommended solution for memory repair and
thus yields improvement.

The multiple memories, test, and repair scheme is proposed targeting the low area and
time [15,16]. Comprehensive real-time exhaustive search test and analysis (CRESTA) is the
conventional algorithm offered to repair the embedded memory for faults [17]. It covers
all the redundancy allocations using numerous sub-analyzers. In this way; it is better to
achieve the optimum repair rate with no additional test time other than test procedures.
On the other hand, the area overhead drastically increases due to various test redundancies
and several sub-analyzers [17]. The repair rate and the area overhead both are equally
important while dealing with the embedded memories. The repair rate improves the yield
of the memory devices, where area overhead reduces the devices’ cost. The recent trend is
high-density memories, and it requires an extensive redundancy analysis (RA) time with
a large area overhead. Thus, the cost of the memory-based systems depends on the low
area overhead with fast RA BIRA. Therefore, the tradeoff between BIRA (for repair rate)
and low area overhead becomes the hot cake in the research field. It becomes necessary to
maintain this characteristic to develop the product’s reputation in the market.

Ample research has been conducted for maintaining the low area and high repaired
rate characteristics by the proposed methods of BISR, and it has achieved a suitable figure.
However, still, it needs improvement, and it is possible to enhance this characteristic further.
Therefore, a slight change in the technique to improve the test and repair method for the
memory will help in increasing the product yield. This research tried to reduce the area
overhead with a reasonable repaired rate and fault coverage by the proposed BIST and
BISR. The contributions made by this research are listed below.

e Implementation of BIST for critical testing by using the proposed March algorithm
to improve a product’s quality. This memory BIST finds the faults and types in the
memory to improve the fault coverage.

e A time- and cost-effective BISR solution to repair the faulty cells of the memory under
test (MUT). The BIST controller generates the fault cells” information to use spare
memory. The BISR block performed the replacement of the faulty cells by redundant
blocks, which are fault-free.

Thus, the BISR block allows defective cells to be replaced with the spare block without
losing original data if memory contains critical information. Therefore, it ensures product
reliability at a low cost.

2. Proposed Architecture

The proposed architecture of the built-in self-repair method is shown in Figure 1.
The BISR block mainly consists of two phases, namely the memory-test phase and the

Micromachines 2021, 12, 811

3 0f20

fault-repair phase. The memory-test phase tests the memory for faults by the BIST method,
and the fault-repair phase repairs the detected defects to provide error-free memory.

start bist clock —

Address and
enable

Data patte

Fault

. information
Repaired
Data_out

Repair solution

Figure 1. Proposed built-in self-repair (BISR) architecture.

2.1. Fault Testing

The proposed memory BIST algorithm is used for fault testing. It diagnoses the
memory for failures and preparing fail information for the repair block.

2.1.1. Proposed Algorithm

To deliver high-grade SoC products, the SoC manufacturer needs high fault coverage.
Therefore, most manufacturers try to implement a sophisticated memory BIST algorithm
to reach reasonable percent fault coverage. Most memory BIST schemes are based on the
marching algorithm to test the embedded memories and get significant fault coverage.
Generally, a complex March algorithm can detect fault types, such as stuck-at fault, address
decoder fault, transition faults, and some coupling faults. The current product’s increased
chip density and technology result in new fault types in the SoC, such as stuck-open fault
and neighborhood pattern sensitive faults (NPSFs). The designer needs to provide the
algorithm carefully with these advancements in technology.

This research proposed a novel memory BIST algorithm to test the various memories
for multiple faults in an SoC-based device. The memory BIST algorithm is based on March
elements and is used to test the memories by applying different patterns, as mentioned
in the algorithm. The algorithm itself writes various patterns, such as Os and 1s, to the
different memory locations of memory under test (MUT). As per the element written in
parenthesis, each operation is performed at every memory location, one after another. The
algorithm is marching Os and 1s patterns in ascending or descending order of address
sequence for the regress testing of the memory. A comparison with the original pattern (all
0s or all 1s) occurs during every read operation. While comparing if mismatches arise, the
result will record into the failure information register. The March-sift operations continue
after displaying the results from the next consecutive memory location, and it repeats the
same until it reaches the last location. The proposed March-sift algorithm is expressed
below, in Equation Box (1), and the operations are mentioned in Table 1.

{ sift0: T (wyo); siftl: 1 (rg, wy); sift2: | (r1, wo, ro); sift3: T (ro, wy);

siftd:1 (r1, wo); sift5: | (ro, wo, ro); sifté: 1 (rg, wy, r1); sift7: $ (r1);} ™

Micromachines 2021, 12, 811 4 0of 20

Table 1. An Algorithm.

March-Sift Algorithm

act on all memory locations(ml), any address order ascending or descending

fora:=0tohdo start from first (0) to last (h) address (a); Sift0:
write 0 to ml[a]; write 0 to memory location (ml) T (w0);
end;

act on all memory locations (ml), in sequence ascending order

fora:=0tohdo start from first (0) to last (h) address (a)

read ml and compare with expected value (0), if mismatch record ~ siftl:

read mlfa]; the result 1 (0, wl);

write 1 to ml[a]; write 1 to memory location (ml)

end;

act on all memory locations (ml), in sequence descending order

for a:=h down to 0 do start from last (h) to first (0) address (a)

read ml and compare with expected value (1), if mismatch record

read mifa]; the result Sift2:

write 0 to ml[a]; write 0 to memory location (ml) 1 (r1, w0, r0);

read ml and compare with expected value (0), if mismatch record

read ml[a]; the result

end;

act on all memory locations (ml), in sequence ascending order

fora:=0tohdo start from first (0) to last (h) address (a)

read ml and compare with expected value (0), if mismatch record sift3:

read ml[a]; the result T (x0, wl);

write 1 to ml[a]; write 1 to memory location (ml)

end;

act on all memory locations (ml), in sequence ascending order

for a:= 0 down to h do start from first (0) to last (h) address (a)

read ml and compare with expected value (1), if mismatch record

read ml[a]; the result siftd:

write 0 to ml[a]; write 0 to memory location (ml) T (r1, wo);

read ml and compare with expected value (0), if mismatch record

read ml[a]; the result

end;

act on all memory locations (ml), in sequence descending order

fora:=hto0do start from last (h) to first (0) address (a);

read ml and compare with expected value (0), if mismatch record

read ml[a]; the result sift5:

write 0 to ml[a]; write 0 to memory location (ml) + (ro, wo, 10);

read ml and compare with expected value (0), if mismatch record

read ml[a]; the result

end;

Micromachines 2021, 12, 811 50f 20
Table 1. Cont.
March-Sift Algorithm
act on all memory locations (ml), in sequence ascending order
fora:=0downtohdo start from first (0) to last (h) address (a)
read ml and compare with expected value (0), if mismatch record
read ml[a];
the result Sift6:
write 1 to ml[a]; write 1 to memory location (ml) T (ro, wi, r1);

read ml[a];

read ml and compare with expected value (1), if mismatch record
the result

end;

act on all memory locations (ml), in sequence ascending order

fora:=0tohdo

start from first (0) to last (h) address (a)

read ml[a];

sift7:
read ml and compare with expected value (1), if mismatch record T (rl);

the result

end;

2.1.2. Memory BIST Controller

Memory BIST controller works on the patterns of a March-sift algorithm. The March-
sift algorithm consists of eight elements to perform read—write operations on the selected
memory under test (MUT). Each element of the algorithm is considered a separate state.
The controller state machine is designed by considering eight states and two extra states to
start the test operation and store fails memory status. The memory BIST controller state
machine is shown in Figure 2. The elements of the algorithm are as follows.

sift0: In the first step of test conduction, the writing operation performs at all the MUT
locations. The address sequence is not essential in this state. It can be started in either
direction, ascending or descending order.

siftl: In this step, two operations performed one after another at each memory location
under test. Before coming to this state, memory is full of zeros. The first read zero will
perform and compared with the desired zero patterns. The write ones will follow after
reading zero at each location in ascending order. During every read, a comparison takes
place with the original data pattern. While comparing if a mismatch takes place, the result
will display in the fail information state, and the state machine jumps to the next memory
location and repeat the same operations. During the comparison pass, the state machine
directly jumps to the next address location.

sift2: At this step, three operations (read 1s, write Os, and read 0s) are performed
sequentially at each memory location (in descending order). Starting with the highest
address, the first operation (r1) reads the memory location, where the expected value is
one, and compares the reading value with the desired one pattern. If a mismatch occurs,
the result will be stored in the status register. The second operation (w0) writes or fills
the memory location with zero, followed by (r0). After completing the functions of sift2,
the state machine repeats the same actions at the next address location and all remaining
addresses until it reaches the lowest address of the memory locations under test.

sift3: At this step, the two operations are sequentially performed throughout the
memory in ascending address order. Starting with the zero address, the first operation (r0)
followed by (w1) write 1s. During a read operation of a memory location, the reading data
value will compare with the desired zero patterns. If a mismatch of any bit occurs, the state
machine will record the result. After these operations, the state machine jumps to the next
consecutive location and repeats the same procedures until it reaches the memory’s highest
address location.

Micromachines 2021, 12, 811

6 0f 20

max_addr

max_addr

zero_add

/\ max_addr

star

max_addr

information

max_addr

max_addr

Figure 2. Built-in self-test (BIST) controller state machine.

sift4: At this step, the two operations performed sequentially throughout all memory
locations under test (in descending order). Starting with the highest address, the first
operation (rl) reads the memory location, where the expected value is one, and compares
the reading value with the desired one pattern. If a mismatch occurs, the result will be
recorded. The second operation (w0) writes or fills the memory location with zero. After
these operations, the state machine jumps to the next memory location and repeats the
same activities until it reaches the lowest address location of the memory under test.

sift5: At this step, the operation is performed throughout all memory locations under
test (in descending address ordering). Starting by the lowest address, the action (r0)
reads the memory location, then writes Os (w0), and reads 0s (r0) at the same location
are performed. The reading value will be compared with the original zero patterns and
recorded when a mismatch occurs every time. After reading and analyzing, the state
machine jumps to the next memory location, repeats the same operations, and continues
until it reaches the highest memory locations.

sift6: Similarly, as the state sift5, all operations performed with a change in the
elements w0 to w1l and r0 to r1.

sift7: At this step, the operation performed throughout all memory locations under
test (in ascending or descending address ordering) direction is not essential. Starting by
the lowest address, the action (r1) reads the memory location, where the expected value is

Micromachines 2021, 12, 811

7 of 20

one. The reading value will be compared with the original 1s pattern and recorded when
mismatch.

Memory BIST operations start when the state machine gets the start signal to perform
March-sift functions. The procedures mentioned in each March-sift element will execute
sequentially one after another in each state machine’s states to test MUT. After completing
the write Os operations in sift0, the state machine jumps to the next state (sift1) and starts
performing read Os, followed by writing a 1s procedure at each memory location. While
performing read operations, the read data will compare with the desired 1s pattern. If
the comparison fails, the state machine jumps to the status state and displays the failure
information into the status register for the BISR block. The memory tag, fail address,
defective cell position, and defect count will be stored in the status register.

The state machine displays the failure information, jumps back to the state from where
it arrives, and starts performing the March-sift operation at the next consecutive address
location. During testing, if the stop signal triggers, the state machine will jump to the status
state and display the same failure information with the pass or fail indication. Similarly,
suppose that the halt (halt if an error) is programmed. In that case, the state machine
jumps to the status state on any fail condition, displays failure information, and waits for
the join signal to continue its operations. In this way, the state machine performs all the
procedures mentioned in the algorithm until the last address location, jumps to status state,
and displays the testing result. If the fail count is nonzero, the testing result of memory
fails; otherwise, it will pass. The completion signal will also be active if the test finishes.

2.2. Fault Repair

The memory defects are often increasing by increasing memory size and the high-end
technology in recent memory-based devices. These increasing defects are tackled only by
the BISR method as it is less expensive, fast, and has a high repairable rate than the other
methods. The defective memory part will be replaced with the spare memory, which is
not faulty. Therefore, fault repair method by BISR is treated as a reliable and cost-effective
solution [21]. The concept of a defective part’s replacement with the redundant block will
understand by taking an example of the car Stepney. The car Stepney is a spare tire, and it
will be replaced by the defective tire when it gets a puncture.

This research study proposed the fault repair approach by the built-in redundancy
analysis (BIRA) method. The BIRA block consists of redundancy analysis (RA), Fault Table
(FT), Buffer, and a redundancy signature register (SR). The faulty addresses are stored in the
redundancy logic. The data will be accessed from the redundant locations if those locations
are available in RL while memory is operated. The faulty addresses are programmed
during memory BIST, and an overflow bit is used to indicate the overflow of the false
addresses. This overflow bit indicates that there are more failing addresses than that of the
repair cell. The BIRA block is shown in Figure 3.

The redundancy analysis is simple and straightforward, and it selects minimum
numbers of spare rows and spare columns to cover the faulty cells. It starts immediately
after the BIST passes the status about the fail information. The RL block uses a fault table
(FT) to store fault addresses. Based on the fault information, the fault address is stored in
the fault table every time if it is not available previously. An overflow bit indicates to the
BIST controller that the fault address table is packed, and no other space remains to store
the new faulty address.

The repair analysis (RA) is performed on the incorrect addresses available in the fault
table. The minimum number of spare rows and spare columns are calculated to access the
error-free contents from the spare redundancy in place of the memory’s defective cells. The
RA coordinates with BIST to develop the repair strategy as per the available redundancy.
The repair information is stored in the signature register (SR), whereas the false information
is stored in the fault table. The buffer is used to store the fault addresses and the fault
position. It helps when there is more than one faulty bit detected from a particular defective
address. It contains the faulty bit address to provide a repair solution. The memory or

Micromachines 2021, 12, 811

8 of 20

fault is unrepairable only when FT cannot store the fault address or no redundant cell
is available.

unrepairable

Test_done

Redundancy Analysis
(RA)

Fault Table

. fail J
fail_addr 7

error_pos

Figure 3. The built-in redundancy analysis (BIRA) block diagram.

N

The BISR flow is shown in Figure 4, and it consists of the following steps.

The memory BIST block tests the MUT for faults. If fault detects, the BIST generates
the failure information, and if no defects, the BIST stops.

Once the BIST programs failure information, the repair process starts. The RA block
reads the faulty addresses and compares them with the addresses previously available
in the fault table. If an address is not previously known, it stores it into the fault table;
otherwise, it ignores it.

Depending on the erroneous information, the RA performs a repair strategy and
calculates fault count in a faulty row and faulty column.

The repair signature is prepared based on the repair strategy and will store in the
signature register.

For whichever is higher, the row-defect count or column-defect count, it will allocate
first and repeat until it reaches one fault in a particular row or particular column.

If the row fault count equals the column fault count, the spare row will assign.

If there is only one faulty cell that remains, the spare row allocates.

The repair solution is provided for the memory under test whether the fault is re-
pairable or unrepairable. In the case of multiple memories, the same BISR block will
share within the numerous memories by selecting one after another.

The proposed repair algorithm workflow can understand by the example taken for

a faulty memory shown in Figure 5. The presented approach uses three rows and two
columns to repair the memory. The spare status before the repair process starts (r3, c2)
and is shown in Figure 5a. The algorithm will first calculate the row-fault count and the
column-fault count and then allocate the spare rows and columns as described in the flow.
The spare row and spare column allocation are shown from the example and can be seen
in Figure 5b. The memory will repair once it performs all the steps of the BISR flow. The
same BISR block will share within the multiple memory by selecting one after another.

Micromachines 2021, 12, 811 9 of 20

Memory BIST

faulty table store Repaired
Redundancy analysis yes

faulty cell row count

\ o

faulty cell column count Unrepalrable
Figure 4. The built-in self-repair (BISR) operational flow.
Spare Status (r3, c2) Spare Status (r0, c0)
Column Fault Count Column Fault Count | |
i [2feTaolaeo{i[a[alz] & 1(2|of1|o]|2]|2]o|1|1]0]2
X 1 X 1
X 1 x 1
X|x | 2] x[x 2
0 - 0
)
0] 2 0| 2
0l & 0] &
E 7] &
= 1 g: X 1 %)
X|x X|x x 13| E Xx|x X|x X 5 g
o] ~ o]~
0 0
x X 2 x X 2
0 0
(a) Fault Present in the Memory (b) Memory Repaired

Figure 5. Memory with faults and repair process by the proposed BIRA scheme: (a) fault present in the memory under test;

(b) memory repaired by the proposed method.

Micromachines 2021, 12, 811

10 of 20

3. Results and Comparison

The proposed BISR block is implemented on the FPGA platform by using the Xilinx
tool and on the ASIC platform, using Synopsys Design Compiler. The register transfer logic
(RTL) is written by using Verilog HDL (hardware description language). BISR internally
consists of test and repair blocks. The results are for the top-level block consisting of both
the blocks (test and repair).

3.1. Functional Test

The functional test has carried out on the Xilinx simulator. The proposed BISR is
implemented using Verilog HDL. The test benches are written compute different faults and
their types. The faults at various locations at different positions are injected, and fault types
are calculated for negative testing. Some test scenarios are considered for detecting defects
and their types by inserting defective bits at various locations in different positions. The
simulation results for finding the faults, such as stuck-at-0, stuck-at-1, NPSFs, transition
faults, address decoder faults, coupling faults, Write Destructive Faults (WDFs), Read
Destructive Faults (RDFs), and Deceptive Read Destructive Faults (DRDFs), are tabulated
in Table 2.

Table 2. Faults and their type detection from memory under test.

Acl;g;lel:zes Read Data with Faulty Bits Fault-Type Detection
Case I NPSF
0 0000000000000000 No fault
6 0000000000040000 NPSF at cell 18
7 0000000000040000 NPSF at cell 18
Case II Stuck-at-0 Faults
8 fEff fffe EEF £EEF Stuck-at-0 fault at cell 32
18 fEEf EFF £EEE 3EEE Stuck-at-0 fault at cell 12-13
Case III Stuck-at-1 Faults
22 0000000070000000 Stuck-at-1 fault at cell 28-29
58 0000000000000300 Stuck-at-1 fault at cell 8-9
109 0001000000000000 Stuck-at-1 fault at cell 48
Case IV transition faults and address decoder faults
120 0000000000000000 No fault
127 0000000000004000 Transition fault at 14
367 ffff fEef fffb ffff Transition fault at 17
455 0000000001000000 Transition fault at 24
495 null Address Decoder fault will write to location 511
511 ffff fEEF FEEf £EEF Address Decoder fault
511 0000000000000000 Overwrite
Case IV coupling faults
699 0000000000000000 No fault
723 0000000000000000 Coupled with cell 14 at location 1009
786 fEff £EEf £E6f £(7 Coupling fault at cell 4 with cell 5 at location 723
820 fEff £Hff fEff dfff Cell 14 Coupled with a cell 56 of location 699

Micromachines 2021, 12, 811

11 of 20

Table 2. Cont.

Faulty
Addresses

Read Data with Faulty Bits

Fault-Type Detection

Case V Write disturb faults (WDFs)

887 0000000000000010

Write ‘0’ but Cell 5 become ‘1’

967 ffff ffff fiff efff

Write ‘1’ but Cell 13 become ‘0’

Case VI Read disturb faults (RDFs)

994 0001000000000000

Read ‘0’ but Cell 49 become ‘1’

1009 ffff fff 7£ff £EEf

Read ‘1" but Cell 32 become ‘0’

Case VII Deceptive read destructive Faults (DRDFs)

1012 0000000000400000

Read ‘0’ it returns ‘0" but cell become ‘1’ this appears in the next
consecutive read at cell 23.

1019 tEff EFF £EEAEEES

Read ‘1’ it returns ‘1" but cell become ‘0" will appear in next
consecutive read.

The simulation results of the proposed BISR block are shown in Figure 6. The memory
is packed with the Os at w0 state, as shown in Figure 6a, and reading operations start from
the third state and will continue till the seventh state and are shown in Figure 6b,c. Every
time-read datum is compared with the desired pattern mentioned in the algorithm, and if
the failure occurs, the false information is written into a fail information state. With this
failure information, the BIRA prepares a repair strategy and provides a repair solution for
the memory under test.

The results of the fault and their type detection are received and compared with the
other existing methods. We used eight steps in the algorithm to conduct the test and to
enhance the results. The proposed method is a short and efficient fault coverage method
and finds more fault types and provides an optimal fault coverage than other existing
algorithms. Most of the studies cover only SAF, TF, ADF, and some CFs. Although some
faults still may exist in the memory. Therefore, we took a step to cover those faults by the
presented method of the March sift algorithm. It covers SAF, TE, ADF, CFs, NPSFs, WDFs,
RDFs, and DRDFs from memory under test to improve fault coverage. The fault coverage
comparison with the proposed and other existing methods is given in Table 3.

Table 3. Fault test approaches and comparison.

Test

March Elements

Fault Coverage

Features

March [22]

{c(w0); 1 (r0, w1, w0, wl); 9 (r1, w0, wl);
| (r1, w0, w1, w0); |} (r0, w1, wO0)}

SAF, TF, ADF, some CFs

Complex with Moderate fault
coverage

March Test Algorithm [23]

¢ (w0); 1 (10, w1, wl, r1); (r1, w0, w0, r0);
| (0, w1, wl, r1); (r1, w0, w0, r0); c (r0);

SAF, TF, ADF, some CFs

Complex with reasonable
fault coverage

March C [24]

{c(w0); 1 (r0, wl); 1 (r1, wO0);
U (0, wl); | (r1, w0);c(r0)}

SAF, TF, ADF

Simple low fault coverage

March Y [25]

c (w0); 1 (r0, w1, r1); 1} (r1, w0, r0);
| (0, w1, r1); § (r1, w0, r0); c (r0);

SAF, TE, ADF, some CFs

Moderate and moderate fault
coverage

Proposed March-sift

{3 (wo); 1 (ro, w1); J (r1, wo, 1); 1 (ro, w);
1 (r1, w0); | (0, w0, r0); 1 (0, wl, r1); T (r1);}

SAF, TF, ADF, NPSF, CFs, WDFs,
RDFs, DRDFs

Reasonable with Optimal
fault coverage

Micromachines 2021, 12, 811

12 of 20

(@)

(b)

(0)

Obj.. + 0O & X| #
Simulation Obije...
‘D ns |100 ns |ZDU ns ‘300 ns |-1OU ns 500 ns |6UD 5 |7DU ns
mgE - PN APPRNN ot SRR ool PRI o ARSI sorohrPO AP et ARPAPEN i it PSRRI il AR
=]
Oriscthbme PLIFLFL LR L L LS (LR (RL LI PSR ARSI (LR L LR LR
memstd [mem_wr |
g mem_wr 3 d
Ry men_w e aco i e e D e e e e]
25 mem_rea mem_write_datal6 0000000¢00000000
('P done mem_rd
i fautt_pre mem_read_datals: KOO0,
(@ progress
2 fault_rov done
25 fault_bit; fault_present
2 mem_ady ; progress
(P wr 000
l@ rd
2 write_aa| 0000000C00000000
2 read_dat|
s
=3 addr(s:0] 0000000C00000000
1
s €00 A 0000 EEEDEEEEEEEE0
e ye !
[enable_t|
R data_wic B4 read_datals3: KON KRN
24 addr bit!
B Isim (M.53d) - [Defaultwefg®] -
7 File Edit View Simulation Window Layout Help
OD2EIS B ®|0 oM &) BEOOD AR AR @ b X oo v
SourceFi.. » 0 & X|[Cbj.. + O & X| #
- Simulation Obje... &
s B - ; 136,000 rs 136,200 rs 136,400 rs 136,600 ms 136,800 ns 157,000 ng 157,200 ng
mbeLy, Object Name
memory_wrappery) 3
e i mem.rd i mem_wr UL UL AL L LA L AL L L L AL PP L AL L P L AL L L L L L
test_memory.y Ly memwr | oy
- % 25 memur) @ | 1 RS [B 0) B R B B B B B
o mem e 1 | DOOUCOG0OUCOCONCAC0NCNCONCACONINCONIOCONTNCOUCO000
pere || RS L L LA PP LA PP L PP PP UL LT L L LTS
R il BT = - cc20_dtals 3000000000 K0000000000000000000000000000CO00000000C0000000000
@ progress | !
Ry fault_row, [['“ done
25 foute_its| 1 1y fault_present [§il
)@ mem_ada| ¥ % progre
e B fault_row il op
I r —
)g write dot] |1 | S 000000000(/000000 00000000(0000000
@ read_datef — T wr LA
24 caoract B write_data SO0000, NOOOCOG0OCNC0O0CAC0NCNCONCAC0NCNC0ONCAC0ONCNCONCA00NH
b T L AL AU L L AL L LA FL AL P L AL L AL L LA PL LU L ALAL L P L LU
5 rst .
T WA read dotals3 S00000000CCHOC000000000000000000000000000000
2§ data_wid 4 adar e W N D o o O D o o D o e D o o D o o o
RS addr_bits|
X1: 136,132,256 ns
< > <
; source .. 4| » [« > ||E= Default. wefa* aE by
Console -
16353 Fauit present at addri 14 . Fault bits: 0000000030000000

17707 1Fault present at addr: 693 . Fault bits:

177091Fault present at addr: 699 . Fault bits: FFFFFFFFFFFFT
204751Fault present st addr: 7., Fault bits: 0000000000040000
20477 1Fault present at ad 7 . Fault bits: 0000000000040000
20479 1Fault present at addr: 6 . Fault bits: 0000000000040000

simuiaten Ubje...

bk »

Object Name | /

: :

1§ memrd | @

R j
= B mem_write_data[63:
- 1% mem_rd
+ | WA mem_read_datal

U progress

@ Preg i 1% done

35 fout
B fouit_bits|: 1
25 mem_adg

1 progre
B fault_rowf
WA fault_bits]

G wr
1§ ra

B write_dat|
B read dotd e
&g adar(s.0l

lal'e

fp rst

==

2§ aaar

Console

p its: 0000000000040000
6 . Fault bits: 0000000000040000
& . Fault bits: 0000000000040000
14, Fault bits: 0000000020000000

s
20479 1Fault present at addr:
204811Fault present at addr:
205351Fault present at addr:

|ZD4.2DD |ZD4.4DD |ZD4.GDD ‘ZDS.DDD ‘ZDS.ZDD ‘205.400 ‘ZDS.GDD
AT SRR ALY AULFLALALLE AL AL LA S P JULTUL U AL LT FLAL
R L L oL LI oL L IR L
SOCO0CO00ODOOOLOOLOOOOE XHOGH00000G000
00000000000000C0
TUUULUU U U UL UL UL L
H000G00000000000000000000BBO00NI0GTOG0G X semmmseamtssmmms OO
1 I
000 000 000
0000000000000000 000 (1000000000000000 0000000000000000
AP ALP LU PP L AL PR FLPLFL FUFL FLALFL AL
00000000000000C0
TR R RLF LR FL R FLF UL R AL P FL L LI L]
3000060000600000000000000000000000OI00N0O)0)TEIIDmRmIEIRmTT (| Ty
XOCODCOOOODOOOLOOLOOO0E XH0GE00000C000

Figure 6. Cont.

Micromachines 2021, 12, 811 13 of 20

B faurt_| 1 0000003000000000

Ty

e

BA write_dat: 0000002000000000
B read_datals3: e e e e e e e e e e o e e e e D e e D e o e e e e o e o e D o o
(08 (0% (088 X Jo58 X057 ¥ o6 Y o5s ¥ 064 062 (5L 080 057 {05 ¥ 0% Y O X0 X 0 Y05 Y0,

@ g

B write_dat|

=

1 enable_bist

W total_row_cntid7: 112000150020

120102201102
00200040

0000000000000000
3fe

10000000000000000
10000000000000000
3fe

1 enable_bist
B total_row_ent[0:499] || 011081130 EI1lEIElBEIEIZIDDDDDFDDDDDDDDDD]DDDDDDDDDDDDDDD[DDDDDDDDDDDDDDDD[lDDDDDDDDDDDDDDDDJDDDDDDDDDDDDDDD[EIEIIJEIEIIJEIDDDDDDDDD[}DDDDDDDDDDDDD =

W total_column_cn | 0302122021020000

b enable bil B data width[31:0] I Q0000040

Figure 6. Simulation results for the proposed BISR block: (a) writing memory with all Os; (b) BISR operations for performing read—write
operations into and from memory; (c) BISR operations fault and type detections and store fault information; and (d) BISR flow and
fault count detection row—column wise and memory repair for 8 k memory. (e) BISR flow and fault count detection row—column wise
and memory repair for 16 K memory.

The row and the column count for the detected faulty cell are shown in Figure 7. The
defective cells are indicated in the table by the cross (x) indicator. The total fault count in a
row and the total fault count in a column are calculated and written in the fault count’s
appropriate place for two memories of sizes 8 K and 16 K. It can be seen from the simulation
result in Figure 6d,e respectively. The fault count comparison is performed for selecting
only the row or the column with a higher fault count. When fault row count and fault
column count are equal, the fault row repair will be fixed and assigned with a redundant
row. If there is only one fault in a particular row or a particular column, the row repair will
select and set for a redundant row. The chosen memory is repaired by the steps mentioned
in the flow. The spare row and the spare column are (3, 2) used to fix the memory under
test for fault.

Column Fault Count | | | |
0[3Jol2]1]2]2]0]2]1]0]2 -
e
: NE
: L
.
x [x % x : Cl 5_ ?
: P
X . . J
> S . — o
x | x o 2 Bz é
1] 9
| o] B
x x] i -
: i
HENEEEEEENN [To]
x-Faulty cell.

Figure 7. Total fault count row-wise and column-wise 16 Kbytes memory.

Micromachines 2021, 12, 811 14 of 20

3.2. Synthesis Process

The synthesis process is completed by using the Xilinx synthesis tool and the Synopsys
tool Design Compiler. The top-level module consists of BIST, BIRA, and memory wrappers.
The synthesis report for the area, timing, and power are obtained.

3.2.1. FPGA Synthesis

The package layout view of the Xilinx FPGA is shown in Figure 8, and the detailed
analysis for the proposed BISR block is received on the FPGA platform as follows.

|AII Companents j

M ame Filter
; 5

Name Site Type HPin ~

52 fault_row< [P22 OB 1
93 fault_row< | R22 0B 1
94 fault_row< [R21 0B 1
95 fault_row< [T22 0B 1

9% mbist/M19 [SLICE_X1 [SLICEL |29
57 mbist/M26 | SLICE_X1 [SLICEL |26
98 mbist/done| SLICE_X1 | SLICEL | 24
59 mbist/fault | SLICE_X8 | SLICEL |27
100 bist Fault i

101 mbist/fault | SLICE_X& | SLICEL |27

T
£ >

S World! = <

Figure 8. Package layout view.

The Xilinx tool specification is given in Table 4. The area summary is shown in Table 5,
where the hardware details, such as the number of slices, flip-flops, and the I/O buffers,
are estimated.

Table 4. Design Specifications on FPGA.

Tool Xilinx
Product Version ISE 12.1
Family Virtex 6
Target Device xc6vIx75t-3£f484
Package FF484
Speed -3

Table 5. Device-utilization summary (estimated values) for proposed BISR top on Virtex-6.

Logic Utilization Used Available Utilization
Number of Slice Registers 143 93,120 0%
Number of Slice LUTs 253 46,560 0%
Number of fully used LUT-FF pairs 139 220 69%
Number of bonded IOBs 86 240 35%
Number of Block RAM /FIFO 3 156 2%

Number of BUFG/BUFGCTRLs 1 32 3%

Micromachines 2021, 12, 811

15 of 20

The proposed BISR block is compared with the other existing approaches for the area
used and is tabulated in Table 6. These approaches are good enough for providing the
repair rate, but they have more area penalties when compared with the proposed method.
The timing/delay and the maximum frequency outcomes are tabulated in Table 7.

Table 6. Comparison of the area with the existing methods and proposed BISR approach.

Slice Logic Utilization BIRA Chen [15] BISR [16] C°“‘I§;‘S§RT)}[‘;‘;E]‘I‘°1‘1 Pr”"f;{‘;%‘*tmd
Number of Slice Registers 343 295 188 143
Number used as Flip Flops 342 295 188 143
Number of Slice LUTs 409 387 287 253
Number of occupied Slices 176 156 70 59
Number of LUT Flip; Flop pairs used 227 201 165 107
Number with an unused; Flip Flop 207 186 73 80
Number of RAM(8 K) (1024 x 64-bit 4 4 ’ 3

dual-port RAM)

Table 7. Timing/delay and maximum frequency comparison.

Timing Comparison

Minimum input

Maximum output

March Algorithm Minimum period ns arrival time before required time after
clock ns clock ns

Proposed BISR 3.622 2.218 0.567

BISR [16] 5.32 2.61 4.37

Counting threshold

(BISR) [17] 4.641 2.042

Cresta [26] 6.239 413

Maximum

combinational path
delay ns

Maximum Frequency

MHz
1.63 276
2.23 203
1.97 215.450
3.93 160.279

The area overhead for the proposed BISR and the other existing approaches is de-
termined. The area overhead is estimated as per the area report of the proposed block
consisting of the slice registers count. The other existing methods for comparison are also
implemented on the Xilinx platform, and from the obtained results, the area, the timing,

and the area overhead percentage are determined.

3.2.2. ASIC Synthesis

The results have also developed on the ASIC platform for the proposed and other
BISR approaches in this research study. The BISR block is synthesized by Design Compiler
with the specifications of 32 nm technology, using HVT slow library cells. The obtained
result for hardware utilization in terms of cell count is tabulated in Table 8.

Table 8. ASIC area report of the proposed BISR.

Cell Count Proposed BISR
Hierarchical Cell Count 5
Hierarchical Port Count 19

Leaf Cell Count 656
Buf/Inv Cell Count 209
Buf Cell Count 9
Inv Cell Count 193
CT Buf/Inv Cell Count 0
Combinational Cell Count 583
Sequential Cell Count 187
Macro Count 0

Micromachines 2021, 12, 811

16 of 20

The synthesis process for the proposed BISR and the different existing approaches
target area, timing, and power. The comparison with other approaches for area, timing,
and power are tabulated in Table 9.

Table 9. Comparison area, timing, and power for the proposed and other BISR approaches.

Design Area (Cell) Frequency (MHz) Power (uw)
BIRA Chen [15] 2957 250 197.2497 (3.7087 x 107 pW (leakage) and 73uW Dynamic)
BISR [16] 2376 320 147.732 (3.0626 x 107 pW (leakage) and 98uW Dynamic)
Counting threshold (BISR) [17] 2002 320 97.2497 (2.787 x 107 pW (leakage) and 69uW Dynamic)
Proposed Method BISR 1861 350 109.8623 (2.5087 x 107 pW (leakage) and 69uW Dynamic)

The test was conducted on the significant memories of 8 k, 16 k, 24 k, 32k, 64 k, and
128 k sizes. The area overhead percentage was calculated, and the obtained results are
tabulated in Table 10. The graph for the overhead rate is plotted as shown in Figure 9.

Table 10. Various memory models versus BISR area.

Memory Size Memory Area (nm?) BISR (nm?) Area Overhead (%)
4k 367,095 29,932 8.1
8k 423,727 30,597 7.22
16K 603,137 31,756 5.2
32k 1,026,895 33,5632 3.2
64 k 1,673,452 34,527 2.09
128 k 2,965,987 35,732 1.2

AREA OVERHEAD %

e Vlemory Area (nm2) == Area Overhead (%)
3,500,000
12%
5 3,000,000
£ 2,500,000
< N\ 8.1%
&= 2,000,000 N\
= N\
Z 1,500,000 o |
ol ~
= y
= 1,000,000 ~_ i 55
500,000 ’——'__4_—_—’—""— P —— -
0 -
2K 4K 8K 16K 32K 64K 128K

MEMORY SIZE

Figure 9. Different memory models versus BISR area overhead.

The obtained result of the proposed method is compared with the other approaches.
Two groups of the memories are formed by combining 8 k and 16 k memory as a Group 1
and 32 k and 64 k memory as Group 2 for the experiment purpose. The comparative results
for the proposed and other existing methods for these two groups for area overhead are
tabulated in Table 11.

Micromachines 2021, 12, 811

17 of 20

Table 11. Area overhead comparison.

Memory BIRA Chen [15] BISR [16] Counting Threshold Cresta [26] Proposed Method BISR
(BISR) [17]

Group 1 8k + 16 k) 5.3 43 3.6 5.7 3.5

Group2 32k +64k) 25 2.03 1.75 2.7 1.7

The proposed BISR block with three rows and two-column redundancy is imple-
mented, and experiments are conducted by considering two groups of memories. The
Group 1 memory and Group 2 memory areas obtained are 942,542 and 2,004,586 nm?, re-
spectively, whereas the areas of the BISR block for these groups of memories are 32,989 and
35,063 nm? received, respectively. The area overhead percentage comparison is tabulated
with other methods in Table 12. The overhead percentage by the presented way is obtained
about 3.5% and 1.7% for Group 1 and Group 2, respectively. The overhead portion of the
BISR block reduces as the size of the memory increases.

Table 12. Comparative features of different BISR approaches.

Spare Allocation Memory Test

BISR Approach Repair Rate (Row, Column) Support (BIST) Speed Area Overhead
BIRA Chen [15] High High(variable) Yes Moderate High

BISR [16] High High (3, 3) Yes Moderate Moderate
Counting threshold (BISR) [17] Low High (3, 1) No Moderate Moderate
Cresta [26] High Very High (3, 3) No Low High

Proposed BISR High Low (3, 2) Yes High Low

The comparative features of the other existing approaches and the proposed method
are given in Table 12. We can be concluded from the obtained result that the proposed
BISR method is relatively better in terms of the area overhead and the repair rate with the
minimum use of the redundancy allocations.

The repair rate is compared with the approaches discussed and the proposed method.
It is concluded that, from the results and by the study of other existing BISR methods, the
repair rate will increase by increasing the spare row and column count, but it results in the
penalty of more area overhead. The estimated chart between repair-rate percentage and
the spare-row /column matrix is plotted in the chart of Figure 10, and the overhead portion
is given in Table 13.

REPAIR RATE
—4—Proposed BISR — BISR[16]
BIRA Chen[15] Counting threshold-(BISR)[17]

== Crestal 26]

120.00%
100.00%
80.00%

60.00%

REPAIR RATE %

40.00%

20.00%

0.00%
(1,1) (2,2) (3,2) (3,3) (4,3) (4.,4) (5,5) (6,3) (b6,6) (7,6) (7,7) (8,8)

SPARE (ROW,COLUMN)

Figure 10. The estimated chart between repair-rate percentage and the spare-row/column matrix.

Micromachines 2021, 12, 811 18 of 20
Table 13. Area overhead comparison and portion.
Spare (Row, Column) Area Overhead

Proposed BISR 3,2) 3.5%

BIRA Chen [15] (3,3) 5.3%

BISR [16] 3,3) 4.3%

Counting threshold (BISR) [17] 3,1 3.6%

Cresta [26] (3,3) 5.7%

4. Discussion

Memory test and repair is a widely used method for enhancing the yield of SoC-based
products. The process consists of two different step’s fault test and fault repair for any
memory under test. Many researchers have presented these two steps separately as a
new finding. However, we produced this technique both to test and repair the memories
for SoC-based devices. The fault test has been covered in the research [22-25] to test the
embedded memory for faults. The stuck-at fault, transition fault, address decoder fault, and
coupling faults are computed. The fault test method uses a different March test algorithm
to find the defects in the memory. The March c and March c+ algorithms discussed in
the research [25] enhance the fault coverage by presenting the March Y algorithm for
memory in the study. This March Y algorithm can detect the stuck-at fault, transition fault,
address decoder fault, and some coupling faults, whereas the memory test approaches
presented [23,24] are not enough to catch all coupling faults. The March SS is given in
the research [22] to compute the faults, and it detects SAF, TF, ADF, and some CFs with a
comparatively high area overhead. To tackle possibly all types of defects in the memory
in this research, we proposed a March-sift algorithm that successfully detects almost all
types of faults, such as SAF, TF, ADF, CFs, NPSFs, WDFs, RDFs, and DRDFs, from memory
under test. The BIST approaches in the research [10,15] are also presented in the context
of self-testing. Comparative results indicate that the proposed approach is better in fault
coverage with a minimum area overhead.

As indicated, the proposed BISR scheme in this research targets both test and repair
mechanisms. The repair process starts when the test controller provides false information
to the BIRA block. The repair strategy is prepared as per the steps described in the
repair flow, and the memory is repaired by allocating spare rows and columns. The
research studies [15-17,26,27] present repairs to the memory blocks by using the calculated
redundancy. Chen et al. proposed the BISR scheme using Maximum-size local bitmap
(MLB) and FSM [15]. The MLB and level-based buffer (LBB) sizes are reasonably larger
than the fault table (FT), and the buffer used in our approach used for the same purpose.
The BISR area with the memory found in this method is compared by the proposed method,
and the overhead area is found reasonably higher than the proposed BISR method for
the same memory size. As presented Reference [26], the Cresta algorithm needs more
sub-analyzers to repair the memory. It tests all the faulty cells in the memory, and it requires
the row address and column address of all the defective memory cells to provide the repair
solution. Therefore, the multiple-bit-failure memory is difficult to repair and needs more
area and more redundancies to repair the memory while implementing.

The BISR method of a research study [27] is offered for both test and repair memories;
however, the technique lags in fault coverage and repair rate calculation. It proposed
a memory test controller based on the March ¢ algorithm and modified it to catch the
memory’s faults and types. However, still, some fault types, such as WDFs, RDFs, and
DRDFs, are not covered in the research. Additionally, the repair method may improve to
increase the repair rate further. The repair rate is further increased in the presented method
by the increase of one extra row.

The proposed BISR block in this research study aims to enhance the area overhead,
timing, and repair rate. The other existing BISR approaches of the studies [15-17,26] are
compared with the presented scheme of the BISR module and found with a large spare
row—column matrix, the repair rate is reasonable, and the area overhead is reasonably

Micromachines 2021, 12, 811 19 of 20

higher. It is noticed that, from the obtained results, the repair rate and area overhead for
the proposed BISR scheme is better with the discussed existing approaches with the use
of three spare rows and two sparse columns. The area, timing, power, and repair rate are
given in the results section. We have noticed from the repair-rate graph that the repair rate
increases with the increase of spare row—column.

5. Conclusions

The redundancy allocation method is used to repair the memories of the recent SoC-
based devices. The spare row and spare column are used when the faults are existing in the
memory under test. The BIST block tests the memories for faults and computing faults and
their types from the embedded memories. Different types of defects are calculated, and
the false information is prepared to provide to the BIRA block for the start of the repair
process. The BIRA block repairs the memory by using the redundancy allocations method.
The obtained results on the FPGA and ASIC platforms for the area, timing, and repair rate
are discussed and compared with other approaches. It is noticed that the proposed method
is a good choice to test and repair the memories for recent SoC-based devices. The only
limitation is area overhead when integrating with the SoC to develop the current embedded
system-based product. The presented BISR scheme can modify the next-generation systems
to test and repair the memories of large sizes as the technology enhances.

Author Contributions: Conceptualization, M.A.A. and S.A.; methodology, M.A.A; software, M.A.A.;
validation, M.A.A. and S.A.; formal analysis, M.A.A.; investigation, M.A.A_; resources, S.A.; data
curation, M.A.A.; writing—original draft preparation, M.A.A.; writing—review and editing, S.A.;
visualization, M.A.A; supervision, S.A.; project administration, S.A.; funding acquisition, S.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by the Deanship of Scientific Research at Prince Sattam Bin
Abdulaziz University under the research project 2019/01/17159.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Du, X,; Reddy, S.M.; Cheng, W.-T.; Rayhawk, J.; Mukherjee, N. At-speed built-in self-repair analyzer for embedded word-oriented
memories. In Proceedings of the 17th International Conference on VLSI Design, Mumbeai, India, 9 January 2004.

2. Cheng, W.-T; Hill, C.; Kebichi, O. Full-Speed Bist Controller for Testing Embedded Synchronous Memories. U.S. Patent
Application No. US 2005/0066247 A1, 24 March 2005.

3. Semico Research Corp., Semico: System(s)-on-a-Chip—A Braver New World. Semico Research. 2015. Available online: https:
/ /semico.com/content/semico-systems-chip-%E2%80%93-braver-new-world (accessed on 9 July 2021).

4. Zhang, G,; Yuan, Y,; Liang, F; Wei, S.; Yang, C.-F. Low Cost Test Pattern Generation in Scan-Based BIST Schemes. Electronics 2019,
8, 314. [CrossRef]

5. Peng, X, Liu, R.; Yu, S. Optimizing Weight Mapping and Data Flow for Convolutional Neural Networks on Processing-in-Memory
Architectures. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1333-1343. [CrossRef]

6. Zhang, L.; Wang, Z.; Li, Y,; Mao, L. A Precise Design for Testing High-Speed Embedded Memory using a BIST Circuit. IETE |. Res.
2017, 63, 473-481. [CrossRef]

7. Adams, R.D. High Performance Memory Testing: Design Principle, Fault Modeling and Self-Test; Springer: New York, NY, USA, 2003;
pp. 149-172.

8. Wojciechowski, A.A.; Marcinek, K.; Pleskacz, W.A. Configurable MBIST Processor for Embedded Memories Testing. In Proceed-
ings of the 2019 MIXDES-26th International Conference “Mixed Design of Integrated Circuits and Systems”, Rzeszow, Poland,
27-29 June 2019.

9. Chong, B.; Zhang, S. Algorithm-based fault tolerance for discrete wavelet transform implemented on GPUs. |. Syst. Archit. 2020,
108, 101823.

10. Hantos, G.; Flynn, D.; Desmulliez, M.P.Y. Built-In Self-Test (BIST) Methods for MEMS: A Review. Micromachines 2020, 12, 40.
[CrossRef] [PubMed]

11. Ahmed, M.A.; Abuagoub, A.M. MBIST Controller Based on March-ee Algorithm. J. Circuits Syst. Comput. 2020. [CrossRef]

12. Becker, A. Short burst software transparent on-line MBIST. In Proceedings of the 2016 IEEE 34th VLSI Test Symposium (VTS), Las

Vegas, NV, USA, 25-27 April 2016; pp. 1-6. [CrossRef]

https://semico.com/content/semico-systems-chip-%E2%80%93-braver-new-world
https://semico.com/content/semico-systems-chip-%E2%80%93-braver-new-world
http://doi.org/10.3390/electronics8030314
http://doi.org/10.1109/TCSI.2019.2958568
http://doi.org/10.1080/03772063.2017.1285259
http://doi.org/10.3390/mi12010040
http://www.ncbi.nlm.nih.gov/pubmed/33396351
http://doi.org/10.1142/S0218126621501607
http://doi.org/10.1109/VTS.2016.7477287

Micromachines 2021, 12, 811 20 of 20

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

Balaji, G.N.; Pandian, S.C. Design of test pattern generator (TPG) by an optimized low power design for testability (DFT) for scan
BIST circuits using transmission gates. Clust. Comput. 2018, 22, 15231-15244. [CrossRef]

Jamal, K.; Chari, K.M.; Srihari, P. Test pattern generation using thermometer code counter in TPC technique for BIST implementa-
tion. Microprocess. Microsyst. 2019, 71, 102890. [CrossRef]

Chen, T.-].; Li,].-F,; Tseng, T.-W. Cost-Efficient Built-In Redundancy Analysis with Optimal Repair Rate for Word-Oriented RAMs.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2012, 31, 930-940. [CrossRef]

Kang, W.; Lee, C.; Lim, H.; Kang, S. Optimized Built-In Self-Repair for Multiple Memories. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2016, 24, 2174-2183. [CrossRef]

Gopalan, K.; Pothiraj, S. A saboteur and mutant based built-in self-test and counting threshold-based built-in self repairing
mechanism for memories. |. Ambient. Intell. Humaniz. Comput. 2020, 12, 6651-6663. [CrossRef]

Lee, H.; Han, D.; Lee, S.; Kang, S. Dynamic Built-In Redundancy Analysis for Memory Repair. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2019, 27, 2365-2374. [CrossRef]

Zorian, Y.; Shoukourian, S. Embedded-memory test and repair: Infrastructure IP for SoC yield. IEEE Des. Test Comput. 2003, 20,
58-66. [CrossRef]

Tseng, Y.-P; Wang, V.; Chen, L.; Liu, A.-H. Method and System for Performing Memory Repair Analysis. U.S. Patent US
20030097626 A1, 22 May 2003.

Kim, S.; Chu, H,; Yang, I.; Hong, S.; Jung, S.H.; Cho, K.-H. A Hierarchical Self-Repairing Architecture for Fast. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2012, 20. [CrossRef]

Hamdioui, S.; Van De Goor, A.; Rodgers, M. March SS: A test for all static simple RAM faults. In Proceedings of the 2002 IEEE
International Workshop on Memory Technology, Design and Testing (MTDT2002), Bendor, France, 12 July 2002; pp. 95-100.
Cascaval, P; Cascaval, D. March test algorithm for unlinked static reduced three-cell coupling faults in random-access memories.
Microelectron.]. 2019, 93, 104619. [CrossRef]

Wang, L.-T.; Wu, C.-W.; Wen, X. Memory Testing and Built-In Self-Test. In VLSI Test Principles and Architectures, 1st ed.; Design for
Testability; Elsevier: Amsterdam, The Netherlands, 2006.

Wang, Y.; Zheng, Q.; Yuan, Y. The Improvement of March C+ Algorithm for Embedded Memory Test. Commun. Comput. Inf. Sci.
2016, 31-37. [CrossRef]

Cho, K.; Cho, H.; Lee, C.; Kang, S. A survey of repair analysis algo-rithms for memories. ACM Comput. Surv. 2016, 49. [CrossRef]
Ahmed, M.A.; Abubaker, E.M.; Eljialy, S.A. Memory test and repair technique for SoC based devices. IEICE Electron. Express 2021,
18,20210092. [CrossRef]

http://doi.org/10.1007/s10586-018-2552-x
http://doi.org/10.1016/j.micpro.2019.102890
http://doi.org/10.1109/TCAD.2011.2181510
http://doi.org/10.1109/TVLSI.2015.2499387
http://doi.org/10.1007/s12652-020-02284-5
http://doi.org/10.1109/TVLSI.2019.2920999
http://doi.org/10.1109/MDT.2003.1198687
http://doi.org/10.1109/TVLSI.2011.2176544
http://doi.org/10.1016/j.mejo.2019.104619
http://doi.org/10.1007/978-3-662-49283-3_4
http://doi.org/10.1145/2971481
http://doi.org/10.1587/elex.18.20210092

	Introduction
	Proposed Architecture
	Fault Testing
	Proposed Algorithm
	Memory BIST Controller

	Fault Repair

	Results and Comparison
	Functional Test
	Synthesis Process
	FPGA Synthesis
	ASIC Synthesis

	Discussion
	Conclusions
	References

