
micromachines

Article

Memristor-CMOS Hybrid Neuron Circuit with Nonideal-Effect
Correction Related to Parasitic Resistance for Binary-
Memristor-Crossbar Neural Networks

Tien Van Nguyen , Jiyong An and Kyeong-Sik Min *

����������
�������

Citation: Nguyen, T.V.; An, J.; Min,

K.-S. Memristor-CMOS Hybrid

Neuron Circuit with Nonideal-Effect

Correction Related to Parasitic

Resistance for Binary-Memristor-

Crossbar Neural Networks.

Micromachines 2021, 12, 791. https://

doi.org/10.3390/mi12070791

Academic Editors: Jung Ho Yoon and

Nam-Trung Nguyen

Received: 4 May 2021

Accepted: 28 June 2021

Published: 1 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electrical Engineering, Kookmin University, Seoul 02707, Korea; tiennv@kookmin.ac.kr (T.V.N.);
sunday1903@kookmin.ac.kr (J.A.)
* Correspondence: mks@kookmin.ac.kr

Abstract: Voltages and currents in a memristor crossbar can be significantly affected due to non-
ideal effects such as parasitic source, line, and neuron resistance. These nonideal effects related
to the parasitic resistance can cause the degradation of the neural network’s performance realized
with the nonideal memristor crossbar. To avoid performance degradation due to the parasitic-
resistance-related nonideal effects, adaptive training methods were proposed previously. However,
the complicated training algorithm could add a heavy computational burden to the neural network
hardware. Especially, the hardware and algorithmic burden can be more serious for edge intelligence
applications such as Internet of Things (IoT) sensors. In this paper, a memristor-CMOS hybrid neuron
circuit is proposed for compensating the parasitic-resistance-related nonideal effects during not
the training phase but the inference one, where the complicated adaptive training is not needed.
Moreover, unlike the previous linear correction method performed by the external hardware, the
proposed correction circuit can be included in the memristor crossbar to minimize the power and
hardware overheads for compensating the nonideal effects. The proposed correction circuit has been
verified to be able to restore the degradation of source and output voltages in the nonideal crossbar.
For the source voltage, the average percentage error of the uncompensated crossbar is as large as
36.7%. If the correction circuit is used, the percentage error in the source voltage can be reduced from
36.7% to 7.5%. For the output voltage, the average percentage error of the uncompensated crossbar
is as large as 65.2%. The correction circuit can improve the percentage error in the output voltage
from 65.2% to 8.6%. Almost the percentage error can be reduced to ~1/7 if the correction circuit is
used. The nonideal memristor crossbar with the correction circuit has been tested for MNIST and
CIFAR-10 datasets in this paper. For MNIST, the uncompensated and compensated crossbars indicate
the recognition rate of 90.4% and 95.1%, respectively, compared to 95.5% of the ideal crossbar. For
CIFAR-10, the nonideal crossbars without and with the nonideal-effect correction show the rate of
85.3% and 88.1%, respectively, compared to the ideal crossbar achieving the rate as large as 88.9%.

Keywords: neuron circuit; nonideal-effect correction; binary memristor crossbar; neural networks;
edge intelligence

1. Introduction

Neural networks draw many interests nowadays, as they have been verified useful
in various cognitive tasks such as natural language processing, image recognition, object
classification, etc. [1–3]. As the applications of neural networks become more complex, the
demand for high-performance computing becomes increasingly more. For meeting the
need for heavy computation capability, general-purpose digital systems based on CMOS
technology have been used widely so far. However, CMOS device scaling has slowed down
recently and VDD scaling becomes no longer effective in reducing power consumption [4,5].
Moreover, in terms of computing architecture, the traditional Von Neumann machine has
been suffering the memory bottleneck problem [6–9]. The bottleneck problem becomes

Micromachines 2021, 12, 791. https://doi.org/10.3390/mi12070791 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-2710-768X
https://orcid.org/0000-0002-1518-7037
https://doi.org/10.3390/mi12070791
https://doi.org/10.3390/mi12070791
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12070791
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12070791?type=check_update&version=2


Micromachines 2021, 12, 791 2 of 18

more severe especially for computation of neural networks, where memory access for large
amounts of data occurs frequently between memory and computing units [10].

One of the important applications of neural networks can be found in edge intelligence
such as Internet of Things (IoT) sensors and edge devices, where a massive number of
various sensors collect huge amounts of unstructured data everywhere and every time
to make human life more comfortable and safe [11–13]. If all the data sensed from IoT
sensors and edge devices are sent to data centers, amounts of energy for communication
and computation for the data centers may be exploding as much as an unbearable level. To
avoid the explosion of communication and computing energy at the cloud servers, energy-
efficient computing is indispensable in implementing neural networks at IoT sensors and
edge devices for edge intelligence [13].

To achieve both high-performance and energy-efficient computing for edge intelli-
gence, memristor crossbars can be considered as good candidates of computing hardware
for possible applications such as neural networks, neuromorphic computing, processing-in-
memory, etc. [14–16]. Memristors demonstrated experimentally in 2008 [17] are nonvolatile
memories, where both binary and multi-level values can be stored [18–20]. For the architec-
ture, memristor crossbars can be a built-in 3-dimensional multi-layer structure that seems
very similar to the biological neuronal structure observed in the human brain [21–24].
For the fabrication process, Back-end-of-line (BEOL) has been reported in many kinds
of literature, to make it possible for memristors fabricated with CMOS devices on the
same wafer [10,25,26]). The crossbars made of memristors can perform low-power, paral-
lel, and binary/multi-valued computation similarly with the biological nervous systems.
From these properties mentioned above, the crossbars can be considered very suitable
particularly for the computational acceleration of neural networks at the edge [20,27].

Vector Matrix Multiplication (VMM) is a core computational function used in both
the training and inference phases of neural networks. The VMM operation can be realized
in memristor crossbars, where a matrix multiplication operation can be performed using
the memristor’s voltage-current relationship according to Ohm’s law [10,28]. The VMM
carried out by the memristor crossbar is one example of “computing by physics”. One
big advantage of the memristor-crossbar VMM is that the computing capability can be
expanded in parallel by adding more columns to the memristor crossbar. The parallel
computing of the memristor crossbar is desirable for handling the heavy computational
load of VMM operation in data-centric processing systems such as deep-learning neural
networks, etc. Moreover, the memory access bottleneck of the Von Neumann architecture
can be alleviated significantly in the VMM, because both the memory and computing
functions can be merged in the memristor crossbar [10]. In the traditional computing
systems, the data fetching and updating operations should take place frequently between
the computing and memory units, which are separated in the physical distance as long
as ~mm. One more thing to comment here is that memristor’s non-volatility can help IoT
sensors extend battery lifetime very long because the synaptic weights of neural networks
can be maintained very long time in the crossbar even during the power-off time, without
refreshing the stored data.

Figure 1a shows a conceptual schematic of Artificial Neural Network (ANN) which is
composed of neurons and synaptic connections. Here X1, X2, etc. represent input neurons.
Y1, Y2, etc. are hidden neurons between input and output neurons. Z1, Z2, etc. are output
neurons of the network in Figure 1a. Here ‘m’, ‘n’, and ‘k’ are the numbers of input,
hidden, and output neurons, respectively. The hidden-neuron layers can be more than
one. W111 means a synaptic weight between two neurons, X1 and Y1 for the first synapse
layer. W121 is a weight between X1 and Y2. Similarly, W112 is a synapse between Y1 and
Z1 for the second synapse layer. W1k2 is between Y1 and Zk. The hidden neurons, Y1, Y2,
etc. can be calculated with Vector-Matrix Multiplication (VMM) of the input-neuron vector
and the 1st-layer weight matrix. The output neurons, Z1, Z2, etc. are obtained from the
VMM operation of the hidden-neuron vector and the 2nd-layer weight matrix. The VMM



Micromachines 2021, 12, 791 3 of 18

operation can consume a large amount of computing power if the VMM is performed
using digital CMOS logic.

Figure 1. (a) Conceptual schematic of two-layer neural network with input, hidden, and output neurons. (b) Schematic of
ideal memristor crossbar circuit with HRS and LRS memristor synapses. The numbers of rows and columns are ‘m’ and ‘n’,
respectively. The parasitic resistance such as source, line, and neuron resistance are assumed zero, in the ideal crossbar.
(c) Schematic of nonideal memristor crossbar circuit with parasitic crossbar resistance such as source, line, and neuron
resistance.

Figure 1b shows a schematic of the ideal memristor crossbar with HRS and LRS
memristor cells. HRS and LRS mean High Resistance State and Low Resistance State
of memristors, respectively. HRS and LRS are represented with white and gray boxes,
respectively. Here the memristor crossbar in Figure 1b is used to store the synaptic weights
of ANN in Figure 1a. The synaptic weights stored in the crossbar are assumed binary (−1
and +1) or ternary (−1, 0, and +1) in this paper. VIN,1, VIN,2, and VIN,m are input voltages
applied to Row #1, Row #2, and Row #m, respectively. I1, I2, and IN are column currents
for Column #1, Column #2, and Column #n, respectively. In this figure, ‘m’ and ‘n’ are the
numbers of rows and columns in the crossbar, respectively. Parasitic crossbar resistance
such as line resistance, neuron resistance, and source resistance are not considered in
Figure 1b, where the ideal crossbar is assumed without any parasitic resistance.

Figure 1c shows a schematic of nonideal memristor crossbar, where parasitic crossbar
resistance such as RS, RW, and RN are considered. RS, RW, and RN represent source
resistance, line resistance, and neuron resistance, respectively. Here HRS and LRS are
represented with white and gray boxes, respectively. Like Figure 1b, the nonideal memristor



Micromachines 2021, 12, 791 4 of 18

crossbar is used to store the synaptic weights of ANN in Figure 1a. The synaptic weights
stored in the crossbar of Figure 1c are assumed binary (−1 and +1) or ternary (−1, 0, and
+1), as mentioned in Figure 1b. In Figure 1c, VIN,1, VIN,2, and VIN,m are input row voltages
for Row #1, Row #2, and Row #m, respectively. Here ‘m’ means the number of rows in
the crossbar. VS,1, VS,2, and VS,m are source voltages on the rows, which are degraded due
to RS and RW, for Row #1, Row #2, and Row #m, respectively. I1, I2, and IN are column
currents of Column #1, Column #2, and Column #n, respectively. ‘n’ is the number of
columns in the crossbar. Similarly, VN,1, VN,2, and VN,n are neuron voltages on the columns
affected due to RN and RW, for Column #1, Column #2, and Column #n, respectively. In
the crossbar, M11 and M12 are transistors for controlling memristors of RM,11 and RM,12,
respectively. RM,11 is a memristor cell connected with Row #1 and Column #1. RM,12 is a
memristor cell connected with Row #1 and Column #2. The access-controlling transistors
of M11 and M12 are turned on or off by the signals from the column control block, shown
in Figure 1c.

The source, line, and neuron resistance in the nonideal crossbar in Figure 1c can affect
the source voltages and the column currents. First, let us consider the nonideal effect due
to source resistance. From Kirchhoff law, the source voltage, v.s. can be calculated by
dividing the input voltage, VIN, between RS and the rest part of the row line including the
line resistance and LRS cells along the row line. Usually, HRS cells affect the source voltage
very little, because the conductance is negligibly small. If the number of LRS cells for a row
becomes larger, the source voltage on the row line is affected more by the source resistance,
RS, not by the LRS cells. This leads to the degradation of the source voltage. Similarly,
we can consider the nonideal effect due to neuron resistance, RN. If the number of LRS
cells for a column is increased larger and the parallel combination of LRS for the column
becomes much smaller than RN, the column current begins to be dominated by RN, not by
the parallel combination of LRS cells. If so, the column current is observed to be degraded
compared to the column current of the ideal crossbar with RN = 0. A more detailed analysis
of the nonideal effects due to RS and RN will be explained in the next section.

The degradation of source voltage and column current due to the nonideal effects such
as source, line, and neuron resistance can affect neural network’s performance significantly.
This is because the synaptic weights calculated from the backpropagation algorithm assume
the memristor crossbar for the network is ideal not suffering the nonideal effects. To
mitigate the performance gap between the ideal and nonideal crossbars, adaptive training
methods have been proposed to consider the nonideal effects in the crossbar during the
training phase [29,30]. For doing this, however, the training algorithm of the nonideal
crossbar should be more complicated and the computational load becomes heavier to
consider the voltage and current degradation due to the nonideal effects. The complicated
training algorithm with heavy computational load is a big disadvantage, in terms of the
training energy and time, particularly, for the on-device training applications such as edge
devices, IoT sensors, etc.

Unlike the adaptive training methods, the compensation of the nonideal effects can be
performed during the inference phase, not relying on the complicated training algorithm
of the nonideal crossbar. The linear correction method was proposed to compensate for
the nonideal effects during the inference time [10]. Though the computational burden
becomes smaller compared to the adaptive training method, the linear correction proposed
previously was performed by an external Trans-Impedance Amplifier (TIA) not being
included in the memristor crossbar circuit [10]. The external TIA should be equipped
with programmable gain and offset to calibrate the column current for compensating the
nonideal effects [10]. The correction by the external TIA causes the calibration overhead
because each TIA should be programmed with different gain and offset values for compen-
sating the corresponding column’s nonideal behavior [10]. One more thing to note here
is that the linear correction was proposed only for compensating the column current not
the source voltage [10]. Unlike the previous linear correction by the external TIA, a new
correction circuit proposed in this paper can be included in the memristor crossbar for



Micromachines 2021, 12, 791 5 of 18

compensating not only the column current but also the row voltage degradation due to the
nonideal effects.

Particularly, implementing the nonideal-effect correction in the memristor crossbar
circuit is very important for realizing the edge intelligence at IoT sensors, where the
hardware and power overheads are critically important. For avoiding the hardware and
power overheads due to the external hardware, the compensation of nonideal effects should
be realized inside the memristor crossbar circuit not relying on the external hardware.
For doing this, a new memristor-CMOS hybrid circuit for realizing the nonideal-effect
correction is proposed in this paper. This proposed circuit can compensate for the nonideal
effects in the inference phase, not in the training phase. Thus, the training algorithm in this
paper can be as simple as the normal backpropagation of the ideal crossbar, not using the
complicated adaptive training algorithm. In addition, the correction circuit is implemented
in the memristor crossbar not using the external hardware. By doing so, the power and
hardware overheads can be avoided in this paper. In the next section, a new neuron
circuit with the nonideal-effect correction is explained in detail. In Section 3, the proposed
correction neuron circuit is tested and discussed for MNIST (Modified National Institute
of Standards and Technology database) and CIFAR-10 data sets [12,31]. In Section 4, we
conclude this work finally.

Figure 2a shows the source voltage degradation due to the nonideal effects such
as RS, RN, and RW, as mentioned just earlier. In the ideal crossbar, v.s. seems constant
despite increasing the percentage of LRS cells among all the memristor cells per row. On
the contrary, the source voltage in the nonideal crossbar is degraded with increasing the
percentage of LRS per row, as shown in Figure 2a. Assuming the source voltage is affected
little by RW and RN, the source voltage of Row #i, VS,i can be simply approximated with
the following equation.

Figure 2. (a) Comparison of the source voltage of the ideal crossbar, the nonideal one (LRS cells on both column and row
considered), the nonideal one (LRS cells on a column not considered), and the calculation with Equation (1). (b) Comparison
of the output current of the ideal crossbar, the nonideal one (LRS cells on both column and row considered), the nonideal
one (LRS cells on row not considered), and the calculation with Equation (2). Here, the ideal crossbar is assumed zero
parasitic resistance. The nonideal crossbar is assumed with RS = 2 kΩ, RN = 2 kΩ, and RW = 1 Ω. The ideal and nonideal
crossbars are simulated with a CADENCE SPECTRE version 6.1.6 circuit simulator.

2. Method

Here VIN,i is the input voltage of Row #i and assumed as large as 1 V, as shown in
Figure 2a. In Equation (1), GS means the inverse of source resistance, RS. GLRS and GHRS
are the conductance of LRS and HRS cells, respectively. ‘li’ means the number of LRS cells
of Row #i. ‘n’ means the number of columns in the crossbar. Thus, ‘n−li’ represents the
number of HRS cells of Row #i in Equation (1). In Figure 2a, the X-axis is the percentage of
LRS cells among all the memristor cells of Row #i. Here the percentage of LRS of Row #i is



Micromachines 2021, 12, 791 6 of 18

calculated with ‘li/n(%)’. As expected from Equation (1), VS,i is degraded with increasing
the number of LRS cells for Row #i. This is because the voltage drop on RS becomes
larger, as the number of LRS cells of the row is increased. In Figure 2a, we compared the
source voltage of the ideal crossbar, the nonideal one (LRS cells on both column and row
considered), the nonideal one (LRS cells on a column not considered), and the calculation
with Equation (1). Here, the nonideal crossbar is assumed with RS = 2 kΩ, RN = 2 kΩ, and
RW = 1 Ω. The ideal and nonideal crossbars are simulated with a CADENCE SPECTRE
version 6.1.6 circuit simulator. In Figure 2a, Equation (1) is calculated with MATLAB.
The gap between the Equation (1) and the nonideal crossbar (LRS cells on a column not
considered) is very little. This is because RW = 1Ω can affect the source voltage very little.
Here the end-to-end line resistance is as small as 100 Ω, for 100 × 100 crossbar. Compared
to the end-to-end line resistance of 100 Ω, RS is as large as 2 kΩ in Figure 2a. The nonideal
crossbar (LRS cells on both column and row considered) shows a larger source voltage
than Equation (1). This is because more LRS cells on the column can boost up the source
voltage higher than Equation (1).

VS,i ≈
GS·VIN,i

GS +
li

RLRS+RN
+ n−li

RHRS+RN

(1)

The column current can be changed due to RS, RN, and RW like the source voltage,
too. Figure 2b shows the column current degradation due to the nonideal effects. For
the ideal crossbar with zero parasitic resistance, the column current seems proportional
to the number of LRS cells per column. However, as indicated in Figure 2b, the column
current seems saturated due to RN, in the nonideal crossbar. Similarly, with Equation (1),
assuming the column current is affected little by RS and RW, the column current can be
expressed with

Ij ≈
GN ·∑m

i=1
(
GM,ij·VS,i

)
GN +

kj
RLRS+RS

+
m−kj

RHRS+RS

(2)

Ij is the column current for Column #j. GN is the inverse of RN. GM,ij is memristor’s
conductance for Row #i and Column #j. VS,i is the source voltage of Row #i, as mentioned
in Equation (1). The term of ∑m

i=1
(
GM,ij·VS,i

)
calculates the summation of the conductance-

voltage multiplications from Row #1 to Row #n, for Column #j. ‘m’ is the number of rows
in the crossbar. In the denominator term, ‘kj’ is the number of LRS cells for Column #j.
Thus, ‘m-kj’ means the number of HRS cells for Column #j.

The percentage of LRS cells for Column #j is calculated with ‘kj/m(%)’. In the ideal
crossbar, it is expected that the column current, Ij is proportional to the number of LRS cells
for its own column. However, in the nonideal crossbar with parasitic neuron resistance
RN, the column current begins to be saturated, when the number of LRS cells is increased.
From Equation (2), it is obvious that the saturation comes from the term kj · GLRS in the
denominator term. In Figure 2b, we compared the source voltage of the ideal crossbar, the
nonideal one (LRS cells on both column and row considered), the nonideal one (LRS cells
on a column not considered), and the calculation with Equation (2). Here, the nonideal
crossbar is assumed with RS = 2 kΩ, RN = 2 kΩ, and RW = 1 Ω. The ideal and nonideal
crossbars are simulated with a CADENCE SPECTRE version 6.1.6 circuit simulator. In
Figure 2b, Equation (2) is calculated with MATLAB. Like Figure 2a, the gap between the
Equation (2) and the nonideal crossbar (LRS cells on row not considered) seems very small.
This is because RW = 1 Ω can affect the column current very little. Here the end-to-end line
resistance is as small as 100 Ω, for 100 × 100 crossbar. Compared to the end-to-end line
resistance of 100 Ω, RN is as large as 2 kΩ in Figure 2b. The nonideal crossbar (LRS cells on
both column and row considered) shows a lower column current than Equation (2). This
is because more LRS cells on a row can suppress the column current more severely than
Equation (2).

Here the memristor array size simulated in Figure 2a,b is assumed 100 rows and
100 columns. Here LRS and HRS are assumed 20 kΩ and 2 MΩ, respectively.



Micromachines 2021, 12, 791 7 of 18

To compensate for the voltage and current degradation due to the nonideal effects in
the nonideal crossbar, a new memristor-CMOS hybrid circuit for realizing the nonideal-
effect correction neuron is proposed, as indicated in Figure 3. The proposed circuit in
Figure 3 can correct both the source voltage and column current degradation from the
nonideal effects, in the inference phase, not in the training phase. Thus, the training
procedure in this paper can be as simple as the normal backpropagation of the ideal neural
networks, not using the complicated adaptive training algorithm [30,31]. In addition, the
correction can be implemented in the memristor crossbar circuit in Figure 3 without using
the complicated digital control block such as the external correction method [10]. By doing
so, the power and hardware overhead due to the external digital controller can be avoided
in the proposed neuron circuit with nonideal-effect correction.

Figure 3. Schematic of the proposed memristor crossbar circuit with correction of nonideal effects. Here the nonideal-effect
correction circuit in the left is for compensating the loss of source voltage. The correction circuit added to the bottom is for
reducing the loss of output voltage.

Figure 3 shows a schematic of the memristor crossbar circuit, where the proposed
correction circuit is added for compensating the nonideal effects due to source and neuron
resistance. Here the memristor crossbar is used to store the synaptic weights of neural
networks. In Figure 3, memristor cells with HRS and LRS are represented with open and
solid styles, respectively. RW, RS, and RN mean parasitic line, source, and neuron resistance
of the nonideal crossbar, respectively. In Figure 3, M11 and M12 are transistors for accessing
the memristors of RM,11 and RM,12, respectively. RM,11 is an HRS cell connected with Row
#1 and Column #1. RM,12 is the LRS cell connected with Row #1 and Column #2. The access
transistors of M11 and M12 are turned on or off by the signals from the column control
block, shown in Figure 3.

Looking at the row lines in Figure 3, VIN,1, VIN,2, and VIN,m are external input voltages
applied to Row #1, Row #2, and Row #m, respectively. The input voltages enter the
correction circuit, where the input voltages are converted to the correction voltages. The



Micromachines 2021, 12, 791 8 of 18

correction circuit for Row #1 is made of the non-inverting amplifier with R1 and RR,1.
Similarly, the correction circuit for Row #2 has the noninverting amplifier with R1 and
RR,2. Here it should be noted that R1 has the same resistance value for all the rows in the
crossbar, while RR,i made of a memristor can be programmed with a different value for each
row. VR,1, VR,2, and VR,m represent the correction voltages for compensating the nonideal

effect due to source resistance. VR,i for Row #i, can be calculated with
(

1 + GR,i
G1

)
·VIN,i.

GR,i, and G1 are the inverse of RR,i and R1, respectively. After passing through source
resistance of RS, VS,1, VS,2, and VS,m represent the source voltages for Row #1, Row #2, and
Row #m, respectively. Using Equation (1), the source voltage of Row #i in Figure 3 can be
approximated with

VS,i ≈
GS·

(
1 + GR,i

G1

)
·VIN,i

GS +
li

RLRS+RN
+ n−li

RHRS+RN

=

(
1 + GR,i

G1

)
·VIN,i(

1 + li· 1
GS
·
(

1
RLRS+RN

− 1
RHRS+RN

)
+ n· 1

GS(RHRS+RN)

) (3)

As mentioned in Equation (1), ‘li’ and ‘n−li’ are the numbers of LRS and HRS cells
for Row #i, respectively. ‘n’ means the number of columns in the crossbar. GS is the
inverse of RS. The nonideal effect due to RS is caused by li· 1

GS
·
(

1
RLRS+RN

− 1
RHRS+RN

)
in the denominator term of Equation (3). From this equation, the source voltage, VS,i is
expected to be lowered, as the number of LRS cells for Row #i becomes large. By adjusting
the resistance RR,i for Row #i, in the noninverting op amp, we can make the condition

of GR,i
G1
≈ li· 1

GS
·
(

1
RLRS+RN

− 1
RHRS+RN

)
. By doing so, the source voltage loss due to source

resistance can be compensated in Equation (3). Here it should be noted that RR,i of Row #i
in Figure 3 can be made of a memristor.

Looking at the column lines in Figure 3, I1, I2, and IN are the column currents for
Column #1, Column #2, and Column #n, respectively. VN,1, VN,2, and VN,n are the neuron
voltages for Column #1, Column #2, and Column #n, respectively, which are generated
from the column currents. VO,1, VO,2, and VO,n are the corrected column voltages for
taking into account the parasitic neuron resistance. The correction circuit for Column #1 is
composed of the non-inverting amplifier with RC,1 and R2. The correction circuit for the
next Column #2 has RC,2 and R2. Here it should be noted that R2 has the same resistance for
all the columns in the crossbar, while RC,j made of a memristor can be programmed with a
different value for each column. The corrected output voltage of VO,j for Column #j can

be calculated with
(

1 +
GC,j
G2

)
·VN,j. GC,j and G2 are the inverse of RC,j and R2, respectively.

Using VN,j from the Equation (2), the output voltage of the correction circuit for Column #j
is expressed roughly with

VO,j ≈ VN,j·
(

1 +
GC,j
G2

)
≈

∑m
i=1(GM,ij ·VS,i)·

(
1+

GC,j
G2

)
GN+

kj
RLRS+RS

+
m−kj

RHRS+RS

=
∑m

i=1(GM,ij ·VS,i)·
(

1+
GC,j
G2

)
GN

(
1+kj · 1

GN
·
(

1
RLRS+RS

− 1
RHRS+RS

)
+m· 1

GN(RHRS+RS)

)
(4)

As mentioned in Equation (2), ‘kj’ and ‘m-kj’ are the numbers of LRS and HRS cells
for Column #j, respectively. ‘m’ means the number of rows in the crossbar. GN is the
inverse of RN. Similarly, with Equation (3), the output voltage degradation due to RN is
caused from k j· 1

GN
·
(

1
RLRS+RS

− 1
RHRS+RS

)
in the denominator term of Equation (4). As a

column has more LRS cells, the column current becomes degraded more significantly. If
GC,j is adjusted according to the number of LRS cells for Column #j, the degradation due

to k j· 1
GN
·
(

1
RLRS+RS

− 1
RHRS+RS

)
can be reduced. Here GC,j implemented with a memristor

can be programmed with different values to adjust its conductance for compensating the
column current loss due to neuron resistance.



Micromachines 2021, 12, 791 9 of 18

Figure 4a–d compares the ideal crossbar, the nonideal without compensation, and the
nonideal with compensation. Among these four figures, Figure 4a,b indicate the source
and output voltages, respectively, for RW = 1Ω. Similarly, Figure 4c,d show the simulated
source and output voltages for RW = 2Ω. The source voltage compensation is achieved by
the correction circuit shown on the left in Figure 3. The correction of the column’s output
voltage is performed by the circuit shown at the bottom in Figure 3.

Figure 4. (a) Comparison of the source voltages of the nonideal crossbars between without and with the correction circuit
for RS = 2 kΩ and RW = 1 Ω per cell. (b) Comparison of the output voltages of the nonideal crossbars between without
and with the correction circuit for RN = 2 kΩ and RW = 1 Ω per cell. (c) Comparison of the source voltages of the nonideal
crossbars between without and with the correction circuit for RS = 2 kΩ and RW = 2 Ω per cell. (d) Comparison of the output
voltages of the nonideal crossbars between without and with the correction circuit for RN = 2 kΩ and RW = 2 Ω per cell.

Figure 4a indicates the source voltage can be compensated by using the correction
circuit in Figure 3. Here, the nonideal crossbar without the correction shows the source
voltage becomes degraded as small as 38.9% compared to the ideal crossbar when the
percentage of LRS cells per row is 20%. However, the correction circuit added to the
nonideal crossbar can improve the source voltage from 38.9% to 99.7% of the ideal crossbar,
as shown in Figure 4a.

Figure 4b compares the output voltages of the three crossbar circuits, which are the
ideal crossbar, the nonideal one without the correction circuit, and the nonideal one with
the correction circuit, respectively. The correction circuit used in Figure 4b is shown at the
bottom in Figure 3. The output voltage of the ideal crossbar is proportional to the number
of LRS cells per column. However, the nonideal crossbar without compensation indicates
the output voltage begins to be saturated when the number of LRS cells per column is
increased. The correction circuit can restore the output voltage from 21.5% to 98.5% of the
ideal crossbar when the percentage of LRS cells per row is 20%.



Micromachines 2021, 12, 791 10 of 18

In Figure 4c,d, the ideal crossbar, the nonideal without compensation, and the nonideal
with compensation, are simulated for RW = 2 Ω. As expected, RW = 2 Ω degrades the
source and output voltages more severely than RW = 1 Ω. In Figure 4c, the nonideal
without compensation has the source voltage as small as only 38%, compared to the ideal
crossbar. The correction circuit can recover the output voltage from 38% to 99.3% of the
ideal crossbar, as indicated in Figure 4c. Similarly, Figure 4d shows the output voltage of
the uncompensated crossbar is as small as 21.4% of the ideal crossbar. If the correction
circuit is used in Figure 4d, the output voltage can reach as large as 95.2% of the ideal
crossbar, when the percentage of LRS cells per column is assumed 20%.

In Figure 5, the percentage errors between the ideal and nonideal crossbars are sim-
ulated using the CADENCE SPECTRE version 6.1.6 circuit simulator. The simulated
memristor crossbar is assumed to be 64 rows and 64 columns. Here the white and black
pixels represent LRS and HRS, respectively, in Figure 5a.

Figure 5. (a) Memristor crossbar with 64 rows and 64 columns. Here the white and black pixels represent LRS and HRS,
respectively. (b) The percentage error of source voltage from Row #1 to Row #64. Here RS = 2 kΩ, RN = 2 kΩ, and RW

= 1 Ω. The percentage error between the ideal and nonideal without the correction circuit is shown in the red line. The
percentage error with the correction is shown in the black line. (c) The percentage error of output voltage from Column #1
to Column #64.

Figure 5b indicates the percentage error of source voltage from Row #1 to Row #64.
Here RS = 2 kΩ, RN = 2 kΩ, and RW = 1 Ω. The percentage error between the ideal and
nonideal without the correction circuit is shown in the red line. The percentage error
with the correction is shown in the black line, in Figure 5b. The average percentage error
of the uncompensated crossbar is as large as 36.7%. If the correction circuit is used, the
percentage error in the source voltage can be reduced from 36.7% to 7.5%. Figure 5c shows
the percentage error of output voltage from Column #1 to Column #64. The average
percentage error of the uncompensated crossbar is as large as 65.5%. The correction circuit



Micromachines 2021, 12, 791 11 of 18

can improve the percentage error from 65.5% to 8.6%. Almost the percentage error can be
reduced to ~1/7, if the correction circuit is used.

3. Results

Figure 6a shows a simple schematic of the proposed correction circuit for compensat-
ing the voltage loss due to the nonideal effects, which was already shown in the left and
bottom in Figure 3. R1 represents feedback resistance of noninverting op amp. It should
be noted R1 has the same resistance for all the rows in the nonideal crossbar. In Figure 6a,
VIN,i means the input voltage for Row #i. VR,j is the compensated voltage by the correction
circuit. As explained earlier, the VR,i can be obtained with VR,i = (1 + GR,i/G1)·VIN,i,
where RR,i can be made of a memristor cell for adjusting its conductance according to the
number of LRS cells for Row #i.

Figure 6. (a) Schematic of the correction circuit for source voltage of Row #i. Here RR,i is implemented with a memristor
device. (b) Cross-sectional view of the memristor measured in this paper. (c) Comparison of the measurement and simulated
Verilog-A model of the memristor device in Figure 6b. (d) Memristor programming for adjusting its conductance with
increasing the number of programming pulses.

The white box in Figure 6a shows the memristor, RR,i with the programming circuit.
RR,i is put between the minus terminal and ground node. RR,i should be programmed
with different conductance values for each row according to the number of LRS cells for
the corresponding row. SW is a switch control signal for programming RR,i. S1 and S2
are the switches for programming and reading operations of the memristor, respectively.
VP is a memristor programming pulse train voltage, which can be modulated for linear
and precise programming of memristor’s conductance, as explained in Figure 6d. The
simple waveforms of the memristor programming circuit are also shown in Figure 6a,
where the memristor’s conductance is changed according to the programming pulse train,
VP, during the programming phase. In the read phase, the memristor’s conductance is
used to compensate for the nonideal effect.



Micromachines 2021, 12, 791 12 of 18

Figure 6b shows the cross-sectional view of the memristor device used in this paper.
The memristor in Figure 6b has a film structure composed of Pt/LaAlO3/Nb-doped SrTiO
stacked layers [18,20]. Figure 6c shows the measurement and the Verilog-A model for
the memristor device in Figure 6b. The measured data are represented with open circles.
The calculated current-voltage relationship from the Verilog-A model is shown in the
red line. For the entire operation region, the Verilog-A model of the memristor is in
good agreement with the measured data. In Figure 6c, Keithley-4200 (Semiconductor
Characterization System) was used for the measurement of the current-voltage relationship
of the memristor device. The model equations for the memristor device in Figure 6b are
programmed with Verilog-A language and simulated by CADENCE SPECTRE version
6.1.6 circuit simulator in Figure 6c. The model equations used in Figure 6c were explained
in detail in the previous publication [18]. For simulating the hybrid circuit of memristors
and CMOS devices, we need to have CMOS parameters, in this paper. The CMOS model
parameters used here were obtained from the 0.18-um CMOS process of CMOS logic
Foundry Company. Figure 6d shows the programmed conductance of the memristor
device according to the number of programming pulses. Here, the program-verify method
with the fine Pulse Amplitude Modulation (PAM) is used for adjusting the conductance
of the memristor precisely, as shown in Figure 6d. As the number of fine-modulated
programming pulses is increased, the conductance of the memristor seems to change in
proportion to the number of programming pulses [18]. This linear relationship between
the programmed conductance and the number of programming pulses is very helpful in
adjusting RR,i accurately in Figure 6a.

One more concern of programming RR,i may be endurance. Fortunately, the memristor
in the correction circuit is programmed once according to the number of LRS cells of the
corresponding row during the training phase. In the inference operation, the memristor RR,i
in the correction circuit is only read not be programmed. The endurance cycles have been
experimentally measured within 105–107, which can be enough not only for the inference
phase but also for the training phase [10,32].

Figure 7 shows a tiled architecture of memristor crossbar composed of sub-crossbars
for implementing a large network [30,32,33] For designing a neural network with a large
number of neurons and synapses, it is better to put together sub-crossbars, not building a
single big crossbar.

The tile architecture in Figure 7 is very useful in limiting the nonideal effects under a
certain level. Usually, the size of sub-crossbar is within 128 × 128 array [30,32,33]. In this
paper, we used the sub-crossbar with 100 × 100 memristor cells. In Figure 7, a sub-crossbar
has ‘a × b’ memristor cells. ‘a’ and ‘b’ mean the numbers of rows and columns for sub-
crossbar, respectively. If the total number of rows and columns needed for implementing a
neural network is ‘m × n’, ‘m’ and ‘n’ can be calculated simply with ‘m = M × a’ and ‘n =
N × b’, respectively [30]. Here, ‘M’ and ‘N’ are the numbers of sub-crossbars for rows and
columns, respectively. For example, if we try to implement the MNIST neural network with
784 input neurons and 200 hidden neurons, ‘M’ and ‘N’ should be 8 and 2, respectively.

Considering practical parameters of memristor crossbars, we used LRS = 20 kΩ
and HRS = 2 MΩ, for the circuit simulation, in this paper. These LRS and HRS values
are obtained from the experimental parameters of real fabricated crossbars [30]. The line
resistance used in the circuit simulation is 1 Ω per cell obtained from TSMC RRAM data [33].
The sub-crossbar size used in the MNIST and CIFAR-10 simulation is 100 × 100 [30,32,33].

To estimate the neural network’s performance realized with the nonideal-effect cor-
rection, the memristor crossbar in Figure 3 is tested here for the MNIST dataset [12]. The
MNIST data set is composed of 60,000 training images and 10,000 testing ones. Each image
has 28 × 28 = 784 pixels. The classified items are hand-written digits from ‘0′ to ‘9′. Thus,
each digit has 6000 training and 1000 testing vectors. The neural network simulated here
for testing the MNIST dataset has 784 input and 200 hidden neurons. The number of output
neurons is 10. The fully connected neural network (784-200-10 neurons) for testing MNIST



Micromachines 2021, 12, 791 13 of 18

vectors is implemented with the tiled architecture of multiple sub-crossbars, as shown in
Figure 7.

Figure 7. Tile architecture of multiple sub-crossbars for implementing a memristor crossbar with
‘m × n’ cells. Here each sub-crossbar size is ‘a × b’. The numbers of sub-crossbars for rows and
columns are ‘M’ and ‘N’, respectively. ‘M’ and ‘N’ can be calculated from ‘m = M × a’ and ‘n = N
× b’, respectively. Here RS, RW, and RN are the source, line, and neuron resistance, respectively,
contributing to the nonideal effects in the memristor crossbar.

Figure 8a compares the recognition rate of the ideal crossbar, the nonideal without the
correction, and the nonideal with the correction circuit. Here the source and line resistance
are assumed 2 kΩ and 1 Ω, respectively. The neuron resistance is increased from 1 kΩ to
3 kΩ. In Figure 8a, the first, second, and third bars are for the ideal, the nonideal without
correction, and the nonideal with correction, respectively. When the neuron resistance is
1 kΩ, the uncompensated crossbar and compensated one indicates the recognition rate,
92.5% and 95.4%, respectively, compared to the rate of the ideal crossbar, 95.5%. Here,
it should be noted that the correction circuit could improve the rate of the compensated
crossbar by 2.9% compared to the uncompensated. If the neuron resistance is as large as
3 kΩ, the rate of the crossbars without and with the correction circuit are 90.4% and 95.1%,
respectively. The gap in recognition rate between the uncompensated and compensated
crossbars is increased from 2.9% to 4.7%, as shown in Figure 8a. One thing to note here is
that the recognition rate of 95.5% in Figure 8a seems lower than the state-of-the-art rate
as high as 99%. This is mainly due to the ternary synaptic weights used in the memristor
crossbar instead of the floating-point numbers. When the memristor crossbar is tested with
the integer synaptic weights, the rate could be as high as 98% for MNIST vectors.



Micromachines 2021, 12, 791 14 of 18

Figure 8. (a) Comparison of the recognition rate of the nonideal crossbars between without and with the correction circuit
for MNIST data set with RW = 1 Ω, (b) Comparison of the recognition rate of the nonideal crossbars between without and
with the correction circuit for MNIST data set with RW = 2 Ω.

Similarly, Figure 8b compares the nonideal crossbars without and with the correction
circuit, for RW = 2 Ω. Here RW in Figure 8b is 2× larger than RW in Figure 8a. The
recognition rate without the correction is as small as 90.1%. However, the correction circuit
can increase the rate as large as 95%. The gap between without and with the correction
circuit is 4.9% in Figure 8b.

Next, the proposed correction circuit is tested for the CIFAR-10 (Canadian Institute
For Advanced Research) data set. Like the MNIST dataset, CIFAR-10 has 50,000 training
images and 10,000 testing ones for classifying 10 image objects. Each image is composed of
32 × 32 RGB pixels. For each image object, there are 5000 training and 1000 testing vectors.
The ten image objects are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. Here the ResNet CNN architecture is used for testing the CIFAR-10 dataset [34]. Here
only the fully-connected layers in the ResNet are implemented with the tile architecture
of sub-crossbars in Figure 7. Here, in the fully connected layer in ResNet, the number
of hidden neurons is 200. The output neurons for the neural network should be 10 for
classifying the 10 image objects such as airplanes, automobiles, and so on in the CIFAR-10
dataset.

Figure 9a compares the recognition rate of the ideal crossbar, the nonideal without the
correction, and the nonideal with correction circuit, for the CIFAR-10 dataset. In Figure 9a,
the first, second, and third bars are for the ideal, the nonideal without correction, and
the nonideal with correction, respectively. When the neuron resistance is as small as
1 kΩ, the uncompensated crossbar and compensated one indicates the recognition rate,
87.4% and 88.7%, respectively, compared to the rate of the ideal crossbar, 88.9%. The
gap between the uncompensated and the compensated is as small as 1.3% for the neuron
resistance = 1 kΩ. For RN = 3 kΩ, the correction circuit seems to improve the recognition
rate from 85.3% to 88.1%, compared to the nonideal without compensation. The gap
between the uncompensated and compensated becomes as large as 2.8%, for RN = 3 kΩ.

Figure 9b indicates the recognition rate of the nonideal crossbars without and with the
correction circuit, for RW = 2Ω. For RN = 3 kΩ, the recognition rate without the correction
is as small as 85.1%. However, the correction circuit can increase the rate as large as 88%.
The gap between without and with the correction circuit is as large as 2.9% in Figure 9b,
for RN = 3 kΩ.



Micromachines 2021, 12, 791 15 of 18

Figure 9. (a) Comparison of the recognition rate of the nonideal crossbars between without and with the correction circuit
for CIFAR-10 data set with RW = 1 Ω (b) Comparison of the recognition rate of the nonideal crossbars between without and
with the correction circuit for CIFAR-10 data set with RW = 2 Ω.

One more thing to discuss here is the power overhead due to the correction circuit
in Figure 3. Using the circuit simulator of CADENCE SPECTRE version 6.1.6, the power
consumption of the correction circuit is estimated at roughly ~0.76 uA for each noninverting
amplifier. The power overhead ratio due to the correction circuit can be approximated with
the following equation.

Roverhead ≈
(m + n)·VDD·Icorrection,avg

m·n·VDD·
(

ILRS,avg·α + IHRS,avg·(1− α)
) (5)

Here Roverhead means the overhead ratio of the power due to the correction circuit
with respect to the power consumption of the memristor crossbar. ‘m’ and ‘n’ are the
numbers of rows and columns, respectively, in the crossbar. Icorrection,avg means the average
current consumption for each noninverting op amp used in the correction circuit. VDD is
the power supply voltage. ILRS,avg and IHRS,avg are the average currents for LRS cells and
HRS cells in the crossbar, respectively. ‘α’ means the activity ratio of LRS cells during the
inference phase. ‘1 − α’ is the activity ratio of HRS cells during the inference time. As
expected in Equation (5), the overhead ratio depends on the crossbar size with ‘m’ and ‘n’.
Assuming LRS = 20 kΩ and HRS = 2 MΩ, the overhead ratio is estimated at less than 1%.
Here the sub-crossbar size is assumed 100 ×100. The activity ratio of LRS cells is assumed
at 30% on average, which is obtained from the synaptic weights calculated from MATLAB
simulation. If LRS becomes higher, the overhead ratio in Equation (5) becomes higher, too.

In addition, it should be discussed the power overhead due to the mixed-mode
interface circuit such as an analog-to-digital (ADC) converter [32,35]. As mentioned, the
memristor crossbar can perform VMM operation based on the analog current-voltage
relationship of memristors. For performing the VMM operation in memristor crossbars,
the mixed-mode interface circuit should be added to the memristor crossbar. The ADC is
used for converting the VMM result to the digital data for delivering them to the other
networks. For doing this, the ADC should consume an amount of computing power.
Comparing the power consumption between the mixed-mode interface circuit and the
memristor crossbar, it has been reported that the mixed-mode interface circuit including
ADC consumes 9× larger power than the memristor crossbar [32]. Though the ADC
consumes most of the computing power, the overall computational energy efficiency of
the memristor crossbar-based neural networks can easily outperform the conventional
digital-based neural networks relying on the digital VMM operation [35]. Thus, despite the
power overhead of the mixed-mode interface circuit, the memristor crossbar-based neural
networks can be very suitable particularly for the edge intelligence hardware such as IoT
sensors, where energy-efficient computing is very critical [13,35].



Micromachines 2021, 12, 791 16 of 18

Finally, it should be mentioned that we focused on solving the nonideal-effect prob-
lems related to the parasitic resistance such as source resistance, neuron resistance, and line
resistance, in this paper. Of course, other nonideal effects are not considered in this paper,
such as yield-limited memristor defects, nonlinear current-voltage behaviors, etc. [36,37].
Actually, for considering the yield-limited memristor defects, a defect-aware in-situ cross-
bar training can be used with the parasitic-resistance correction circuit proposed in this
paper [37]. By putting the defect-aware training and parasitic-resistance correction circuit
together, the nonideal-effect correction circuit can compensate the voltage and current loss
due to the parasitic resistance and the defect-aware training can compensate the perfor-
mance loss due to memristor defects such as stuck-at-0 and stuck-at-1 simultaneously.

For the nonideal-effect correction circuit shown in Figure 3, the added OP amp may
have the offset voltage problem and the added resistors such as RR and RC may suffer
process variation. However, the nonideal effects caused by the OP amp’s offset voltage
and added RR and RC variations can be thought to cause smaller degradation of neural
network’s performance than the gain of the recognition rate with the correction circuit.
From the MNIST simulation, the variations of OP amp’s offset voltage, RR, and RC can
degrade the MNIST recognition rate by about ~0.6%. This rate loss of ~0.6% is much
smaller than ~4.7% that is the gain of the recognition rate due to the correction circuit.

4. Conclusions

The nonideal effects such as parasitic source, line, and neuron resistance can affect
the input voltage and the output current of the memristor crossbar significantly. The
nonideal effects cause the degradation of the neural network’s performance realized with
the nonideal memristor crossbar. To avoid performance degradation due to the nonideal
effects, the adaptive training methods were proposed previously [29,30]. However, the
complicated training algorithm can add a heavy computational burden to the neural
network hardware. Especially, this hardware and algorithmic burden can be more serious
for edge intelligence applications such as IoT sensors.

In this paper, the memristor-CMOS hybrid neuron circuit was proposed for com-
pensating the voltage loss due to the nonideal effects during the inference phase, not the
training phase. Unlike the previous linear correction method performed by the external
hardware [10], the proposed memristor-CMOS hybrid neuron circuit can be included in
the memristor crossbar to minimize the power and hardware overheads caused by the
nonideal-effect correction.

The proposed correction circuit was verified to be able to restore both the source
voltage and the output voltage degradation due to the nonideal effects. For the source
voltage, the average percentage error of the uncompensated crossbar is as large as 36.7%. If
the correction circuit is used, the percentage error in the source voltage can be reduced from
36.7% to 7.5%. For the output voltage, the average percentage error of the uncompensated
crossbar is as large as 65.2%. The correction circuit can improve the percentage error in the
output voltage from 65.2% to 8.6%. Almost the percentage error can be reduced to ~1/7 if
the correction circuit is used.

The nonideal memristor crossbar with the correction circuit was tested for MNIST
and CIFAR-10 data sets in this paper. For MNIST, the uncompensated and compensated
crossbars indicated the recognition rate of 90.5% and 95.1%, respectively, compared to
95.5% of the ideal crossbar. For CIFAR-10, the nonideal crossbars without and with the
nonideal effect correction showed the rate of 85.4% and 88.3%, respectively, compared to
the ideal crossbar not suffering the nonideal effects achieving the rate as large as 88.9%.

Author Contributions: K.-S.M. defined the research topic. T.V.N. and J.A. performed the simulation
and measurement. T.V.N. and K.-S.M. wrote the manuscript. All authors have read and agreed to the
published version of the manuscript.



Micromachines 2021, 12, 791 17 of 18

Funding: The work was financially supported by NRF-2015R1A5A7037615, NRF-
2019K1A3A1A25000279, NRF-2021R1A2C1011631, Research Grant (Incremental Funds)-N62909-
20-1-2021-P00001-Memristor-based Neural Network Circuits, and SRFC-TA1903-01.

Acknowledgments: The CAD tools were supported by IC Design Education Center (IDEC), Daejeon,
Korea.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.-L.; Chen, S.-C.; Iyengar, S.S. A survey on deep learning:

Algorithms, techniques, and applications. ACM Comput. Surv. 2018, 51, 1–36. [CrossRef]
2. Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, 7, 53040–53065. [CrossRef]
3. Jo, J.; Kung, J.; Lee, Y. Approximate LSTM Computing for Energy-Efficient Speech Recognition. Electronics 2020, 9, 2004. [CrossRef]
4. Bohr, M.T.; Young, I. CMOS Scaling Trends and Beyond. IEEE Micro 2017, 37, 20–29. [CrossRef]
5. Dean, J.; Patterson, D.; Young, C. A New Golden Age in Computer Architecture: Empowering the Machine-Learning Revolution.

IEEE Micro 2018, 38, 21–29. [CrossRef]
6. Linn, E.; Rosezin, R.; Tappertzhofen, S.; Böttger, U.; Waser, R. Beyond von Neumann—Logic operations in passive crossbar arrays

alongside memory operations. Nanotechnology 2012, 23, 305205. [CrossRef]
7. Wright, C.D.; Hosseini, P.; Diosdado, J.A.V. Beyond von-Neumann computing with nanoscale phase-change memory devices.

Adv. Funct. Mater. 2013, 23, 2248–2254. [CrossRef]
8. Indiveri, G.; Liu, S.-C. Memory and Information Processing in Neuromorphic Systems. Proc. IEEE 2015, 103, 1379–1397. [CrossRef]
9. Sebastian, A.; Le Gallo, M.; Eleftheriou, E. Computational phase-change memory: Beyond von Neumann computing. J. Phys. D

Appl. Phys. 2019, 52, 443002. [CrossRef]
10. Hu, M.; Graves, C.E.; Li, C.; Li, Y.; Ge, N.; Montgomery, E.; Davila, N.; Jiang, H.R.; Williams, S.; Yang, J.J.; et al. Memristor-based

analog computation and neural network classification with a dot product engine. Adv. Mater. 2018, 30, 1705914. [CrossRef]
11. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge intelligence: Paving the last mile of artificial intelligence with edge

computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]
12. Deng, L. The MNIST Database of Handwritten Digit Images for Machine Learning Research. IEEE Signal. Process. Mag. 2012, 29,

141–142. [CrossRef]
13. Krestinskaya, O.; James, A.P.; Chua, L.O. Neuromemristive Circuits for Edge Computing: A Review. IEEE Trans. Neural Netw.

Learn. Syst. 2020, 31, 4–23. [CrossRef]
14. Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic

systems. Nano Lett. 2010, 10, 1297–1301. [CrossRef]
15. Hu, M.; Li, H.; Chen, Y.; Wu, Q.; Rose, G.; Linderman, R.W. Memristor Crossbar-Based Neuromorphic Computing System: A

Case Study. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1864–1878. [CrossRef] [PubMed]
16. Li, Y.; Wang, Z.; Midya, R.; Xia, Q.; Yang, J.J. Review of memristor devices in neuromorphic computing: Materials sciences and

device challenges. J. Phys. D Appl. Phys. 2018, 51, 503002. [CrossRef]
17. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, S. The missing memristor found. Nature 2008, 453, 80–83. [CrossRef]
18. Truong, S.N.; Van Pham, K.; Yang, W.; Shin, S.; Pedrotti, K.; Min, K.-S. New pulse amplitude modulation for fine tuning of

memristor synapses. Microelectron. J. 2016, 55, 162–168. [CrossRef]
19. Song, C.; Liu, B.; Wen, W.; Li, H.; Chen, Y. A quantization-aware regularized learning method in multilevel memristor-based

neuromorphic computing system. In Proceedings of the IEEE 6th Non-Volatile Memory Systems and Applications Symposium
(NVMSA), Hsinchu, Taiwan, 16–18 August 2017; pp. 1–6.

20. Pham, K.V.; Tran, S.B.; Nguyen, T.V.; Min, K.-S. Asymmetrical training scheme of binary-memristor-crossbar-based neural
networks for energy-efficient edge-computing nanoscale systems. Micromachines 2019, 10, 141. [CrossRef]

21. Adam, G.C.; Hoskins, B.D.; Prezioso, M.; Merrikh-Bayat, F.; Chakrabarti, B.; Strukov, D.B. 3-D Memristor Crossbars for Analog
and Neuromorphic Computing Applications. IEEE Trans. Electron. Devices 2017, 64, 312–318. [CrossRef]

22. Chakrabarti, B.; Lastras-Montaño, M.A.; Adam, G.; Prezioso, M.; Hoskins, B.; Payvand, M. A multiply-add engine with
monolithically integrated 3D memristor crossbar/CMOS hybrid circuit. Sci. Rep. 2017, 7, 1–10.

23. Wang, T.-Y.; Meng, J.-L.; Rao, M.-Y.; He, Z.-Y.; Chen, L.; Zhu, H.; Sun, Q.-Q.; Ding, S.-J.; Bao, W.-Z.; Zhou, P.; et al. Three-
Dimensional Nanoscale Flexible Memristor Networks with Ultralow Power for Information Transmission and Processing
Application. Nano Lett. 2020, 20, 4111–4120. [CrossRef] [PubMed]

24. Lin, P.; Li, C.; Wang, Z.; Li, Y.; Jiang, H.; Song, W.; Rao, M.; Zhuo, Y.; Upadhyay, N.K.; Barnell, M.; et al. Three-dimensional
memristor circuits as complex neural networks. Nat. Electron. 2020, 3, 225–232. [CrossRef]

25. Sheng, X.; Graves, C.E.; Kumar, S.; Li, X.; Buchanan, B.; Zheng, L. Low-Conductance and Multilevel CMOS-Integrated Nanoscale
Oxide Memristors. Adv. Electron. Mater. 2019, 5, 1800876. [CrossRef]

26. Graves, C.E.; Li, C.; Sheng, X.; Miller, D.; Ignowski, J.; Kiyama, L.; Strachan, J.P. In-Memory Computing with Memristor Content
Addressable Memories for Pattern Matching. Adv. Mater. 2020, 32, 2003437. [CrossRef]

http://doi.org/10.1145/3150226
http://doi.org/10.1109/ACCESS.2019.2912200
http://doi.org/10.3390/electronics9122004
http://doi.org/10.1109/MM.2017.4241347
http://doi.org/10.1109/MM.2018.112130030
http://doi.org/10.1088/0957-4484/23/30/305205
http://doi.org/10.1002/adfm.201202383
http://doi.org/10.1109/JPROC.2015.2444094
http://doi.org/10.1088/1361-6463/ab37b6
http://doi.org/10.1002/adma.201705914
http://doi.org/10.1109/JPROC.2019.2918951
http://doi.org/10.1109/MSP.2012.2211477
http://doi.org/10.1109/TNNLS.2019.2899262
http://doi.org/10.1021/nl904092h
http://doi.org/10.1109/TNNLS.2013.2296777
http://www.ncbi.nlm.nih.gov/pubmed/25291739
http://doi.org/10.1088/1361-6463/aade3f
http://doi.org/10.1038/nature06932
http://doi.org/10.1016/j.mejo.2016.07.010
http://doi.org/10.3390/mi10020141
http://doi.org/10.1109/TED.2016.2630925
http://doi.org/10.1021/acs.nanolett.9b05271
http://www.ncbi.nlm.nih.gov/pubmed/32186388
http://doi.org/10.1038/s41928-020-0397-9
http://doi.org/10.1002/aelm.201800876
http://doi.org/10.1002/adma.202003437


Micromachines 2021, 12, 791 18 of 18

27. Qin, Y.-F.; Bao, H.; Wang, F.; Chen, J.; Li, Y.; Miao, X.-S. Recent Progress on Memristive Convolutional Neural Networks for Edge
Intelligence. Adv. Intell. Syst. 2020, 2, 2000114. [CrossRef]

28. Li, C.; Hu, M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J.; Song, W.; Dávila, N.; Graves, C.E.; et al. Analogue signal and
image processing with large memristor crossbars. Nat. Electron. 2018, 1, 52–59. [CrossRef]

29. Liu, B.; Li, H.; Chen, Y.; Li, X.; Huang, T.; Wu, Q.; Barnell, M. Reduction and IR-drop compensations techniques for re-liable
neuromorphic computing systems. In Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), San Jose, CA, USA, 2–6 November 2014; pp. 63–70.

30. Chakraborty, I.; Roy, D.; Roy, K. Technology aware training in memristive neuromorphic systems for noni-deal synaptic crossbars.
IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 335–344. [CrossRef]

31. Krizhevsky, A.; Hinton, G. Convolutional deep belief networks on cifar-10. Unpubl. Manuscr. 2010, 40, 1–9.
32. Cai, F.; Correll, J.M.; Lee, S.H.; Lim, Y.; Bothra, V.; Zhang, Z.; Flynn, M.P.; Lu, W.D. A fully integrated reprogrammable

memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2019, 2, 290–299. [CrossRef]
33. Murali, G.; Sun, X.; Yu, S.; Lim, S.K. Heterogeneous Mixed-Signal Monolithic 3-D In-Memory Computing Using Resistive RAM.

IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 386–396. [CrossRef]
34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
35. Amirsoleimani, A.; Alibart, F.; Yon, V.; Xu, J.; Pazhouhandeh, M.R.; Ecoffey, S.; Beilliard, Y.; Genov, R.; Drouin, D. In-Memory

Vector-Matrix Multiplication in Monolithic Complementary Metal–Oxide–Semiconductor-Memristor Integrated Circuits: Design
Choices, Challenges, and Perspectives. Adv. Intell. Syst. 2020, 2, 2000115. [CrossRef]

36. Wang, W.; Song, W.; Yao, P.; Li, Y.; Van Nostrand, J.; Qiu, Q.; Yang, J.J. Integration and Co-design of Memristive Devices and
Algorithms for Artificial Intelligence. iScience 2020, 23, 101809. [CrossRef]

37. Li, C.; Belkin, D.; Li, Y.; Yan, P.; Hu, M.; Ge, N.; Jiang, H.; Montgomery, E.; Lin, P.; Wang, Z.; et al. Efficient and self-adaptive
in-situ learning in multilayer memristor neural networks. Nat. Commun. 2018, 9, 1–8. [CrossRef]

http://doi.org/10.1002/aisy.202000114
http://doi.org/10.1038/s41928-017-0002-z
http://doi.org/10.1109/TETCI.2018.2829919
http://doi.org/10.1038/s41928-019-0270-x
http://doi.org/10.1109/TVLSI.2020.3042411
http://doi.org/10.1002/aisy.202000115
http://doi.org/10.1016/j.isci.2020.101809
http://doi.org/10.1038/s41467-018-04484-2

	Introduction 
	Method 
	Results 
	Conclusions 
	References

