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Abstract: Indoor localization is the basis for most Location-Based Services (LBS), including con-
sumptions, health care, public security, and augmented reality. Sensory landmarks related to the
indoor spatial structures (such as escalators, stairs, and corners) do not rely on active signal transmit-
ting devices and have fixed positions, which can be used as the absolute positioning information
to improve the performance of indoor localization effectively without extra cost. Specific motion
patterns are presented when users pass these architectural structures, which can be captured by
mobile built-in sensors, including accelerometers, gyroscopes, and magnetometers, to achieve the
recognition of structure-related sensory landmarks. Therefore, the recognition of these landmarks
can draw on the mature methods of Human Activity Recognition (HAR) with improvements. To
this end, we improved a Long Short-Term Memory (LSTM) neural network to recognize different
kinds of spatial structure-related sensory landmarks. Labels of structural sensory landmarks were
proposed, and data processing methods (including interpolation, filter, and window length) were
used and compared to achieve the highest recognition accuracy of 99.6%.

Keywords: machine learning; indoor localization; sensory landmark; Long Short-Term Memory
(LSTM)

1. Introduction

Indoor localization technology is the foundation of many Location-Based Services
and has received increasing attention due to its wide range of applications [1,2]. Sensory
landmarks in indoor environments can be leveraged to provide zero-cost absolute loca-
tion information, hence improving indoor localization performance [3] and meeting the
requirements for low-cost and high-accuracy positioning.

Sensory landmarks mainly have two roles in indoor localization: they provide absolute
position calibration information and they assist in indoor mapping. Sensory landmarks
are usually stable and have distinct characteristics in indoor environments. As a result,
sensory landmarks can provide accurate absolute indoor positioning for users. Pedestrian
Dead Reckoning (PDR) can only estimate the relative location and is prone to accumulated
errors [4]. The absolute position provided by sensory landmarks can determine users’
current location and effectively correct this accumulated error [5], so as to form a low-
cost, high-precision indoor positioning solution. Furthermore, indoor maps are essential
components of indoor navigation and are usually required by indoor localization systems
to display the user’s position. Indoor maps can be abstracted using a link-node model in
which the pathways are the links and the intersections of the pathways are the nodes, such
as corners, elevators, and stairs [6], i.e., structure-related sensory landmarks. Detecting
pedestrians’ corresponding activities as they pass through the nodes can determine their
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location on the map. Based on the type of sensors used, sensory landmarks can be divided
into active and passive sensory landmarks. Active sensory landmarks rely on signals
sent by artificial active signal transmitters, such as (Global Navigation Satellite System)
GNSS, Bluetooth, Wi-Fi, (Near-Field Communication) NFC, and Acoustic landmarks [7].
Passive sensory landmarks refer to the features existing in the indoor environment, such
as landmarks related to the structure of the indoor space (such as escalators, stairs, and
corners). Passive sensory landmarks can be determined using built-in mobile sensors,
such as accelerometers [8], gyroscopes [9], and magnetometers [10]. Therefore, the passive
sensory landmarks do not depend on the deployment of indoor environments and have
the benefits of low cost and wide applicability. Sensory landmarks related to the spatial
structures (such as escalators, stairs, and corners) are passive landmarks with the properties
of stability, precision location, and ease of detection.

The threshold method is a very typical method for identifying sensory landmarks
by setting threshold values. For instance, using a threshold of angular velocity from
the gyroscope to identify corner landmarks, and an acceleration threshold to detect stair
landmarks [11]. There is a significant advantage of using a single sensor to recognize
landmarks with obvious short-time motion patterns such as corners, but it is difficult for
landmarks with continuous patterns such as escalators and stairs [3]. An alternative method
is Human Activity Recognition (HAR), as the specific motion patterns are presented when
users pass these architectural structures, which can be captured by built-in smartphone,
including accelerometers, gyroscopes, and magnetometers, to achieve the recognition of
structure-related sensory landmarks. Therefore, the recognition of the spatial structure-
related sensory landmarks can be converted into HAR.

The main works and contributions of this paper are summarized as follows:

1. We analyzed the sensory properties of the various spatial structure-related sensory
landmarks. Based on this, (to meet the demand for low-cost and high-accuracy abso-
lute indoor positioning), several sets of labels of sensory landmarks were designed,
and the accuracy of recognition using each set of labels was tested separately. Based
on the analysis and comparison, the optimum labels for each structure-related sensory
landmark are proposed.

2. Based on the designed labels, we built an LSTM neural network to identify sensory
landmarks and achieved 99.6% accuracy.

3. During the training phase, we explored the pre-processing parameters and hyperpa-
rameters that affect the final recognition accuracy and their implications.

The following sections of this paper are organized as follows: previous works are
reviewed in Section 2; labels of structure-related sensory landmarks are proposed in
Section 3; the experiments and results are presented in Section 4; and comparison and
discussion with other works are introduced in Section 5. Finally, the conclusions are drawn
in the Section 6.

2. Related Works

One of the difficulties in the application of sensory landmarks in indoor positioning is
landmark detection. Detection methods for active and passive sensory landmarks are quite
diverse since the data used comes from different sensors and has different features.

The two main methods of recognizing active sensory landmarks are triangulation [12]
and fingerprint matching [13]. Triangulation methods cannot achieve accurate positioning
of sensory landmarks in complicated indoor environments due to multipath interference.
The excessive amount of calculation of fingerprint matching and the high cost of placing
essential signal emission sources makes it difficult to apply on a large scale [3]. In compari-
son, passive sensory landmarks neither rely on additional signal transmission devices nor
interference by multipath, which is more valuable for adoption.

Previously, the detection of passive landmarks was mainly based on the data charac-
teristics of a single sensor. For example, turning can be detected by a compass or gyroscope,
and going up or down a set of stairs can be detected by an accelerometer or barometer [3].



Micromachines 2021, 12, 781 3 of 15

However, when people pass by these landmarks, their motion changes will cause multiple
built-in sensors to show distinctive features. The insufficient use of sensor data hindered
the improvement of recognition accuracy. Previous multisensor fusion-based recognition
methods have usually employed combined camera image recognition [14], resulting in
excessive calculation and poor cost performance.

Since passive sensory landmarks are highly related to indoor spatial structures (such as
escalators, stairs, elevators, revolving doors, etc.), people usually change their motion states
when passing these landmarks, leading to features that can captured by built-in sensors
such as IMUs. In terms of feature extraction, machine learning has been widely used to
distinguish different data features due to its advantages of automation and accuracy.

Some previous studies applied machine learning, including traditional machine learn-
ing and deep learning methods, to sensory landmark recognition. A previous study [15]
used the spatial pyramid kernel-based bag-of-words (SPK-BoW) histogram method to
extract features and build image dictionaries, followed by combining the extreme learning
machine (ELM) algorithm and sparse representation classifier (SRC) to train the neural
network to achieve landmark recognition. However, it is difficult to practically apply
because of the complexity and time-consuming of building image dictionaries and the
high requirement for ambient light. The study by [16] used a deep learning approach to
recognize sensory landmarks using data fragments of accelerometers, gyroscopes, magne-
tometers, and barometers, which achieved higher accuracy than traditional methods and
machine learning methods. However, the temporal correlation between data fragments
was not considered.

As the most popular method of processing data, the neural network has the features
of large-scale parallel processing, distributed storage, elastic topology, and highly redun-
dant nonlinear operations. Neural networks are trained with specific learning criteria to
eventually obtain a suitable parametric model [17]. The use of neural networks can achieve
a rational use of sensor data by forming a multisensor fusion recognition algorithm [18],
to achieve better recognition results than SVM [19] and other methods. Long short-term
memory (LSTM) is a temporal recurrent neural network architecture suitable for processing
and predicting continuous time-series data [20]. Due to the strong temporal correlation of
human activity states, the use of LSTM neural networks can efficiently identify the user’s
motion states [4].

An important application of using machine learning to extract certain features of IMU
data is HAR [7,21,22]. By acquiring and analyzing the accelerometer information of the
mobile phone, different human activities can be determined according to the acceleration
characteristics of each motion state. In addition, clustering [23], SVM [19,24], and deep
learning [25] can also be used for HAR. The user’s activities can be efficiently identified
using LSTM neural networks due to its specialty in time-series analysis [20], the strong
temporal correlation of human activities [4] and the suitability of LSTM. The paper is
precisely based the use of on LSTM-based HAR to identify and classify spatial structure-
related sensory landmarks.

3. The Architecture of the System

Figure 1 gives a schematic diagram of the system architecture for recognizing sen-
sory landmarks, including (a) data collection, (b) data processing, (c) training, and (d)
sensory landmark recognition. We use smartphones to collect data from the smartphone’s
built-in sensors, including an accelerometer, a gyroscope, and a magnetometer. The data
processing consists of two steps: aligning data frequencies of individual sensors by using
interpolation and data filtering. Then, the timing-dependent data are sliced and labeled
with the corresponding labels. We borrowed from HAR using a neural network containing
a two-layer LSTM and a single fully connected layer for feature learning. Finally, the
obtained model enables the recognition of spatial structure-related sensory landmarks such
as stairs, escalators, and corners.
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3.1. Label Design for Recognition of Sensory Landmarks

To meet the need for low-cost, high-precision indoor positioning, the sensory land-
marks need to be stable on the time scale to avoid the high cost of updating landmark maps,
be in small location areas with side length no longer than two meters to ensure precious
positioning, and have unique sensory characteristics to enable high recognition accuracy.

However, HAR emphasizes states of human motion, such as walking, running, etc.,
and these motion states do not appear unique in the indoor environment. The accurate
location of the user is not reflected by the motion state alone. Therefore, the labels used in
HAR cannot simply be migrated to sensory landmark identification. A new set of labels
needs to be designed so that the labeled sensory landmarks meet the needs of stability and
location accuracy to provide the absolute location of landmarks. At the same time, it should
have a high recognition accuracy rate, which is sufficient to support its follow-up use.

Besides, the sensors often used in HAR are those equipped in cell phones, including
accelerometers, gyroscopes, barometers, and magnetometers, etc. Studies have shown that
the more sensors combined for machine learning used in HAR, the better the recognition
effect [16]. However, the latest cell phones, including the Huawei P series, are not always
equipped with barometers, so they are not considered. Finally, the data from accelerometers,
gyroscopes, and magnetometers are used in this paper.

The scenarios discussed in this paper include corners, escalators, and stairs. The
starting point for designing the labels is the possible human motion states of the user in the
scenario. In the above scenarios, the user may be walking or standing when not passing
the sensory landmark. They will be identified as motion state labels for the states that do
not pass by the sensory landmarks.

When we design the label corresponding to each landmark, we will mainly consider
applying the definition to indoor localization and the accuracy of its recognition to the
overall recognition. The impact of different label designs on recognition accuracy will be
discussed in more detail in Section 4.
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3.1.1. Corners

In this paper, corners refer to areas where users take rapid turns, usually right-angle
turns due to the distribution of indoor structures. The sensory landmark point is selected
to appear at the location where the turn occurs. Corners are not designed to distinguish
between left and the right turns since PDR can accurately determine the direction of
rotation, so there is no need to increase the complexity of the neural network.

3.1.2. Escalators

In the escalator scenario, the user’s movement is roughly divided into stages, including
before entering the escalator, entering the escalator, on the escalator, leaving the escalator,
and after leaving the escalator.

The sensory landmark points that appear in the escalator scenario are the points of
entry and exit from the escalator: specifically, the red rectangle position as marked in
Figure 2, which shows the starting step of the escalator and the pedal of the escalator that
the user steps on upon leaving the escalator.
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The reason for not selecting the state as sensory landmarks are that the user’s position
is relatively vague at that time, with a range of possible positions of one meter long and
several meters wide, which is not suitable for accurate correction of the indoor position.
The labels designed in the escalator scenario do not distinguish between up and down
because the up and down process is more confusing, reducing the accuracy of identifying
the corresponding label.

3.1.3. Stairs

Within the staircase, the user’s movement is approximately divided into before enter-
ing the staircase, up the staircase, on the staircase, and stepping off the staircase. The final
choice is to take the whole section of the user’s movement between entering and leaving
the staircase as the stairs label. It is different from the scheme adopted for escalators. The
reasons for this are shown in Figure 3a,b, which are graphs of the variation of acceleration
and gyroscope reading magnitude with the experiment time when passing the escalator
and stairs in the experiment. In the figures, the first red line marks the moment when the
user enters the escalator or stairs, and the second red line is the moment when the user
leaves the escalator or stairs. As can be seen from the waveform, the states of the user
entering, exiting, and staying on the escalator are well distinguished, while these states
more confusing on stairs. This is because, in all three processes, the user’s performance
is only one step up or down. At the same time, users can go up and down on the same
flight of stairs, so it is not particularly meaningful to distinguish between up and down.
However, distinguishing between up and down increases the complexity of the neural
network. Additionally, there may be confusion between the upward and downward move-
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ments, which reduces the separate upward and downward processes’ recognition accuracy.
Therefore, we do not distinguish between up and down in the staircase scenario.
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However, to obtain landmarks with higher accuracy of location, we should process the
location of entering the stairs and the location of leaving the stairs as sensory landmarks,
and this can be achieved by subsequent processing to extract the first window of a section
of a continuous stair state for entering the stairs, and the first window from the continuous
stair state to another state for leaving the stairs as landmarks.

Finally, we designed the sensory landmark definition, as shown in Table 1.

Table 1. Table of labels.

No. Name of Labels Explanation

A1 ON_ESCALATOR The landmark where the user enters the escalator, before the user is in the walking
state, afterward the in_escalator state

A2 OFF_ESCALATOR The landmark where the user leaves the escalator, before the user is in_escalator
state, afterward in the walking state

A3 IN_ESCALATOR The user is in an upward or downward movement on the escalator
A4 TURN Turning landmarks during the user’s travel, before and after the walking state
A5 WALKING The user’s walking forward state
A6 STILL The user’s stationary state
A7 STAIRS User status on stairs up/down

3.2. Data Pre-Processing
3.2.1. Interpolation and Filtering

Although usually gyroscopes, accelerometers, and magnetometers can acquire the
same frequency data, the moments of collection are not all the same. Therefore, the acquired
data need to be interpolated to have readings from all three sensors at the desired moment.

After interpolation, the sensor data are also filtered to exclude the presence of noise,
such as high-frequency jitter in the data.



Micromachines 2021, 12, 781 7 of 15

3.2.2. Data Slicing and Labeling

The recognition of sensory landmarks cannot depend on a single data point. It is
necessary to make judgments based on a segment of the user’s motion process. Slicing
the entire user movement process is necessary to ensure that the neural network is given
enough information at once without including excessive landmarks or user behaviors. In
Figure 4, with the input of the processed data, the operations of slicing and labeling the
data are shown.

We read in data from the accelerometer, gyroscope, and magnetometer in the phone
for each segment of motion, using a sliding window for data slicing. Take the accelerometer
data for example

s f
x,i =

[
f B
x,t, f B

x,t+1, · · · , f B
x,t+K−1

]
s f

y,i =
[

f B
y,t, f B

y,t+1, · · · , f B
y,t+K−1

]
s f

z,i =
[

f B
z,t, f B

z,t+1, · · · , f B
z,t+K−1

]
,

(1)

where f B is the acceleration in x, y and z axis under the body frame of the sensor, t is the
start time of the time window i, and K is the length of the data sequence within a time
window, determined by the time window length T and the sensor sampling frequency v:

K =
T
ν

(2)

Similarly, for the gyroscope and the magnetometer, the data sequences
{

sgyrox
i , s

gyroy
i , sgyroz

i

}
and

{
smagx

i , s
magy
i , smagz

i

}
can be obtained, respectively. For each independent motion

process, the time length of each window sliding during the window sliding can be less
than the time length of the window. This handles the fact that there is an overlap between
the previous window and the next window, while there is no overlap between the corre-
sponding independent motion processes. In this case, the amount of overlapping data
between the two data windows before and after is expressed by the degree of overlap µ.
The corresponding relationship between the overlap time length ∆T and the amount of
overlapping sequence data ∆K is

∆T = µT

∆K =
∆T
ν

(3)

The specific labeling operation is according to the following rules. When the data
fragment is located between the start and end time marks, the fragment is labeled as the
intermediate process of the corresponding landmark (A3, A7). When the data fragment
contains the time marks inside, it is labeled as the start and end moments of the sensory
landmark (A1, A2, A4). When the data fragment lies outside the starting and ending time
marks, it is marked as other control categories (A5, A6).
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dimension is 9 in this study; T is the time window length, which is 2 s by default; and ∆ 𝑡 
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3.3. LSTM Network Architecture

After processing the data, it can be fed into the neural network. The neural network
consists of a two-layer LSTM neural network and a one-layer fully connected layer. The
first step of the neural network i the input vector of step Si is

Si =
[
saccex

i , s
accey
i , saccez

i , sgyrox
i , s

gyroy
i , sgyroz

i , smagx
i , s

magy
i , smagz

i

]T
. (4)

S i is a M× 1 matrix of M = N sensors × T/ ∆ t, where N sensors The input sensor data
dimension is 9 in this study; T is the time window length, which is 2 s by default; and ∆ t
is the sampling interval, which is 0.02 s. The equation for forward propagation of the
neural network through two LSTM layers and one fully connected layer can be simply
expressed as

a = f (W1Si + b1), (5)

where W 1 is a matrix of N class ×M, and N class is the final number of classification labels,
which is 7 in this study. a and b 1 are both N class × 1 matrices.

Similarly, the formula for backpropagation can be expressed as

Ŝi = f ′(W2a + b2), (6)
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where W 2 is a matrix of M × N class of the matrix, and b 2 is a N class × 1 matrix. In the
training project, the neural network parameters are adjusted by backward pass so that
the results are predicted with the highest accuracy, even though the error of the neural
network E i is minimized.

Ei =
M

∑
j=1

(
Sj − Ŝj

)2 (7)

To avoid falling into local minima in training, we randomly initialized the neural
network parameters several times, and the optimal accuracy is used as the result. After the
training is completed, the neural network can identify the categories of sensory landmarks
that users pass by. Algorithm 1 summarizes the method of recognizing sensory landmarks
using LSTM neural networks.

Algorithm 1: LSTM Based Sensory Landmark Recognition.

Input: labeled train data set
{

XTrain, LTrain
}

and unlabeled test data set
{

XTest}
Output: predicted sensory landmark labels of the test data set LPre

1 Collect data
2 Process data by interpolation, filtering, segmentation, and labeling
3 Initialize neural network parameters randomly
4 Train and compute the parameters
5 Use the trained neural network to predict the sensory landmark labels of the data set LPre

4. Experiments and Results
4.1. Experiment Description

A total of 13 different cell phones were used by 11 participants during data collection.
Three or more locations in different indoor environments were selected for each scenario.
During each collection, participants were required to keep their phones in hand and walk
with them held to their chest level. They were also required to record information including
the type of scenario, the type of landmark, and the moment of passing by the landmark.
Cell phones were exchanged between participants after 20 sets of data were collected.

After the collection was completed, the acquired data were divided into a training
set and a test set. To avoid overfitting, the test set contained all scenarios within it, while
there was no overlap between the collected scenario locations and the training set. The
final number of motion processes within the collected scenarios is shown in Table 2.

Table 2. Amount of data collected.

Scenarios Training Set Test Set

escalator 946 217
stairs 833 76

corners 3108 480
still 594 113

The collected data will be used in the method adopted in Section 3 where the parame-
ters are shown in Table 3.

Table 3. Data pre-processing parameters.

Parameters Parameter Description Parameter Values

T Length of a time window 3 s
Interpolation method Interpolation method and order Lagrange 4th order interpolation

Filtering method The method used for filtering (frequency) Low-pass filtering 0–3 hz
M The overlap of time windows 25%
ν The sampling frequency of sensors 50 hz
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The processed data were fed into the LSTM neural network of the architecture, and
the hyperparameters are shown in Table 4.

Table 4. Selected hyperparameters.

Parameters Parameters Description Parameter Values

M Dimensions of input data 900
batch_size Number of samples selected for one training session 1500

Nsensors Number of dimensions of the sensor data used 9
Nclass Number of labels to be identified 7

Nhidden Hidden layer num of features 40

The total accuracy of the final LSTM model to identify the labels can achieve 99.6%, and
the complete confusion matrix is shown in Table 5. The confusion between the individual
labels is small, and a part of the state that originally went through the landmarks is
identified as not going through the landmarks (i.e., corresponding to the A3, A5, A6 labels),
which in practice is only a lost opportunity to accurately calibrate the location, rather than
being identified as another landmark, in which the user position is updated to an incorrect
location. This also has somewhat less impact on the accuracy of the final indoor positioning.

Table 5. The confusion matrix.

Truth
Prediction

A1 A2 A3 A4 A5 A6 A7

A1 164 0 0 1 1 0 0
A2 0 149 0 0 3 0 0
A3 0 1 1364 0 0 0 0
A4 0 0 0 279 0 0 0
A5 0 0 0 0 493 0 1
A6 0 0 1 0 0 43 0
A7 0 0 0 0 2 0 115

4.2. The Effect of Label Design on the Landmarks Recognition Accuracy

In this section, we will further discuss the overall accuracy of landmarks recognition
under different label designs and analyze the causes.

4.2.1. Escalator Scenario

The focus of the escalator scenario is whether it is necessary to distinguish the as-
cending and descending escalator states. We use the original parameters based on the
original experiment, and split the labels A1, A2, A3 in the original Table 4 into ascending
and descending escalator to obtain A11, A12, A21, A22, A31, A32, where A11 represents
the up row of the original label A1, A12 represents the down row of the original label A1,
etc. for the rest. The hyperparameters were adjusted to obtain the highest accuracy, and the
final confusion matrix is shown in Table 6. The comparison of the F1 scores of the escalator
landmarks before and after the splitting is shown in Figure 5.

The confusion was created between the ascending and descending escalators, and it is
very difficult to detect and correct through a short period of follow-up observation without
the correction of the barometer. Therefore, it is not good practice to distinguish escalators
ascending and descending.
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Table 6. Confusion matrix for escalator differentiation between ascending and descending escalators.

Truth
Prediction

A11 A21 A31 A4 A5 A6 A7 A12 A22 A32

A11 81 0 0 0 0 0 0 0 0 0
A21 0 70 0 0 1 0 1 0 4 0
A31 0 0 661 0 0 0 0 0 0 7
A4 0 0 0 278 0 0 0 1 0 0
A5 0 0 0 0 493 0 1 0 0 0
A6 0 0 0 0 0 43 0 0 0 1
A7 0 0 0 0 2 0 115 0 0 0

A12 2 0 0 0 0 0 0 83 0 0
A22 0 1 1 0 2 0 0 0 72 0
A32 0 0 5 0 0 1 0 0 0 691
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4.2.2. Staircase Scenario

The focus of the staircase scenario is whether the user’s entry onto the staircase and
their exit from the staircase need to be presented separately for identification. The A7 labels
in the original Table 6 were split into ascending and descending escalators to obtain A71,
A72, and A73, where A71 represents the user’s motion state between entering and leaving
the stairs in the original A7 labeled stair landmarks, A72 represents entering the stairs,
and A43 represents leaving the stairs. Based on the original experiments, the confusion
matrix obtained by training using the original model parameters is shown in Table 7. The
comparison of the F1 scores of the stair landmarks before and after the splitting is shown
in Figure 6.

Table 7. Confusion matrix for escalator differentiation between ascending and descending escalators.

Truth
Prediction

A1 A2 A3 A4 A5 A6 A71 A72 A73

A1 223 0 3 0 9 0 1 1 1
A2 0 237 5 1 3 1 2 4 0
A3 4 3 2499 1 0 0 0 0 0
A4 0 1 1 675 5 0 0 1 1
A5 1 1 0 0 848 0 3 1 0
A6 0 0 1 0 0 63 0 0 0

A71 1 0 0 0 10 1 221 0 7
A72 0 1 0 4 0 0 8 122 0
A73 0 0 0 3 9 1 21 4 94



Micromachines 2021, 12, 781 12 of 15

Micromachines 2021, 12, x FOR PEER REVIEW 12 of 16 
 

 

Table 8. Confusion matrix for escalator differentiation between ascending and descending escala-

tors. 

Prediction 

Truth 
A1 A2 A3 A4 A5 A6 A71 A72 A73 

A1 223 0 3 0 9 0 1 1 1 

A2 0 237 5 1 3 1 2 4 0 

A3 4 3 2499 1 0 0 0 0 0 

A4 0 1 1 675 5 0 0 1 1 

A5 1 1 0 0 848 0 3 1 0 

A6 0 0 1 0 0 63 0 0 0 

A71 1 0 0 0 10 1 221 0 7 

A72 0 1 0 4 0 0 8 122 0 

A73 0 0 0 3 9 1 21 4 94 

 

Figure 6. The F1 scores of the escalator landmarks before and after the splitting. 

As can be seen, entering and leaving the stairs are not well distinguished from the 

actions of users when on the stairs. As the starting point and focus of a section of action, 

the wrong identification of entering and leaving the escalator label has a very bad effect, 

so it is not desirable to identify entering and leaving the stairs separately. 

4.3. The Parameters that Affect the Final Recognition Accuracy 

In this section, we will discuss the effect of some parameters on the total accuracy. 

Table 9 shows the effect of data preprocessing parameters on the total accuracy. The effect 

of model parameters on the total accuracy is given in Table 10. 

Table 9. The effect of data pre-processing parameters on overall accuracy. 

Parameters Parameter Effect on the Overall Accuracy 

T 

When the window length is below 2 s, the accuracy of identifying stairs and escalators drops signifi-

cantly, by more than 40%. This indicates that when the window length is insufficient, a window does 

not contain enough information to recognize the user’s movement on an escalator. When exceeding 2 s, 

the recognition accuracy increases with increasing window length. 

Interpolation 

method 
The impact is not significant. The impact on the total accuracy is no more than 1%. 

Filtering 

method 

Using low-pass filtering for accelerometers can result in a significant improvement in accuracy, by 

about 9 percent. Using low-pass filtering for gyroscopes, on the other hand, can lead to a decrease in 

recognition accuracy. 

μ The window overlap has little effect on the total accuracy. The total accuracy impact is around 2%. 

0.75

0.80

0.85

0.90

0.95

1.00

A7 A71 A72 A73

F1
 S

co
re

Labels

Figure 6. The F1 scores of the escalator landmarks before and after the splitting.

As can be seen, entering and leaving the stairs are not well distinguished from the
actions of users when on the stairs. As the starting point and focus of a section of action,
the wrong identification of entering and leaving the escalator label has a very bad effect, so
it is not desirable to identify entering and leaving the stairs separately.

4.3. The Parameters that Affect the Final Recognition Accuracy

In this section, we will discuss the effect of some parameters on the total accuracy.
Table 8 shows the effect of data preprocessing parameters on the total accuracy. The effect
of model parameters on the total accuracy is given in Table 9.

Table 8. The effect of data pre-processing parameters on overall accuracy.

Parameters Parameter Effect on the Overall Accuracy

T

When the window length is below 2 s, the accuracy of identifying stairs and escalators drops
significantly, by more than 40%. This indicates that when the window length is insufficient, a

window does not contain enough information to recognize the user’s movement on an escalator.
When exceeding 2 s, the recognition accuracy increases with increasing window length.

Interpolation method The impact is not significant. The impact on the total accuracy is no more than 1%.

Filtering method
Using low-pass filtering for accelerometers can result in a significant improvement in accuracy, by
about 9 percent. Using low-pass filtering for gyroscopes, on the other hand, can lead to a decrease

in recognition accuracy.
µ The window overlap has little effect on the total accuracy. The total accuracy impact is around 2%.

Table 9. The effects of hyperparameters on overall accuracy.

Parameters Description of Parameters

Nhidden

When it increases, the total accuracy of the model also increases. When the value is
from 12 to 36, the improvement is more significant, and when it is greater than 36,

the improvement effect slows down.

Neural Network structure Adding the fully connected layer after the current neural network structure has no
significant effect on the overall accuracy. The overall effect does not exceed 1.

5. Discussion

Given that the focus of the paper is on the recognition of sensory landmarks using
LSTM methods, we focus our comparison on the accuracy of the different methods used to
recognize sensory landmarks.

The research presented in [1] focuses on the refinement of the CNN network to finally
arrive at a maximum accuracy, and also replicate the methods of DT, LDA, KNN, and SVM
to finally arrive at their related accuracy of recognizing sensory landmarks.
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Since the types of identified sensory landmarks mentioned in [16] are roughly sim-
ilar to our identified sensory landmarks, we can compare them by their total accuracies.
Figure 7 shows the comparison of our LSTM with CNN and other traditional machine
learning algorithms. In the table, we can clearly see that the neural network outperforms
traditional machine learning, while the LSTM neural network outperforms the CNN
network in terms of recognition accuracy.
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Figure 7. Accuracy of different methods for identifying sensory landmarks.

Figure 8 shows the accuracy of each label using CNN [1] and LSTM. Although the
labels are not exactly the same, the forms of the data are close, being data fragments with
labels, and the numbers of labels are close, so it can reflect the models’ ability to recognize
landmarks. CNN and LSTM perform similarly on the nonlandmark labels of “still” and
“walking”, while LSTM performs better on most landmark labels. Therefore, LSTM is more
capable of recognizing landmarks than CNN.

This paper presents an algorithm for the recognition of signal landmarks that achieves
a high level of accuracy. This method can be applied in real-time locating systems (RTLS)
by providing absolute position information for PDR. The indoor maps are not necessary,
but the location of sensory landmarks should be known previously—whether by advanced
manual tagging or crowdsourced collection. The performance required for this method is
very low and suitable for smartphones since the period of computing equals the length of
a time window (1—overlap), which is 3 s × (1− 25%) = 2.25 s.

We have only collected data on phones held at chest level so far. As the application of
the proposed methods relies on PDR, and the basic assumption of PDR is that the phone is
oriented parallel to the direction of pedestrian walking. Additionally, our method requires
reading data from multiple sensors on the phone, and most smartphones, for privacy
reasons, only allow the app to read sensor data when it is running in the foreground and
with the screen on. Therefore, holding the phone at chest level should be the basic situation
of this method. By introducing a coordinate transformation, the improved PDR can also
be used when the phone orientation is not parallel to the pedestrian walking. In this
situation, our method can keep working with the same coordinate transformation. For
more complex situations such as swinging arms, recognition can be achieved by collecting
data and retraining the neural network.

Although this method has a high accuracy of 99.6%, it still suffers from a low proba-
bility of misclassification, and reducing the impact of false recognition in pedestrian indoor
localization applications will be the focus of our future work. Based on the fact that two
neighboring landmarks are usually located far apart in real environments, we plan to
introduce a continuous judgement to find and correct miscalculations that conflict with
the previous and subsequent results. Alternatively, faulty recognition results can also
be identified by combining the PDR predicted user location and the sensory landmarks
database.
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6. Conclusions

Based on the data from built-in smartphone, including an accelerometer, a gyroscope,
and a magnetometer, the recognition of structure-related sensory landmarks, such as stairs,
escalators, and corners, is achieved by a double-layer LSTM neural network. Through
exploring reasonable label designs and processing sensory data by interpolation, filtering,
and segmentation, the accuracy of recognition achieved is as high as 99.6%, which is
better than many previous methods. The accurate recognition of sensory landmarks can
provide location correction information for PDR without active signal transmitting devices,
establishing a strong basis of low-cost and high-precision indoor localization.
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