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Figure S1. Confusion matrix of logistic regression and support vector classification of cell viability. 10% of the cell
viability dataset was used as testing data while 90% of the dataset was used as training data. CV indicates cell
viability.
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Figure S2. Confusion matrix of support vector classification of filament diameter. 10% of the cell viability dataset was
used as testing data while 90% of the dataset was used as training data. FD indicates filament diameter.
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Figure S3. Coefficient of determination (R?) values of cell viability regression models based on the number of folds
tested for b) random forest regression, b) linear regression, and ¢) support vector regression. The upper and lower
bounds of the error plots represent the maximum and minimum R? values produced for each fold division.
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Figure S4. Mean squared error values of cell viability regression models based on the number of folds tested for a)
random forest regression, b) linear regression, and ¢) support vector regression. The upper and lower bounds of the
error plots represent the maximum and minimum mean square error values produced for each fold division.
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Figure S5. a) Accuracy, b) precision, and c) recall performance of the random forest classification cell viability model
on different k-fold cross validation tests. The upper and lower bounds of the error plots represent the maximum and
minimum metric values produced for each fold division.
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Figure S6. Coefficient of determination (r?) scores of filament diameter regression models based on the number of
folds tested for a) random forest regression and b) linear regression. The upper and lower bounds of the error plots
represent the maximum and minimum 12 produced for each fold division.
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Figure S7. Mean squared error scores of filament diameter regression models based on the number of folds tested for
a) random forest regression and b) linear regression. The upper and lower bounds of the error plots represent the
maximum and minimum mean squared error produced for each fold division.
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Figure S8. Accuracy scores of filament diameter classification models based on the number of folds tested for B)
random forest regression and B) logistic regression models. The upper and lower bounds of the error plots represent
the maximum and minimum accuracy produced for each fold division.
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Figure S9. Precision scores of filament diameter classification models based on the number of folds tested for B)
random forest regression and B) logistic regression models. The upper and lower bounds of the error plots represent
the maximum and minimum precision produced for each fold division.
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Figure S10. Recall scores of filament diameter classification models based on the number of folds tested for B)
random forest regression and B) logistic regression models. The upper and lower bounds of the error plots represent
the maximum and minimum recall produced for each fold division.
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Figure S11. Z-stack total/dead imaging of a portion of a filament from a 3/4 Alg/Gel printed construct (nozzle
geometry = conical, nozzle diameter = 410 pm). An A) isometric view, B) cross-sectional view in the X-Z plane, and C)
top view in the X-Y plane are shown at a magnification of 10x.
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Figure S12. Z-stack total/dead imaging of a portion of a filament from a 3/7 Alg/Gel printed construct (nozzle
geometry = conical, nozzle diameter = 410 um). An A) isometric view, B) cross-sectional view in the X-Z plane, and C)
top view in the X-Y plane are shown at a magnification of 10x.

Figure S13. Live/dead images taken on through the imaging plate reader immediately after extrusion of a) 3/4
Alg/Gel and b) 3/7 Alg/Gel. White borders indicate boundaries of the filament. The magnification of the images is at
4x.
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Table S1. Predicted cell viability acceptability and actual cell viability acceptability comparison of 3/4 and 3/7

Alg/Gel constructs printed (nozzle geometry = conical, nozzle diameter = 410 um).

Cell viability Material concentration Predicted cell viability Actual cell viability
prediction model (%w/v) acceptability (Yes/No) acceptability (Yes/No)
3/4 Alg/Gel Yes Yes
Random forest
classification
3/7 Alg/Gel Yes No
3/4 Alg/Gel Yes Yes
Logistic regression
3/7 Alg/Gel Yes No
3/4 Alg/Gel Yes Yes
Support vector
classification
3/7 Alg/Gel Yes No




Table S2. Predicted tolerance and actual tolerance comparison of 3/4 and 3/7 Alg/Gel constructs printed (nozzle
geometry = conical, nozzle diameter = 410 pum).

Material Predicted
Filament diameter conc:nii::cion t(:ferl:nie Percent error from nozzle Actual tolerance
. .. 1 . 41 o s
prediction mode ow/v) condition diameter (410 pm) (%) condition
Not withi Not withi
3/4 Alg/Gel ot within 126 ot within
tolerance tolerance
Random forest
classification
t withi t withi
3/7 Alg/Gel Not within 75 Not within
tolerance tolerance
ithi thi
3/4 Alg/Gel Not within 126 Not within
tolerance tolerance
Logistic regression
ithi thi
3/7 Alg/Gel Not within 75 Not within
tolerance tolerance
Not withi Not withi
3/4 Alg/Gel ot Within 126 ot Within
tolerance tolerance
Support vector
classification
Not withi Not withi
3/7 Alg/Gel or within 72.5 ot within

tolerance tolerance




Table S3. Predicted extrusion pressure classifications compared against experimental outcomes for corresponding
material concentrations of Alg/Gel. Actual values represent the mean + standard deviation for all samples (n =

number of batches).

Extrusion pressure
prediction Model

Material and material
concentration (%w/v)

Acceptable extrusion
pressure predicted (Yes/No)

Actual extrusion pressure
acceptability (Yes/No)

3/4 Alg/Gel Yes Yes
R f
and?r.n qrest 3/7 Alg/Gel No Yes
classification
8/20 Alg/Gel No No
3/4 Alg/Gel Yes Yes
Logistic regression 3/7 Alg/Gel Yes Yes
8/20 Alg/Gel Yes No
3/4 Alg/Gel Yes Yes
Support vector
classification
3/7 Alg/Gel Yes Yes
8/20 Alg/Gel Yes No




