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Abstract: Electroless etching of semiconductors has been elevated to an advanced micromachining 
process by the addition of a structured metal catalyst. Patterning of the catalyst by lithographic 
techniques facilitated the patterning of crystalline and polycrystalline wafer substrates. Galvanic 
deposition of metals on semiconductors has a natural tendency to produce nanoparticles rather than 
flat uniform films. This characteristic makes possible the etching of wafers and particles with arbi-
trary shape and size. While it has been widely recognized that spontaneous deposition of metal 
nanoparticles can be used in connection with etching to porosify wafers, it is also possible to pro-
duced nanostructured powders. Metal-assisted catalytic etching (MACE) can be controlled to pro-
duce (1) etch track pores with shapes and sizes closely related to the shape and size of the metal 
nanoparticle, (2) hierarchically porosified substrates exhibiting combinations of large etch track 
pores and mesopores, and (3) nanowires with either solid or mesoporous cores. This review dis-
cussed the mechanisms of porosification, processing advances, and the properties of the etch prod-
uct with special emphasis on the etching of silicon powders. 
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1. Introduction 
It has long been known that metals can spontaneously deposit on semiconductors 

out of solutions containing dissolved ions [1–3]. The kinetics of this process are complex, 
only partially understood, and depend on the concentration of the metal ion as well as the 
available counter reaction [4,5]. Thermodynamically, at a standard concentration with the 
evolution of H2 as a counter reaction, any metal with a positive reduction potential, for 
example, W, Re, Bi, Cu, Po, Ru, Hg, Ag, Au, Pd, Pt, Rh, Ir, and Tl, can deposit spontane-
ously on a semiconductor. When coupled to a sufficiently exergonic counterreaction such 
as the formation of a stable oxide, even metals with a slightly negative reduction potential 
might be induced to deposit, though deposition would be limited if the oxide is insulating. 
Any metal that has a standard reduction potential less positive than the semiconductor’s 
valence band maximum (VBM) exhibits kinetically constrained deposition. Specifically 
for Si, the metals W, Re, Bi, Cu, Po, and Ru that have E° < 0.6 V have slow kinetics for 
deposition of the metal. These metals as well as metals with a negative E° are also suscep-
tible to rapid dissolution in the presence of oxidants such as NO3– or H2O2 in solution. In 
contrast, the metals Hg, Ag, Au, Pd, Pt, Rh, Ir, and Tl that have E° > 0.6 V have facile 
kinetics for metal deposition onto Si particles. Substantial differences in the kinetics of Cu 
deposition as compared with Ag, Au, and Pt have been verified experimentally by Schön-
ekerl and Acker [4]. 

If the reduction potential of a metal ion is more positive than the VBM (both ex-
pressed in equivalent units), deposition proceeds without a substantial kinetic barrier. 
The kinetics of deposition depend on the relative energies of the metal ion acceptor level 
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as compared to the VBM, and also depend on the overlapping density of states. Because 
the density of states at the Fermi energy of a metal is orders of magnitude higher than the 
density of states at the VBM, the kinetics of electron transfer inherently favor deposition 
of metal onto metal rather than onto the bare semiconductor. Metal atoms tend to be 
strongly bound to semiconductor surfaces; nonetheless, their lateral potentials are rather 
flat and exhibit low diffusion barriers. Furthermore, metal atoms tend to interact more 
strongly with similar atoms rather than atoms in the semiconductor. The combination of 
these three factors means that metals that spontaneously deposit onto semiconductors 
have a tendency to deposit as nanoparticles (Volmer–Weber growth) rather than as uni-
form layers (van der Merwe growth) [6]. 

An enhanced rate of electron transfer in metals is true for other metals and any oxi-
dant. When a semiconductor surface that is decorated with a partial covering of metal 
nanoparticles is exposed to an oxidant in solution, the oxidant preferentially accepts an 
electron from the metal [7]. In addition, metals can act electrocatalytically. Consequently, 
for an oxidant such as H2O2 or bubbled O2 [8–11], reduction occurs almost exclusively at 
the metal nanoparticles, and one should expect that electron transfer at a metal-covered 
semiconductor surface is highly anisotropic. Interestingly, Hu, et al. [12] found that the 
rate of etching by dissolved O2 was increased significantly if Si with a patterned deposit 
of Ag, Au, or Pt was attached to a graphite substrate. 

Early investigations of the pitting and etching of Si in the presence of metals has been 
well detailed by Huo et al. [13]. These studies were performed in conjunction with the 
need to suppress metal impurities on the surfaces of Si wafers in order to obtain reliable 
performance in ultra-large-scale integration (ULSI) devices. Li and Bohn [14] demon-
strated that thin Au, Pt, or Au/Pd layers could be used to localize the formation of photo-
luminescent porous silicon (por-Si) in a manner closely related to the galvanic etching [15] 
process discovered by Kelly et al. [16,17]. However, it was the discovery by KQ Peng et 
al. [13,18] that such anisotropic electron transfer could be used to initiate preferential di-
rectional etching of silicon that transformed metal-assisted catalytic etching (MACE, also 
known as metal-assisted etching (MAE), metal-assisted chemical etching, and MacEtch-
ing) into a technique for controlled micro- and nano-structuring beyond porosification. 
Micromachining with MACE is possible because of the formation of etch track pores of 
roughly the same size as the diameter of the metal nanoparticle. These etch tracks can 
either be straight, as first observed in the early work of Peng et al., or helical, as was ob-
served by Tsujino and Matsumura [19]. In a modification on this scheme, Azeredo et al. 
[20,21] and Bastide et al. [22] developed systems for pattern transfer based on patterned 
metal stamps. A more distantly related micromachining technique utilized a metal needle 
electrode to anodically bore through-holes in Si [23]. 

Peng et al. [24] and Fang et al. [25] recognized that large, ordered arrays of etch tracks 
could be formed through control of the structure of the deposited metal. Building on tech-
niques known as natural [26], nanosphere [27], colloidal [28,29] or hole-mask colloidal 
lithography [30], close-packed [31] or non-close-packed arrays [32] of polystyrene or silica 
nanospheres or Ni islands [33] were self-assembled to serve as masks to form ordered 
arrays of either metal nanoparticles or holes in metal layers. The formation of etch track 
pores from such structured metal layers, thus, led to the formation of either ordered arrays 
of pores, when the metal nanoparticles were aligned, or ordered arrays of silicon nan-
owires (SiNW), when the holes were aligned. Control over the tapering of SiNWs has been 
demonstrated [34] and improved upon by changing the H2O2 concentration or using an 
applied bias [35,36]. 

These lithographic techniques can be implemented to machine single-crystal wafers 
of silicon [13,37,38] as well as other semiconductors [29,39,40]. The advantageous proper-
ties of MacEtched structures have made them ripe for exploitation in a wide variety of 
applications [40–42]. Surface-enhanced Raman spectroscopy (SERS) was performed with 
electric field enhancement being provided by the same metal nanoparticles used to cata-
lyze MACE [43]. Although the residual presence of metal impurities can be deleterious 
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for many electronic and optoelectronic applications, micromachining with MACE has 
been used to investigate the production of materials for a variety of applications including 
optical sensors [44] and photovoltaics [39]. Under the proper conditions, MACE has read-
ily led to the formation of low-reflectivity black silicon [36,38,45], and the effect was en-
hanced by MACEing a pyramid-covered Si surface [46]. This low reflectivity has been 
used to improve the efficiency of solar cells [47]. Ag-catalyzed MACE has also been used 
to produce photoluminescent hierarchical porous layers, for which the wavelength of 
photoluminescence (PL) was tuned in response to the concentration of H2O2 used as an 
oxidant [48]. Photoluminescence of SiNWs was found to be sensitive to exposure to O2 
[49], and PL quenching of porous SiNWs was used to demonstrate a reversible O2 sensor 
[50]. 

Silicon nanostructures, both por-Si and SiNWs, are of great interest in multiple en-
ergy applications. Nanostructures formed with MACE have been investigated for energy 
harvesting applications such as thermoelectric [51] and piezoelectric generators [40]. Ex-
tensive activity [40] has been directed toward high-performance Li-ion battery (LIB) an-
odes using either SiNWs [52–54] or por-Si [55,56]. 

The surface chemistry [57–61] and structure of etched Si is extremely versatile. SiNWs 
produced by MACE can be either solid core or porous [62] depending largely on the re-
sistivity of the Si substrate. Low-doped Si, regardless of whether it is n type or p type, 
leads to solid core SiNWs. Highly doped Si succumbs to remote etching and the formation 
of porous SiNW [36,63–66]. SiNWs have been modified with fluoroalkylsilanes to exhibit 
superhydrophobicity [67], and their rate of biodegradability was regulated by controlling 
their termination [64]. MACE has also been applied to a number of areas of biomedicine 
[68] such as the production of microneedles [63], for delivery of, for example, the anti-
cancer drug doxorubicin [69], and the generation of biocompatible nanoparticles [70]. 

Applications that require macroscale structures such as microfluidics, and microelec-
tromechanical systems (MEMS) [40] have also been pursued. If metal rather than Si nan-
owires is desired, the metal nanoparticle at the bottom of the etch track pore can be used 
as a catalyst for metal deposition within the pores. Subsequent removal of the Si pore 
walls leaves free-standing metal nanowires [71]. 

The use of single-crystal substrates is extremely useful in scientific studies because of 
their well-defined impurity levels, crystallographic orientation, and planar structure. Sin-
gle-crystal substrates are also advantageous for some applications such as MEMS and mi-
crofluidics because etch track pore formation is highly directional in nature [72,73]. For 
wafers, lithographic and growth methods developed primarily for the electronics indus-
try can be exploited and combined with MACE to generate devices that integrate a range 
of electronic, optoelectronic, optical, and transport properties. This can be particularly 
useful in sensor, photovoltaic, or energy conversion applications. However, single-crystal 
wafers are extremely expensive, especially for any material other than silicon. In pharma-
ceutical applications, where purity is of utmost concern and cost is essentially of no con-
cern, wafers can represent a viable option. However, for bulk production of nanowires or 
in applications such as LIB anodes, consumer products, and water filters, the cost of wa-
fers is prohibitive. These applications necessitate the use of powdered semiconductors ra-
ther than wafers. While the vast majority of MACE studies and reviews have concentrated 
on wafers [13,37,39,40,68,74–77], the focus of this review will be on the etching of powders. 

2. Mechanistic Aspects of MACE 
The development of a mechanistic understanding of MACE has been greatly in-

formed by the recognition of the similarities between the Si electroless etching schemes 
known as stain etching [78], regenerative electroless etching (ReEtching) [79], and MACE 
[7,72]. In stain etching, an oxidant injects a hole into the silicon valence band to initiate 
reaction. While nitrate (usually introduced from nitric acid [80]) is the most commonly 
employed oxidant, the extremely complex mechanism of nitrate reduction [81–83], com-
plete with multiple intermediates and various gaseous products [84], makes the formation 
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of homogeneous and thick porous films challenging. The discovery [85,86] that an oxo-
vanadium(V) species is optimally coupled to the Si valence band greatly enhanced the 
utility of stain etching, which is characterized by the following overall chemical reaction. 

6HF(aq) + Si(s) + 2VO2+(aq) → SiF62–(aq) + 2VO2+(aq) + 2H2O(l) + H2(g), E° = 2.231 V (1) 

Note the large standard reduction potential, E°, of this reaction, which should push 
the reaction to completion except for the coupling of the reaction rate to the silicon band 
structure through the effects of quantum confinement [87,88]. More importantly for the 
optimization of electroless etching, the interconversion of oxovanadium ions between the 
+5 and +4 oxidation states in hydrofluoric acid is completely reversible in the presence of 
Si and H2O2 [89]. Regeneration of the +5 state is required to initiate Rxn. (1) and is affected 
by Rxn. (2) as follows: 

H2O2 + 2VO2+ → 2VO2+ + 2H+, E° = 0.785 V (2) 

As illustrated in Figure 1a, this reversibility allows us to establish an etching cycle. 
In this cycle, VO2+ acts as a catalyst that facilitates the porosification of Si by H2O2 accord-
ing to the following reaction: 

6HF(aq) + Si(s) + H2O2(aq)  H2SiF62–(aq) + 2H2O(l) + H2(g), E° = 3.016 V (3) 

This is quite remarkable because Si acts as a very poor catalyst for H2O2 decomposi-
tion, which means that the etch rate of Si in HF + H2O2 solutions in the absence of a catalyst 
is extremely low [90]. The introduction of H2O2 as an oxidant is advantageous because it 
is inexpensive and widely available, and also it can be introduced with a syringe pump 
(details in the next section) to control the rate and extent of reaction [89]. 

Figure 1b illustrates that we can heterogenized the catalyst by replacing VO2+ with a 
deposited metal M. In other words, the overall electrochemical reaction governing MACE 
is as follows: 

6HF(aq) + Si(s) + H2O2(aq) 
    M    
�⎯⎯� H2SiF62–(aq) + 2H2O(l) + H2(g), E° = 3.016 V (4) 

As discussed in [7], there are three possible etch pathways: (1) divalent dissolution 
requiring the injection of two holes per Si atom etched, (2) tetravalent valent dissolution 
requiring the injection of three holes per Si atom etched that does not involve an SiO2 
intermediate, and (3) tetravalent dissolution that requires an SiO2 intermediate. Divalent 
dissolution is accompanied by H2 formation. The tetravalent pathways are both not ac-
companied by H2 formation. Equation (4) implies divalent dissolution of Si. Divalent dis-
solution was directly observed for Ag- and Au-catalyzed MACE when V2O5 was used as 
the oxidant [7]. The same study determined that Pt-catalyzed MACE followed a tetrava-
lent pathway and Pd-catalyzed MACE followed a mixture of di- and tetra-valent dissolu-
tion. Unfortunately, the stoichiometry of H2O2-induced etching could not be determined 
in that study. Wang et al. [64] detected but did not quantify the amount of H2 formed by 
Ag-catalyzed MACE with H2O2 as oxidant. This meant that either divalent or a mixture of 
divalent and tetravalent dissolution was occurring in this system. When etching is diva-
lent, formation of SiO2 and its removal by HF etching is not an important reaction path-
way. Similarly, since H2 is not formed in tetravalent electropolishing via SiO2 formation, 
the detection of H2 during Ag-catalyzed MACE with H2O2 means that divalent dissolution 
must be occurring (though perhaps not exclusively). 

All the processing advantages concomitant with H2O2 injection can also be realized 
in metal-assisted etching, a process that can be recast as injection-MACE (iMACE). The 
advantages of iMACE lie in the ability to control the extent and rate of etching by control-
ling the volume and rate, respectively, of H2O2 injection; and also, in the establishment of 
steady-state etching conditions in which the concentration of oxidant is minimal. The in-
troduction of injection enabled quantitative studies of MACE [66] in which it was discov-
ered that the nature of the etching process depended on the loading of the deposited 
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metal. Furthermore, Tamarov et al. [65] found that because of the low oxidant concentra-
tion, Cu could be used as a catalyst to porosify Si, not just anisotropically etch it. 

  

(a) (b) 

Figure 1. (a) The ReEtch cycle for etching of Si. An oxovanadium ion with vanadium in +5 oxidation state, denoted V(V), 
injects a hole, h+, in the Si valence band and is reduced to a vanadium ion in +4 oxidation state, V(IV). The hole initiates 
etching of Si atoms to form a pore in the substrate. The product of the complete reaction is SiF62–. Injected H2O2 removes 
an electron from V(IV) to regenerate V(V) so that the cycle can begin again. (b) The injection MACE cycle for etching Si, 
denoted iMACE. Injected H2O2 removes an electron from a metal nanoparticle, M, which then injects a hole into the Si 
substrate. The hole initiates the etching of Si forming the etch product SiF62–, to form a pore in the substrate. 

Whereas there are analogies in the initiation and the overall electrochemistry of elec-
troless etching schemes, there are also important differences. The obvious difference be-
tween ReEtching and MACE, represented in Figure 1, is the presence of the metal catalyst 
in contact with the Si surface. The presence of the metal and the directing of catalytic ac-
tivity toward specific locations gives rise to several issues that can be traced back to elec-
tron transfer at the solution/metal interface and hole injection at the metal/semiconductor 
interface:  
1. Etching can be either local or remote. 
2. Local etching results in the formation of etch track pores that have a width and shape 

determined by the size and shape of the metal deposit. 
3. Remote etching generates tortuous pores analogous to ReEtching. 
4. The space charge layers (SCL) around metal nanoparticles interact with one another, 

which facilitates co-operative etching. 
5. The efficacy of hole injection at the metal/semiconductor interface depends on the 

elemental composition of the metal, semiconductor doping, and the temperature. 
6. The balance between remote and local etching can be controlled by metal nanoparti-

cle size, metal nanoparticle density, elemental composition of the metal, semiconduc-
tor doping, and temperature; therefore, these parameters are used to control the pore 
size distribution as well as whether the walls of etch track pores are solid or porous. 
These six points are illustrated schematically in Figure 2 and are demonstrated quan-

titatively in the Results section. In Figure 2, we see that holes are generated by electron 
transfer to the oxidant on the surface of the metal nanoparticle catalyst. The nature of band 
bending at the metal/semiconductor interface [35,36,65,91,92] is determined by the align-
ment of the metal Fermi level with the semiconductor VBM. Therefore, both the height 
(and whether the contact is Ohmic or Schottky-like in nature) and width of the barrier that 
impedes transport of the hole away from the metal/semiconductor interface depends on 
the composition of the metal and the doping of the semiconductor. In particular, the width 
of the SCL narrows at high doping levels (regardless of the type). This facilitates the es-
cape of holes by tunneling through the Schottky barrier and into the remote region. This 
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behavior explains, as first observed by Hochbaum et al. [62], why highly doped samples 
etch to form mesoporous pore walls surrounding etch track pores. 

 

Figure 2. Hole are generated by the decomposition of H2O2 catalyzed by reaction on the surface of 
metal nanoparticles. Holes trapped at the metal/semiconductor interface initiate local etching and 
etch track pore formation. Holes that escape the space charge layer initiate remote etching which 
generates tortuous pores similar to those generated by ReEtching. 

Another way to conceptualize this system is in terms of fields and chemical potential. 
The idea that band bending and charge imbalance on the metal nanoparticle polarizes the 
surrounding Si to engender local electropolishing beneath the metal nanoparticle and re-
mote porosification away from the metal nanoparticle was first proposed and supported 
by band bending calculations by Kolasinski in 2014 [93], then, confirmed through quanti-
tative two-dimensional band bending modelling by Torralba et al. in 2016 [35], and con-
firmed again by Wang et al. in 2018 [64]. Tamarov et al. [65] expanded these concepts by 
interpretation of extensive experimental data through theoretical calculations for a full 
range of heavily, moderately, and lightly doped p and n type Si in combination with Cu, 
Ag, Au, Pd, and Pt catalysts. 

Rezvani et al. [94] directly measured that the metal nanoparticles are biased negative 
with respect to Si during MACE. One consequence of this effective negative charge is the 
formation of an image dipole that attracts the metal to the semiconductor. This is im-
portant to explain [72] the etching of particles on all sides for which, unlike the illustration 
shown in Figure 2, there are no natural up or down directions. A second consequence is 
that the metal nanoparticle effectively acts as a local potentiostat powered by H2O2 de-
composition that polarizes the surrounding Si. In this picture, the local region is biased 
into the electropolishing regime, which completely removes Si and forms etch track pores 
beneath the metal catalyst. Further away in the remote region, the Si is biased below the 
critical potential and the semiconductor etches in the mesopore formation regime. 

After hole transport to the solution/semiconductor interface, solution-phase species 
such as F–, HF, and HF2– are involved in the various steps of the reaction mechanism [95]. 
These species move under the influence of the electrochemical potential. As demonstrated 
by Equation (4), there is a huge driving force for these species to react with Si to form 
H2SiF6(aq). However, without a source of holes, the reactants are kinetically constrained 
and the etch rate is minimal; only with the push of the oxidant and the pull of the fluoride 
species, can the activation barrier be overcome to complete this full electrochemical cir-
cuit. 
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3. Materials and Methods 
Wafers represent a well-defined, low-surface-area substrate. The etching of powders 

presents numerous challenges that are not obvious because they are not of much relevance 
to wafer etching. Wafer etching is usually performed under the tacit assumption of an 
excess of etchant and the influence of concentration changes or reactant depletion are gen-
erally not considered. Few of the multitude of studies addressing the etching of wafers 
ever report the volume of etchant used or the extent of reaction. Rarely is the temperature 
controlled. Therefore, from most of the published data, no reasonable inferences can be 
made regarding the effects of changes in concentration and temperature during etching. 
When etching is extensive enough to generate an easily weighable mass difference, then, 
reactant depletion must be taken into consideration. Two other factors, discussed further 
by Tamarov et al. [65] that complicate quantitative analysis are that etching and Si mass 
loss occur during metal deposition and the presence of side reactions of the oxidant. It 
should also be noted that when pores become long, transport constraints hinder uniform 
mixing as is required for simple application of a rate law. Extrapolation to zero film thick-
ness may be required to extract kinetically relevant data [96,97]. 

The low specific surface area of wafers greatly reduces the absolute rate of reaction 
as compared with powder etching. This translates into much reduced gas and heat pro-
duction. Gas production is important because the formation of bubbles [98] can generate 
capillary forces, which can engender structural changes much like those observed during 
drying. SiNWs are susceptible to bunching under the influence of mutual van der Waals 
forces [99]. Bunching was exploited by [44] to create hot spots for electromagnetic field 
enhancement that improves the sensitivity of SERS analysis. The surface tension of a dry-
ing solvent plays a role in nanowire bunching [100]. The magnitude of capillary forces in 
nanostructured systems can far exceed van der Waals forces. Just as they can lead to crack-
ing and various structural transitions in drying colloidal [101] and porous films [102,103], 
capillary forces can readily cleave the walls between etch track pores. As we shall see in 
the next section, this is the method by which nanowires are formed in MACE of powders 
[72]. Understanding the roles of mutual attraction and capillary collapse along with the 
introduction of electrostatic repulsion has facilitated the creation of SiNWs with excep-
tionally high aspect ratios [104]. 

Another problematic aspect of gas bubble formation is that it can make silicon buoy-
ant. For a wafer, the troublesome floating of a sample to the surface of the etchant is easily 
overcome by securing the sample in a fixed position. A vertical orientation should be cho-
sen so as to avoid trapping of gas bubbles under the sample. In a vertical configuration, 
the bubbles have a beneficial effect by ensuring thorough mixing in the solution. Overly 
vigorous bubbling can lead to structural changes and exfoliation. For powders, buoyancy 
results in foaming, which is extremely deleterious to the etching process because it causes 
inhomogeneous and incomplete etching as well as the possibility of overtopping reaction 
vessels. 

Thermal management has not been recognized as a concern for MACE of wafers even 
though it is known that the etch rate exhibits Arrhenius behavior with an activation en-
ergy of ~0.4 eV [72,105]. However, the standard reduction potential, E°, of the overall etch-
ing reaction (4) is 3.016 V which translates into a molar Gibbs energy of reaction of ΔrGm° 
= –1164 kJ mol–1 as compared with the molar Gibbs energy change for Si combustion to 
SiO2 which is only –856 kJ mol–1. This means that etching is extremely exothermic. For the 
etching of powders this can translate into temperature rises that are sufficient to boil the 
etchant and fully oxidize the product to SiO2. It is essential during the etching of powders 
that heat dissipation is built into the design of the reaction vessel. 

Agglomeration of particles is problematic for powder etching. While this is of no con-
cern during etching, it does arise during metal deposition, as discussed later. In the etch-
ing of wafers, HF has been replaced with NH4F. This allowed Gonchar et al. [106] to vary 
the length and shape of etched structures. However, the precipitation of salts or hex-
afluorosilicates out of solution has been observed during porous silicon formation [107]. 
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The effects can be deleterious for homogeneity and continuous etching. On wafers, pre-
cipitation is easily suppressed by avoidance of cations that might promote precipitation; 
however, when etching powders essentially to completion and in large batches, avoidance 
of added ammonium, alkali, or alkaline earth cations is even more critical. 

The exigencies of etching powders—exercising as much control and uniformity as 
possible with a highly exothermic reaction involving three phases—mean that common-
place methods derived from wafer cleaning procedures are of little use. It is totally insuf-
ficient to simply mix reagents in the required proportions and either dip the sample in the 
etchant or pour the etchant onto the sample followed by rinsing and drying. 

When anodization is used to produce por-Si films, ethanol is commonly used as a 
surfactant to minimize bubble formation, ease the release of H2 bubbles from the substrate, 
and enhance homogeneity [108,109]. Ethanol is not a wise choice for conventional stain 
etching because strong oxidants such as nitric acid can react violently with ethanol. Etha-
nol has been shown to significantly decrease the rate of stain etching with V2O5 as the 
oxidant [96]. Ethanol is slowly oxidized by V2O5 dissolved in HF(aq); therefore, etchants 
need to be made up fresh and cannot be stored. At low concentration, ethanol-hydrogen 
peroxide mixtures are stable at room temperature; nonetheless, a much better choice of 
surfactant is acetic acid, which is much less reactive because it is the partial oxidation 
product of ethanol. While it is found to decrease the etch rate, the use of acetic acid greatly 
reduces foaming during stain etching or ReEtching [110]. Foaming is also suppressed by 
the use of larger particles, such that the concentration of acetic acid required to ameliorate 
foaming decreases with increasing particle size. 

In ReEtching, Si powder is first dispersed in acetic acid appropriately diluted with 
deionized water. ReEtching can be performed on particles of any shape or size. While the 
initial report [79] demonstrated complete etching through the core for 4 µm particles, sub-
sequent work in our lab has found that particles at least as large as 50 µm can be com-
pletely etched. Etching must be performed is a fluoropolymer, polyethylene (either high-
density HDPE or low-density LDPE) or polypropylene container because of the use of 
hydrofluoric acid. A magnetic stirring bar is used for agitation. Continuous sparging with 
N2 is sometimes used to aid in agitation, suppression of foaming, and exclusion of O2. The 
N2 stream can also be cooled; however, it is essential to place the reaction container in a 
thermostatic water (or ice/water) bath to ensure sufficient cooling and temperature regu-
lation. Other cooling systems have also been employed [111]. 

V2O5 dissolves readily in room temperature concentrated HF(aq) but extremely 
slowly in chilled or dilute HF. Therefore, V2O5 is added directly to concentrated HF(aq) in 
a chemically resistant polymer container before dilution and cooling. After dissolution 
and cooling, the dissolved V2O5 is added to the dispersed Si. In the absence of acetic acid, 
the addition of HF to Si powder dispersed in water causes the formation of a silvery film 
on top of the solution because HF reacts with the native oxide layer on the Si particles and 
replaces hydrophilic Si–OH groups with hydrophobic Si–H groups. Such a layer forms 
whenever particles under ~100 µm are present in the dispersion and has an appearance 
much like that of an unpolished Si wafer. 

The etchant with dispersed Si powder is allowed to equilibrate under constant stir-
ring. Then, H2O2 is introduced with a syringe pump at a rate sufficient to deliver the de-
sired amount of oxidant over a period of typically 30–90 min. In conventional MACE of 
wafers, all the oxidant is added at the beginning of the etch. The etch rate depends on the 
concentration of H2O2 [48,64]. When injection is used to deliver the oxidant, a low steady-
state concentration is maintained that is set by a number of factors including the volume 
of the solution, the concentrations of silicon and oxidant, and the injection rate. For both 
ReEtching [79] and MACE [65,66], characteristics such as the yield of the reaction, extent 
of reaction, and thickness of the layer depend on the etching time/injection rate and the 
H2O2 to Si molar ratio. 

Subsequent to etching, the silicon must be rinsed and filtered to remove the etchant 
and etch products. Details of the rinsing protocol are important for obtaining a high-
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quality product. The structural integrity of the etched film is strongly affected by the ca-
pillary forces that arise during solvent drying. Retention of visible photoluminescence af-
ter air exposure is also strongly dependent on the rinsing protocol [112]. Simple rinsing 
with deionized water is by far the least acceptable procedure. Rinsing with dilute HCl(aq) 
is superior for removing etchant and etch products; however, the high surface tension of 
water leads to significant structural damage and the introduction of nonradiative traps. 
Thorough rinsing with dilute acid to remove the bulk of the etchant should be followed 
with rinsing with ethanol, and then wetting with pentane, followed by vacuum oven dry-
ing. Skipping the ethanol rinse has only a moderate effect on PL retention but wetting 
with pentane should be performed. 

The abovementioned procedures apply equally well for ReEtching and MACE, ex-
cept for two issues. Obviously, no dissolved V2O5 is required for MACE. More im-
portantly, the rinsing protocol must be changed. For MACE, dilute HCl(aq) must be 
avoided to preclude the precipitation of metal chloride into the etched powder. Sometimes 
it is desirable to remove the metal from the Si powder. This should be performed before 
the pentane wetting step. In addition, to avoid damage to the Si nanostructures, a metal 
such as Ag should be removed by concentrated HNO3 that has been diluted with concen-
trated acetic acid that has been chilled [66]. 

MACE requires a metal deposition step prior to introduction of the oxidant, which 
also can be performed on powder particles of arbitrary shape, size, or doping. Control of 
the uniformity and amount of deposited metal is extremely important [65,66]. The con-
ventional high-load MACE regime (HL-MACE) is obtained when metal is deposited at 
the level of 1 mmol per g of Si. The more recently discovered low-load MACE regime (LL-
MACE), in which the porosity and pore size distribution are scalable, is obtained when 
metal is deposited at the level of <0.05 mmol per g of Si. In order to enhance uniformity, 
avoid agglomeration, reduce the strength of agglomeration, and precisely control the 
amount of metal deposited, the silicon powder is again dispersed in acetic acid, HF is 
added, and the dispersion is cooled in a thermostatic bath with constant agitation in the 
form of magnetic stirring. Then, the dissolved metal salt is injected with a syringe pump 
over a period of typically 15–20 min. Subsequent to metal deposition, injection of the oxi-
dant is performed, as described above, directly into the same solution that was used for 
deposition. 

4. Results of Powder Etching 
Using the techniques described in the previous section, electronics grade (EG-Si) or 

metallurgical grade (MG-Si) silicon with arbitrary size and characteristics can be etched: 
single crystalline or polycrystalline, n or p type, highly doped/impure, or low doped. Fig-
ure 3 demonstrates that both EG- and MG-Si powder particles are etched by conventional 
HL-MACE to generate particles with roughly the same morphology; numerous, mostly 
parallel etch track pores are formed leaving behind random ridge-like structures [72]. The 
formation of etch track pores primarily directed along {001} directions is confirmed by 
cross-sectional scanning electron microscope (SEM) images from both powders and sin-
gle-crystal wafers, as shown for the latter in Figure 3c. The structure of the particles shown 
in Figure 3 is consistent with SEM images reported by Ouertani et al. [113], who also found 
that Ag-catalyzed MACE of MG-Si tends to improve the crystallinity due to the removal 
of amorphous material and impurities. The removal of impurities resulting from MACE 
to upgrade MG-Si to solar-grade Si has been studied extensively by Li et al. [114–116]. 

The advantage of being able to process particles of arbitrary size, shape, and doping 
has been further demonstrated by Kozlov et al. [70]. They have shown that centimeter-
size particles of MG-Si, potentially even particles reclaimed from another process, can be 
subjected to Ag-catalyzed MACE and subsequently pulverized with sonication in water 
to generate photoluminescence por-Si nanoparticles. 

Differences in the results of etching in the HL regime depending on the metal have 
been reported, for example, by Matsumoto et al. [117] for Ag, Au, and Pt. Pinna et al. [36] 
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performed extensive experiments of Ag-catalyzed HL-MACE to determine the effects of 
changing doping levels and types. The doping level is important because it affects the 
balance between local etching in the vicinity of the metal nanoparticle (favored at low 
doping) versus remote etching that forms tortuous mesopores (which occurs at high dop-
ing) [36,64–66]. 

 
Figure 3. Secondary electron scanning electron microscope (SEM) images of etched Si particles using Ag-catalyzed HL-
MACE. (a) Single crystal and (b) metallurgical-grade Si powders both etch to reveal primarily parallel etch track pores as 
a result of etching with HL-MACE. (c) Etching of a textured Si(001)-oriented wafer shows that the Ag nanoparticles etch 
primarily along {001} directions irrespective of the incline of the external surface of the substrate. Copyright © 2021 Ko-
lasinski, Unger, Ernst and Aindow. Reproduced under Creative Commons Attribution License (CC BY) from Ref. [72]. 

Cross-sectional scanning transmission electron microscopy (STEM) was used to fur-
ther probe the structure of etched particles and substrates. Figure 4 displays a representa-
tive high-angle annular dark-field (HAADF) STEM image of a focused ion beam (FIB) 
cross section taken from a Si(110) substrate. Multiple parallel etch track pores were re-
vealed. Several Ag nanoparticles were observed as bright spheres at the bottom of several 
pores. Primarily, parallel pores with a uniform length (as shown in Figure 3c) were 
formed, which indicated a high degree of cooperativity in the motion of metal nanoparti-
cles during etching. Correlated motion of the high-density particles formed from high-
load deposition may result from interactions derived from the overlapping space charge 
layers associated with each metal nanoparticle. Note that etching of substrates with mod-
erate or low doping levels, such as the that shown in Figure 4, exhibited primarily local 
etching to form etch track pores of the same size as the metal nanoparticle. 

 
Figure 4. High-angle annular dark-field (HAADF) scanning transmission electron microscopy 
(STEM) image of focused ion beam (FIB)-cut cross section of a semiconductor grade moderately 
doped Si(110) wafer. Local etching results in the formation of crystallographically defined etch 
track pores primarily along {001} directions when HL MACE is performed. Copyright © 2021 Ko-
lasinski, Unger, Ernst and Aindow. Reproduced under Creative Commons Attribution License 
(CC BY) from Ref. [72]. 



Micromachines 2021, 12, 776 11 of 19 
 

 

Under low-load deposition conditions, metal nanoparticles were, on average, much 
further apart from one another. As shown in Figure 5, this led to uncorrelated motion of 
the metal nanoparticle and meandering (nonparallel) etch track pores. In addition, the 
etch track pores were surrounded by random, tortuous mesopores generated by remote 
etching. 

 
Figure 5. HAADF STEM image of FIB-cut cross section of a metallurgical grade Si particle etched with LL-MACE catalyzed 
by either Cu or Ag nanoparticles (first two columns). The bright field images in the third column show individual Cu 
(upper) and Ag (lower) nanoparticle catalysts embedded in Si after etching. Ag nanoparticles are observed as bright spots. 
Local etching results in uncorrelated, meandering etch track pores, while tortuous mesopores are created by remote etch-
ing. Reproduced with permission from Ref. [66]. Copyright  2020, American Chemical Society. 

The differences between HL- and LL-MACE are exhibited in Figure 6. From the struc-
ture of the deposited metal to the texture of the etched particles, the two regimes are dis-
tinctly different. Figure 6 also demonstrates that SiNWs are not formed as a direct result 
of etching. On the contrary, parallel etch track pores create ridges. These ridges are easily 
cleaved from the substrate and from each other by sonication. Efficient SiNW production 
is possible in this manner; however, direct formation of SiNWs only occurs when metal 
layers are patterned lithographically to reveal hole arrays, as first shown by Peng et al. 
[24] and Fang et al. [25]. 
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Figure 6. Contrasting structures associated with HL and LL regimes. High-load MACE with Ag 
(left-hand column) is characterized by: (a) Deposition of a thick metal layer composed of dendrites 
as well as nanoscale and microscale metal particles (plan view); (b) etching proceeds with corre-
lated motion of the metal nanoparticles to form predominantly 70–100 nm parallel etch track pores 
(cross section); (c) production of etched silicon particles that are rough in texture and covered with 
ridges formed by the etch track pores (plan view). Low-load MACE (right-hand column) is charac-
terized by (d) light deposition of dispersed individual metal nanoparticles (plan view); (e) uncor-
related etching of random 10–50 nm etch track pores that are surrounded by remotely etched 3–6 
nm tortuous pores (cross section); (f) production of etched particles that are relatively smooth in 
texture with randomized pores (plan view). Reproduced with permission from Ref. [65]. Copy-
right  2020, American Chemical Society. 

The low-load regime is not merely a curiosity. Figure 7 demonstrates a remarkable 
property, i.e., LL-MACE can be used to choose the pore size distribution based upon the 
choice of experimental parameters. Tamarov et al. [65] found that the partitioning of re-
mote to local etching as well as the size and behavior of the metal nanoparticle depended 
on (1) the elemental composition of the metal nanoparticle, (2) the doping type and level 
of the Si, and (3) the temperature of the etchant. By choosing between Ag, Au, Cu, Pd, and 
Pt over a temperature range of roughly 0–50 °C, and using different types of Si, the mean 
pore size was varied as well as whether the distribution was composed of one or two 
maxima. 
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Figure 7. In the low-load regime (LL-MACE), control of the metal composition, doping level and 
temperature are used to control the pore size distribution. Reproduced with permission from Ref. 
[66]. Copyright  2020, American Chemical Society. 

The results for Cu-catalyzed MACE, shown in Figures 5 and 7, demonstrate a much 
different type of etching than what is usually associated with Cu. The formation of black 
silicon has been a topic of much interest, particularly for improving the performance of 
photovoltaic devices [118–120], but also for bactericidal activity [121]. A number of 
groups, including [38,45,122–126], have generated black silicon by etching inverted pyra-
mids into Si wafers using Cu-catalyzed MACE. These low reflectivity surfaces differenti-
ate themselves from the better known alkaline-etched black Si [67,127] upon which up-
right pyramids are found. The formation of pyramidal structures in alkaline etching is 
understood to be related to the highly anisotropic nature of hydroxide-catalyzed hydrol-
ysis of Si [128–132]. This is commonly ascribed to the necessity to form a sterically con-
strained transition state, with the most sterically constrained Si(111) surface exhibiting the 
lowest etch rate [133,134]. Analogously, anisotropic etching to reveal smooth {111} planes 
is involved in the formation of inverted pyramids by conventional Cu-catalyzed MACE. 

Figure 5 clearly demonstrates that etching catalyzed by Cu nanoparticles does not 
lead to the formation of pyramidal structures. The origin of anisotropic pyramid etching 
may be related to the poor kinetics of Cu deposition onto Si as compared with the rather 
facile dissolution of Cu deposits in the presence of a sufficiently high concentration of 
oxidant such as H2O2. As explained above, the kinetics of Cu deposition are slow on ideal 
Si surfaces because the standard reduction potential of Cu is less positive than the Si VBM. 
It has been confirmed experimentally [4] that Cu deposition occurs initially on defect sites 
in contrast to Ag, Au, and Pt depositions which occur on both ideal and defect sites. Pref-
erential deposition at step defects will lead to step-flow etching if the Cu assemblies are 
unable to expand onto the terraces before being dissolved. Step-flow etching is required 
to form the flat {111} planes observed in the inverted pyramids. 
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5. Conclusions and Perspectives 
Metal-assisted catalytic etching is a micro/nano-machining technology that has been 

recognized for more than a decade as an extremely versatile method of processing semi-
conductor wafers. The ability of MACE to also process semiconductor substrates of arbi-
trary shape, including powders, has only been recognized much more recently. Thus, 
MACE is capable of producing model structures of interest to researchers, as well as func-
tional structures useful for applications including the production of high-volume 
nanostructured materials. In addition, recent advances in control over the yield, pore size, 
and pore size distribution have demonstrated that MACE is capable of producing bespoke 
porosification of silicon powders in industrially relevant quantities. 

6. Patents 
One patent has been granted to the author and one application has been made based 

on original work reviewed here. K. W. Kolasinski and B. A. Unger, Injection Metal Assisted 
Catalytic Etching, Application No. US 62/881,636 (2019). K. W. Kolasinski, J. Salonen, and 
E. Mäkilä, Regenerative Electroless Etching, Patent No. US 10,590,562 B2 (2019). 
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