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Abstract: This study presents a comparative theoretical analysis of different doping schemes in
organic semiconductor devices. Especially, an in-depth investigation into bulk and contact doping
methods is conducted, focusing on their direct impact on the terminal characteristics of field-effect
transistors. We use experimental data from a high-performance undoped organic transistor to prepare
a base simulation framework and carry out a series of predictive simulations with various position-
and density-dependent doping conditions. Bulk doping is shown to offer an overall effective current
modulation, while contact doping proves to be rather useful to overcome high-barrier contacts. We
additionally demonstrate the concept of selective channel doping as an alternative and establish a
critical understanding of device performances associated with the key electrostatic features dictated
by interfaces and applied voltages.

Keywords: organic semiconductors; field-effect transistors; doping; contact effects

1. Introduction

Organic semiconductors are enabling a new area of flexible electronics by virtue of
their molecular-level softness and competitive low-temperature processabilities [1–5]. After
the successful commercialization of organic light-emitting diodes (OLEDs), other types of
organic electronic devices are now poised to conquer the market, emphasizing the same
merits of high multi-functionality, unconventional physical form factors, and additive,
printing-based customizable manufacturing. The organic field-effect transistor (OFET)
is one such emerging candidate [6–13] that can play a key role in active-matrix displays,
image sensors, and bio-neuromorphic systems.

Despite the dramatic performance improvements made for OFETs over the past few
decades, there is still a lack of fundamental understanding regarding their physical aspects.
For instance, charge doping, one of the most established design and engineering concepts
for traditional (inorganic) semiconductor devices, still requires more understanding be-
cause the nature and manifestation of doping in organic materials significantly differ from
those in inorganic counterparts [14–16]. In particular, the vast majority of reported organic
devices are not (nominally) doped at all, yet native or unintentional doping can always
take place under realistic conditions [17]. This makes it even more unclear whether a
dedicated doping step is really necessary for organic semiconductors. Moreover, the vastly
different doping methods, ranging from chemical solution mixing to physical diffusion
(or modulation) doping, as well as various possible focus zones inside an OFET device
structure, are among the major complications.

In this study, we address this difficult but important issue of OFET doping by drawing
systematical theoretical comparisons between several doping motifs relevant to state-of-the-
art OFET devices. We especially focus on comparing bulk and contact doping, both of which
have been frequently adopted in the literature. Considering the specificities of the topic,
we take the maximum leverage of the structural device simulation in precisely controlling
the doping locations and densities. Furthermore, both co-doping and counter-doping
scenarios are fairly considered, the latter of which has not been adequately addressed in
organic semiconductors.
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2. Experimental and Simulation Methods

Flexible OFETs were fabricated as a model device platform to be reproduced in theoretical
simulation. These devices are of a staggered-type, and have a bottom-gate and top-contact
configuration [18]. A polyethylene terephthalate (PET) plastic was used as a substrate. Indium-
tin oxide (ITO) covered with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PE-
DOT:PSS) buffer was used a double-layer gate electrode. The ITO layer was pre-deposited
upon purchase of the PET substrates (Sigma-Aldrich, Saint Louis, MO, USA). The PE-
DOT:PSS film was deposited by spin coating at 3000 rpm and annealing at 100 ◦C. A
410-nm-thick polymeric dielectric film was formed by spin coating a poly(methyl methacry-
late) (PMMA, M.W. = 120 k, Sigma-Aldrich) solution in toluene (with a concentration of
60 mg/mL) at 2000 rpm. The as-deposited PMMA film was immediately annealed at
100 ◦C. A 30-nm-thick p-type organic semiconductor film was deposited by thermal vac-
uum evaporation of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT, sublimed grade,
99%, Sigma-Aldrich) through a shadow mask [19–21]. The device fabrication was finished
by thermal vacuum evaporation of Au source and drain electrodes through another shadow
mask defining the channel width (W) and length (L) of 500 and 50 µm, respectively. The
electrical characteristics of the OFETs were recorded using a Keithley 4200 semiconductor
parameter analyzer in the dark and under ambient conditions.

As a simulation tool, a two-dimensional (2D) finite-element simulation package (AT-
LAS, Silvaco, USA) was employed. This is a physically based numerical simulator widely
used for device research [22–29]. Here, we briefly explain its core capabilities. Poisson’s
equation relates the local potential to the space charge density as

div(ε∇ψ) = −ρ (1)

where ψ is the electrostatic potential, ε is the semiconductor permittivity, and ρ is the local
space charge density. In addition, the drift-diffusion transport model is given as

→
Jn = qnµn

→
En + qDn∇n (2)

and →
Jp = qpµp

→
Ep − qDp∇p (3)

where
→
Jn and

→
Jp are the electron and hole current density, respectively;

→
En and

→
Ep are

the electron and hole effective electric field, respectively; µn and µp are the electron and
hole mobility, respectively; Dn and Dp are the electron and hole diffusion coefficient,
respectively; q is the elementary charge; and n and p are the electron and hole concentration,
respectively. The simulator solves these Poisson’s and drift-diffusion equations in a self-
consistent manner for an entire 2D mesh structure that is user-defined to a model or predict
an experimental device. Note that the charge-carrier densities (n and p) and associated
ρ are locally determined from the intrinsic carrier density and doped carrier density
contributions, so that we can have direct control over these values and their gradients in
Equations (1)–(3) (which we will strategically use for the doping study). An application
of external electrical biases to the device alters the overall potential landscape, which in
turn affects the field vectors as well as the 2D carrier distribution. Therefore, solving

Equations (1)–(3) under a stated bias condition provides access to the current density (
→
Jn

and
→
Jp) generated due to this biasing. The terminal currents (or macroscopic currents

measurable by test equipment) are simply estimated by integrating local current densities
over the whole 2D mesh (or device) and W. Therefore, this type of numerical solver is
able to produce practical current–voltage curves of the device (e.g., transfer curves for
transistors) by repeating this procedure over a certain voltage sweep range.
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3. Results and Discussion
3.1. Validity of Simulation Framework

We first set up a base simulation framework that is able to closely reproduce the
experimental OFET. This task involved a series of careful optimization steps for finding the
optimum materials and interface input parameters. The excellent agreement between the
gate voltage (VG) versus drain current (ID) characteristics (or transfer characteristics) at a
drain voltage (VD) of −12 V from the measurement and numerical simulation in Figure 1a
broadly supports the validity of the model and parameters used. We specifically took
into account several unique properties of OFETs, including the effect of a charge injection
barrier (Eb) at the metal–semiconductor contact (Figure 1b) [30–32] and a trap- or disorder-
limited transport mediated by an exponential density of states (DOS) (Figure 1c) [33–35].
The optimized parameters are listed in Table 1. The zero-doping condition, which usually
represents a very low thermal charge-carrier density in an unintentionally doped semi-
conductor [17], is assumed here. In this context, Figure 1a is good evidence that such a
nominally intrinsic organic channel can fully realize a working field-effect device, while
the following results will argue about the applicable range of such a simplistic assumption.
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Table 1. List of input parameters that produce the reference simulation curve in Figure 1a.

Layer Parameter Value

Organic semiconductor

Electron affinity 2.0 eV
Band gap 3.3 eV

Doping concentration 0 cm−3

Hole mobility 1 cm2V−1s−1

HOMO effective DOS 1020 cm−3

Total trap density 1017 cm−3

Trap characteristic temperature 1200 K

Gate electrode Work function 5.0 eV
Source/drain electrodes Work function 4.9 eV

Figure 1d illustrates the concepts of the three different doping techniques. Exper-
imentally, bulk doping can be obtained by exposing a pristine organic semiconductor
film to doping agents (usually in liquid or gas phase) or by forming a co-solution of a
host-dopant mixture that is directly processed (e.g., by spin coating) to become a doped
composite semiconductor layer [36–38]. Contact doping has also been widely adopted,
as it is fundamentally associated with a generally high contact resistance of OFETs [32].
This type of doping can be experimentally achieved, for instance, by shadow masking
upon thermal evaporation of dopant molecules, or by direct co-patterning of the blanket-
deposited dopant and metal contact layers [39–42]. As a third method, channel doping
has been less frequently reported. It was shown that a practical channel doping step may
include thermal dopant evaporation on a pre-deposited source and drain contacts serving
as a self-alignment mask or direct solution-phase dopant printing over selective channel
areas [43,44].

It is important to note that having an experimentally validated base framework
(Figure 1a along with Table 1), with the parameter set carefully optimized against the mea-
sured trend, strongly supports the assumption of an extremely low intrinsic doping level in
usual OFETs. More importantly, it also allows for a robust predictive comparison between
any structural and material modifications by, for instance, position- and density-dependent
doping methods investigated hereinafter. On the other hand, it is worth clarifying that,
due to practical materials and processing limitations, it is extremely challenging to exper-
imentally realize and compare all the different doping schemes on sufficiently common
ground. Therefore, the main goal of this study is to draw a fair theoretical comparison
focusing on fundamental structural aspects, by utilizing exactly the same simulation base
structure and by selecting and introducing systematic doping parameters that are relevant
to all types of doping.

3.2. Bulk Doping

To verify the effect of the bulk doping level on the transistors, a p-type bulk doping
density (Nbulk-p), from 1014 to 1018 cm−3, was added to the undoped reference device.
The log-scale saturation regime transfer curve in Figure 2a demonstrates that an Nbulk-p

up to 1015 cm−3 has only a marginal impact on ID. A further increase in concentration
causes a substantial positive shift in threshold voltage (VT), along with an overall increase
in ID (in magnitude). This observation, first of all, directly confirms the fact that any
unintentional doping during fabrication or storage (which can be described as bulk doping)
up to 1015 cm−3, would not significantly affect the overall switching characteristics, since
OFETs heavily rely on injected carriers [45]. Figure 2b presents the same data set on a linear
scale. The case of Nbulk-p = 1018 cm−3 was excluded here because that device could not be
turned off by a realistically high positive VG. This plot clearly shows that well-controlled
doping in the 1016 to 1017 cm−3 range can be ideal to achieve an improved device with
both large currents and effective switching.
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As a next step, an n-type bulk doping density (Nbulk-n) was added to the reference
OFET. For simplicity, we consider this as a type of counter doping, while its exact meaning
differs fundamentally from that in traditional semiconductor terminologies. In traditional
semiconductors, a majority carrier type (p- or n-type) is determined by material doping
(e.g., during wafer production), and counter doping (or compensation doping) implies the
use of opposite-polarity dopants for reducing the amount of existing majority carriers or for
implanting a local type-inverted zone. However, the conduction carrier type in an OFET is
largely dictated by an energetic alignment at the metal–semiconductor interface (Figure 1b),
and whether the metal Fermi level (EF) approaches the highest occupied molecular orbital
(HOMO) or lowest unoccupied molecular orbital (LUMO) of the given organic molecule
becomes a primary factor [46]. Our reference device (even with zero doping) exhibited
an apparent p-type field-effect behavior because the hole Eb of 0.4 eV is much lower than
the electron Eb of 2.9 eV (Table 1). With this in mind, we investigate an unusual case of
counter doping in OFETs to assess its potential applicability. Figure 2c shows that, similar
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to p doping, the Nbulk-n up to 1015 cm−3 did not have a meaningful effect. However, larger
doping densities were able to result in a substantial negative VT shift and systematic ID
decrease. The condition of Nbulk-n = 1018 cm−3 was also simulated, but the result was
not included because the simulator could not reach a numerical convergence, most likely
due to too low currents. Despite this technical limit, we can theoretically infer that a high
Nbulk-n (even in excess of 1018 cm−3) would not be able to cause a total polarity inversion
(to an n-type OFET) because of the presence of strong electron-blocking contacts.

Another usefulness of a structural finite-element method lies in its ability to look
inside a functional device. To further our understanding of doped transistors, we traced
p over the physical region between the source electrode and gate insulator under both
co-doped and counter-doped conditions. The data in Figure 2d reveal one important
feature about charge doping in OFETs; whether it is p- or n-type doping, and no matter
how large the doping level is, the holes there have an actual density much lower than
the input Nbulk-p or Nbulk-n value. This should be understood as a direct outcome of a
substantial Eb (0.4 eV), which creates a strong depletion force over the vertical region below
the metallurgical contact. Nonetheless, we also recognize that an introduced bulk doping
has a capacity to further reduce (in the case of Nbulk-p) or enhance (in the case of Nbulk-n)
the charge depletion effect at this region in modulating the overall current flow.

3.3. Contact Doping

A contact doping technique may have a surface-localized nature or can have a rather
diffusive characteristic. Therefore, we define the doping thickness (td), as shown in
Figure 1d, to observe its possible impact. In the case of shallow doping (td = 2 nm),
we found that there is no substantial change in device performance for any p-type doping
concentration (Ncontact-p) considered (Figure 3a). This can be associated with the strong
contact depletion discussed above, in that it practically deactivates even nominally high-
concentration doping. Full-thickness doping (td = 30 nm) could eventually show some
effect of Ncontact-p, as shown in Figure 3b, while it was not comparable to that of bulk
doping. The OFET characteristics with an n-type contact doping concentration (Ncontact-n)
at td = 30 nm are provided in Figure 3c. Compared to bulk doping, here, an elevated
counter doping up to 1018 cm−3 could be inserted. It was found that, even with the spatial
localization of dopants, this type of counter doping was efficient in decreasing the overall
ID, which we believe might be useful to compensate for already too high p-doping in some
OFETs (often with a too positive VT).

It was actually quite surprising that even the strongest p-type doping at a full pene-
tration depth only had a relatively small effect. At this point, we hypothesized that if the
entire OFET becomes more severely contact limited [32], contact doping could manifest
more benefits. Therefore, we prepared another undoped base structure with Eb = 0.5 eV.
This was performed by shifting the organic semiconductor HOMO position downward by
0.1 eV in the energy diagram (all the other parameters were kept the same). Before looking
at doping effects, the undoped curve in Figure 3d clearly illustrates that a small increase in
Eb (from 0.4 to 0.5 eV) has brought a significant reduction in ID. Now, after introducing
the Ncontact-p of the same range to this modified base, it becomes obvious that such contact
doping can actually be quite promising in overcoming a high contact resistance.
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3.4. Comparative Analysis

The major motivation of this research is to draw a side-by-side comparison between
bulk and contact doping as the two main techniques for OFETs. Based on the findings
above, we found it interesting to add another distinct doping scheme called channel
doping, which is characterized by the absence of doping beneath the source and drain
electrodes (Figure 1d) [43]. This is mainly to extend the ideas of location control for
doping and to further explore the unique mechanisms of doped OFETs. We therefore
simulated selectively channel-doped transistors introducing a p-type channel doping
density (Nchannel-p) from 1014 to 1018 cm−3. Figure 4a illustrates that, overall, channel
doping can yield an intermediate result between those obtainable from bulk and contact
doping systems. Here, we observe a doping-induced ID increase that is much more
significant than that from contact doping (see in association with Figure 3b), yet the
transistor off-state is still achievable even at a moderately high doping concentration (see
in association with Figure 2b). For a direct comparison, we collected the transfer curves
with a p-doping concentration of 1017 cm−3 in Figure 4b.
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(from the top semiconductor surface to the dielectric interface), and the p axis is in log scale from 1012 to 1018 cm−3.

For comprehensive structural insights into doping methods, we finally present a series
of three-dimensional (3D) solutions for the electrostatic distribution that most intuitively
visualize the critical x-y-p relationship in the doped OFETs, as shown in Figure 4c–e. Here,
the positional axes (x and y) should be referenced to the inset of Figure 4b. What is
commonly important to a proper understanding of these results is that there are two critical
boundary conditions that are not much affected by the existence and degree of charge
doping. First, the p value right at the interface between a metal and semiconductor is
solely determined by the Eb = 0.4 eV (dictated by Boltzmann statistics) [18] and, therefore,
serves as one fixed boundary. Returning to Figure 4c–e, this fixed boundary is why all
six plots feature exactly the same p values at the source and drain contacts, which are
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of the order of 1013 cm−3 (it was actually already captured in Figure 2d). Second, the p
value at the switched-on, accumulated channel bears its capacitive nature, so is (primarily)
VG- and (laterally) VD- dependent. This explains the nearly identical pinched-off p profile
near 1018 cm−3 for all three turned-on transistor channels (even including the completely
undoped channel in the contact-doped OFET) in Figure 4c–e (bottom plots). Therefore, the
actual charge distribution can be understood as an outcome of balancing between these
two boundary values and the thermal carrier density of the semiconductor itself, which
is directly affected by the material bandgap for an undoped region and by the doping
concentration for a doped region.

In the bulk-doped OFET (Figure 4c), at VG = VD = 0 V, the semiconductor region
between the source and drain contacts has a flat p surface directly reflecting an Nbulk-p

of 1017 cm−3. In stark contrast, the regions below the electrodes are strongly depleted
and, therefore, have orders-of-magnitude lower and vertically varying p values. The
application of VG = VG = −12 V did not much change the overall shape, while the channel
is slightly more accumulated. It therefore becomes clear why the on–off switching contrast
(in terms of ID) is very low in the bulk-doped OFET, in that the external biasing does not
greatly contribute to the film electrostatistics. In the case of contact doping (Figure 4d), an
extremely low p is observed at the mid-semiconductor at zero biases. The exact value of
the order of 1012 cm−3 is indicative of a bandgap as high as 3.3 eV (Table 1). The channel
region is, therefore, apparently more depleted than the contact regions in this situation.
By applying VG = VG = −12 V, the overall distribution becomes similar to that in the
bulk-doped counterpart. However, we can recognize that the back-channel p (at the top
semiconductor surface) is reduced because of both the absence of dopants and the screened
gate-field effect there, which successfully rationalizes the lowest on-state ID among the
three methods. The channel doping (Figure 4e) reveals globally intermediate features, thus
rationalizing Figure 4b. Despite the p profiles (at both zero-biasing and turn-on) similar to
those of the bulk doping, the organic regions under the source and drain electrodes are
shown to be much more depleted than the bulk-doped case over the whole semiconductor
thickness. Interestingly, the VG = VG = −12 V data here indicate that the high-p back
channel can largely compensate for the source and drain regions that are more depleted
than the contact-doped OFET, in improve the on-state ID levels.

4. Conclusions

We have investigated the bulk, contact, and channel doping concepts for OFETs.
The use of physically based, finite-element simulation was key to unveiling the essential
features of doped OFETs toward practical applications. The bulk doping method can be
preferred for facile implementation (i.e., mixed solution casting and/or dopant deposition
without spatial masking). Our results confirmed that it can most widely modulate ID
and VT, while decoupling of these two seems difficult. Therefore, a density restricted
to a certain level (which might be dependent on actual materials and device properties)
should be desirable to build an improved transistor. Contact doping, on the other hand,
did not strongly affect the OFET characteristics in our case. We found that this particular
doping can be otherwise useful for improving contact-limited transistors due to a high
Eb. Therefore, this type of doping can be recommended to overcome a limited materials
combination (it can be useful if we cannot reduce Eb below a certain level), as it has an
overall advantage of reduced dopant consumption and minimal interference with channel
switching. According to our simulation, channel doping can provide a promising balance
between these two techniques. It was shown to be effective in substantially increasing ID,
while the VT shift remained in a realistic range owing to the contact depletion (therefore, the
contact resistance provides a positive effect in this case [32]). Our simulation results were
fully supported by an in-depth correlation between terminal characteristics and internal
distribution, as well as extensive theoretical rationalization based on OFET device physics.
Therefore, we believe that these results will significantly contribute to the development
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of next-generation, high-performance OFETs by delivering a set of practical design rules
related to controlled doping methods and their electrical functionalities.
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