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Abstract: Fast steering mirrors (FSMs), driven by piezoelectric ceramics, are usually used as actuators
for high-precision beam control. A FSM generally contains four ceramics that are distributed in
a crisscross pattern. The cooperative movement of the two ceramics along one radial direction
generates the deflection of the FSM in the same orientation. Unlike the hysteresis nonlinearity of a
single piezoelectric ceramic, which is symmetric or asymmetric, the FSM exhibits complex hysteresis
characteristics. In this paper, a systematic way of modeling the hysteresis nonlinearity of FSMs is
proposed using a Madelung’s rules based symmetric hysteresis operator with a cascaded neural
network. The hysteresis operator provides a basic hysteresis motion for the FSM. The neural network
modifies the basic hysteresis motion to accurately describe the hysteresis nonlinearity of FSMs.
The wiping-out and congruency properties of the proposed method are also analyzed. Moreover,
the inverse hysteresis model is constructed to reduce the hysteresis nonlinearity of FSMs. The
effectiveness of the presented model is validated by experimental results.

Keywords: nonlinear hysteresis; inverse hysteresis compensation; fast steering mirror (FSM); neural
network; Madelung’s rules

1. Introduction

Based on the advantages of fast response, high stiffness, and high electromechanical
coupling efficiency, fast steering mirrors (FSMs), driven by piezoelectric ceramics, are
widely used as actuators in the field of beam control [1–4]. FSM has a very precise optical
and mechanical structure. In a FSM, four piezoelectric ceramics are symmetrically dis-
tributed in a crisscross pattern. The mirror platform is connected to the housing by flexure
hinges. These four piezoelectric ceramics cooperate to push the mirror platform to deflect.
The motion of each two ceramics along one radial direction generates the deflection of
the FSM in the same orientation. As shown in Figure 1, the opposing two piezoelectric
ceramics in one direction are connected in series to share a fixed voltage of 100 V. The
control voltage is injected into to the electrical junction of these two ceramics. Changing
the control voltage is equal to varying the voltages imposed on the ceramics. The ceramics
are elongated or shortened according to the change of the control voltage. Then the mirror
platform is deflected by the motions of the ceramics.

It is known that piezoelectric ceramics have a strong hysteresis effect. Many efforts
have been devoted to describe the hysteresis nonlinearity of piezoelectric ceramics. The
well-known Preisach model [5], Prandt–Ishlinskii (PI) model [6], Maxwell model [7,8],
and Bouc–Wen model [9] are hysteresis models. Furthermore, modified versions of these
models have been developed to describe the asymmetric hysteresis nonlinearity [10–17].
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Figure 1. Angle control mechanism of the fast steering mirror.

Unlike a single piezoelectric ceramic, the relationship between input voltage and
output angle of the FSM shows that the hysteresis nonlinearity is complex, which cannot be
accurately described by the above-mentioned hysteresis models. It is valuable to develop
new hysteresis description methods. In [18,19], neural networks are introduced to describe
the hysteresis nonlinearity of FSMs, where the multi-valued mapping of the hysteresis
is transformed into one-to-one mapping by neural networks. However, more complex
hysteresis nonlinearity means more neurons are needed in neural networks.

Inspired by [20], the structure of the hysteresis model proposed in this paper consists of
a hysteresis operator and a cascaded back propagation (BP) neural network. In our method,
the hysteresis operator provides basic hysteresis motions for FSMs, and the neural network
modifies the basic hysteresis motion to accurately describe the hysteresis nonlinearity of
FSMs. However, it should be emphasized that the results in [20] cannot be generalized
for FSMs directly since the hysteresis operator of [20] is not complete. The focus of this
paper is on the modeling and compensation of the hysteresis nonlinearity for FSMs, and
the main contributions of this paper are as follows: (1) The proposed hysteresis operator
based on Madelung’s rules is an important extension of the hysteresis operator in [20]. In
the presented hysteresis operator, we provide a concrete realization algorithm that can be
directly used in practice. (2) We propose a systematic way to describe and compensate the
hysteresis nonlinearity of FSMs. Furthermore, the wiping-out and congruency properties
of the proposed hysteresis model are investigated. (3) The inverse hysteresis model is
constructed to reduce the hysteresis effect of FSMs.

The remainder of this paper is organized as follows. In Section 2, the structure of
the proposed hysteresis modeling method for FSMs is elaborated in detail. In Section 3,
the properties of the presented method are investigated and validated by simulations.
Experiments are conducted in Section 4 to show the effectiveness of the presented modeling
and compensation methods. Some remarks and conclusions are drawn in Section 5.

2. Hysteresis Model

The structure of the proposed hysteresis model is shown in Figure 2, where a sym-
metric hysteresis operator with a cascaded BP neural network is used to describe the
hysteresis nonlinearity of FSMs. The hysteresis operator is a symmetric hysteresis model,
which provides a basic hysteresis movement for the whole model. Next, the output of the
hysteresis operator is modified by the BP neural network to further promote the description
accuracy. The details of the model are elaborated in the following subsections.
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Figure 2. Architecture of the proposed hysteresis model.

2.1. Hysteresis Operator Based on Madelung’s Rules
2.1.1. Madelung’s Rules and Its Application in Finding the CTP (Current Turning Point)

In this subsection, a symmetric hysteresis operator based on Madelung’s rules is
presented. In our method, the information of the major ascending curve is used to describe
the inner hysteresis curves. Before proceeding, Madelung’s rules [21,22] are introduced in
Figure 3.

Figure 3. Madelung’s rules: (1) Any hysteresis curve beginning from a turning point is uniquely
determined by the coordinates of this point. (2) If any point on the hysteresis curve becomes a new
turning point, then the new curve goes back to the previous turning point. (3) If the hysteresis

trajectory on the curve
_

A2 A1 is continued beyond A1, it is transferred to
_

A0 A′0 as if the hysteresis
loop A1 A2 − A2 A1 does not exist at all.

The rules of describing hysteresis phenomena were proposed by German physicist
Madelung in the early 20th century. The first and second rules describe the properties
of hysteresis curves, and the third rule is the well-known wiping-out property. In fact,
Madelung’s rules are usually used as criteria to validate newly developed hysteresis
models [23,24]. It is noted that the input-output trajectory at any time must be on some
hysteresis curve, and this curve is denoted as the current hysteresis curve (CHC). The
starting point of the CHC is named the current turning point (CTP), and the CHS is exactly
the hysteresis curve between the CTP and the turning point previous the CTP. According
to the first rule of Madelung, the CHC can be determined if the CTP is known previously.
Therefore, the description of the hysteresis nonlinearity boils down to finding the CTP first,
and then describing the CHC.

Next, we will show how to use the wiping-out property to find the CTP through an
simple example. As shown in Figure 4, we assume that turning points A1, A2, · · · , Am
are generated in sequence under some input signal (see Figure 3). As shown in Figure 4,
each local extreme point of the input signal is one-to-one mapping with a turning point.
According to the wiping-out property, a traverse event happens when the input signal
surpasses its previous extreme points. For instance, as shown in Figures 3 and 4, the CTP
becomes Am−2 after the traverse, and Am−1 and Am should be wiped out since they are
no longer involved in the description of the CHC. In Figures 3 and 4, a turning point
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can further be classified into two types: left turning point and right turning point. If the
x-coordinates of the left and right turning points are written into left stack XL and right
stack XR, respectively, we can see that both arrays are naturally sorted in order of size (see
Figure 4). When a new turning point is generated, we can add its x-coordinate at the end
of the corresponding stack directly according to its type.

Figure 4. Determination of the current turning point using the wiping-out property.

Generally, we cannot predict how many turning points will be traversed for an
arbitrary input value x; therefore, we have to compare the input value with all the existing
turning points. In order to speed up the comparison, the binary search is adopted. If the
CHC is some ascending hysteresis curve, the CTP is a left turning point. At this time,
by locating the position of the input value in the right stack with binary search, we will
know how many right turning points have been traversed by the trajectory. After wiping
out these right turning points and their corresponding left turning points, the CTP can be
determined, as shown in Figure 5 where x3 < x < x1. The same analysis method is also
applicable for the case that the CTP is a right turning point.

Figure 5. Locate x with the binary search.

2.1.2. Description of Hysteresis Curves

In this subsection, the functions of hysteresis curves are derived using the symmetry
property. Assume that fA0 A′0(x) = f0(x) is the function of the ascending curve of the major
hysteresis loop as shown in Figure 3, where

f0(x) = ∑n
i=1 aixn, x ∈

[
x0, x′0

]
(1)

In Equation (1), the coefficients ai (i = 1, · · · , n and n is the order) are parameters
that need to be identified. According to the symmetry property, the function of the major

descending curve
_

A′0 A0 is as follows:

fA′0 A0
(x) = y′0 + y0 − f0(x0 + x′0 − x),x ∈ [x0, x′0] (2)
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Geometrically, fA0 A′0(x) and fA′0 A0(x) are symmetrical with the center point of the
major hysteresis loop. Using the symmetry property again, the functions fA1 A0(x) and

fA2 A1(x) of the curves
_

A1 A0 and
_

A2 A1 can be expressed as

fA1 A0(x) = y1 + y0 − f0(x0 + x1 − x),x ∈ [x0, x1] (3)

fA2 A1(x) = y2 − y0 + f0(x0 − x2 + x),x ∈ [x1, x2] (4)

In fact, fA1 A0(x) is the parallel shift of fA′0 A0(x) from A′0 to A1. Based on the property
of parallel shift, we have

y1 − fA1 A0(x) = y′0 − fA′0 A0
(x′0 − x1 + x),x ∈ [x0, x1] (5)

Substituting Equation (2) into Equation (5), we can obtain that the expression of
fA1 A0(x), which is exactly the same as Equation (3). Similarly, fA2 A1(x) (see Equation (4))
can also be derived by the translation of fA0 A′0(x) from A0 to A2. This fact means that
any hysteresis curve can be described by the translation of the major curves. For instance,

as shown in Figure 3, the hysteresis curves
_

Am Am−1 and
_

Am−1 Am can be derived by the
translation of parts of the ascending and descending curves (see the red lines), respectively.

Mathematically, the function of the hysteresis curve
_

Ak Ak−1 can be written as

fAk Ak−1(x) =
{

yk + y0 − f0(x0 + xk − x)fork is odd,, x ∈ [xk−1, xk]
yk − y0 + f0(x0 − xk + x)fork is even, x ∈ [xk, xk−1]

(6)

where k = 1, · · · , m. It can be seen from Equation (6) that the function of
_

Ak Ak−1 is
determined by Ak, which validates the first rule of Madelung.

Based on the above analysis, the realization algorithm of the hysteresis operator is
summarized in Figure 6. In the algorithm, x is the input value. Auxiliary variables x1
and x2 are two input values before x, and the inequality (x− x1)(x1 − x2) < 0 is used to
identify whether (x1, y1) is a turning point. Stacks XL and YL (or XR and YR) are used to
store all the left turning points (or right turning points). The variable TP_ f lag denotes
the type of the latest turning point. For example, if (x− x1)(x1 − x2) < 0 and x− x1> 0,
(x1, y1) is a left turning point and TP_ f lag is set as 0. Then, the CTP can be determined
by locating x in XL (or XR) and all the turning points after the CTP need to be wiped out
to save the memory resources. Using Equation (6), the output of the hysteresis operator
can be computed. It should be emphasized that the update is only performed when x 6= x1
since successive identical input values influence the identification of turning points and
consequently lead to erroneous results. Compared with the present hysteresis operator, the
operator in [20] is not complete and cannot be directly used in practice, where there is no
mechanism to guarantee the wiping-out property.

2.2. BP Neural Network

In Figure 2, a three-layer BP neural network is applied to modify the output of the
hysteresis operator. The neural network has two inputs and one output. The hidden layer
and output layer adopt the sigmoid function and the linear function, respectively. The
output of the neural network is as follows:

S[x, f (x)] = ∑nb
j=1 wj(∑nb

i=1 sigmoid(w1ix + w2i f (x) + bi) + c) (7)

where nb is the number of neurons, sigmoid(·) is the traditional Sigmoid function, and
w1i, w2i, wj, bi, c are the weight and bias parameters that need to be identified.
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Figure 6. Realization algorithm of the proposed hysteresis operator.

It is noted that the input-output relationship of the hysteresis operator is a multi-
valued mapping. For different input values x1 and x2, their output values may be identical,
i.e., y. Scalar functions cannot be used to modify the output of the hysteresis operator. To
distinguish the same output values for different input values, both the input and output
of the hysteresis operator are needed, as shown in Figure 2. Therefore, the modification
function has two inputs and one output. Apparently, it is difficult to describe the modifica-
tion function by traditional functions, and so the neural network is the best choice. In our
method, the BP neural network is applied. As we will see in the following sections, the
application of the neural network could largely promote the hysteresis modeling accuracy
for FSMs.

3. Wiping-Out and Congruency Properties
3.1. Wiping-Out Property

Based on the above analysis, it can be concluded that the proposed hysteresis model
possesses the wiping-out property, since the hysteresis operator naturally possesses this
property and the BP neural network is memory-less. This fact can be validated by the
following simulation example.

In Figure 7a, an input signal with local extremes (0, x1, x2, x3, x4, x5) is used to validate
the wiping-out property. The turning points generated by the input signal are shown
in Figure 7b, where the parameters of the proposed model are chosen as the identified
parameters in the following experiment (see Equation (8) and Table 1). In the beginning,
the input x(t) starts from 0 and reaches its first maximum value x1. This part of input
generates the trajectory from the initial point A0 to memory point A1, as depicted in
Figure 7b. Then the input x(t) decreases to its first minimum x2, and the corresponding

hysteresis trajectory returns back to A0 along the
_

A1 A0 curve. Next, x(t) increases again to
the second maximum value x3. Correspondingly, the trajectory moves from point A2 to
point A3. The wiping-out event is triggered when the input x(t) decreases to the second
minimum value x4 since x4 < x2. In the procedure, the trajectory can be divided into two
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parts: (1)
_

A3 A2 for x2 < x < x3 and (2)
_

A2 A4, which is a section of
_

A1 A0, for x3 ≤ x ≤ x4.
In the second part, A2 as well as A3 should be wiped out because they are not involved in
determining the future hysteresis trajectory. Similarly, the wiping-out event is triggered

again as the input x(t) increases from x4 to x5. The trajectory switches from
_

A4 A1 to
_

A0 A′0
at x = x1. It can be seen that the whole process is not affected by any past extremes of
the input because all the memories about the local turning points have been completely
wiped out. This example shows that the proposed hysteresis model possesses the wiping
out property.

Figure 7. Simulation of the wiping-out property. (a) Input signal. (b) Hysteresis trajectory.

Table 1. Parameters of the back propagation neural network.

i (w1i, w2i) bi wi

1 (−3.6257,−3.8904) 6.9822 −0.0531
2 (−74.0750, 68.3650) 11.4419 3.1126
3 (2.5646, 2.4315) −3.1634 0.1019
4 (−1.5465,−6.9710) 3.0611 −0.0180
5 (4.6670, 8, 4231) 3.4183 0.0104
6 (0.1417,−1.9784) 0.0499 −0.5796
7 (−9.3423, 12.4904) −0.2156 −0.0309
8 (1.9804, 0.7090) 3.6753 4.8024
9 (7.6728, 8,−4.5298) 3.6296 2.2704
10 (0.6836, 2.7029) 2.1638 0.1615
11 (−5.0154, 2.2743) −3.6263 7.6830
12 (−1.8607, 4.0871) −3.4273 0.8264

3.2. Congruency Property

The congruency property means that the inner hysteresis loops with the same input
range are congruent. In this subsection, we will show the hysteresis operator fulfills the
congruency property while the proposed hysteresis model does not possess this prop-
erty. The input x(t) used for validation is depicted in Figure 8, where the extremes are
(0, x1, x2, x3, x4, x5, 0), where x1 = x5 and x2 = x4. In this case, the input ranges of the
[x2, x1] and [x4, x5] intervals are identical.

Under the input of Figure 8, the input-output trajectory of the hysteresis operator is
depicted in Figure 9a, where two inner loops L1 and L2 are generated and they have the
same input range. An enlarged view of Figure 9a is shown in Figure 9b, where we can
observe that L1 and L2 are congruent, which demonstrates that the two minor loops are
congruent. The hysteresis trajectory of the proposed model is shown in Figure 10, where
it can be seen that the inner loops are not congruent. The above results imply that the
presented model could distinguish the differences of the hysteresis trajectory under the
same input ranges for different time periods. This fact reveals that the proposed hysteresis
model has the ability to describe complex hysteresis nonlinearity.
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Figure 8. Input signal used in the validation of the congruency property.

Figure 9. Illustration of the congruency property for the hysteresis operator. (a) Hysteresis trajectory.
(b) An enlarged view of the circle area.

Figure 10. Illustration of the congruency property for the hysteresis model. (a) Hysteresis trajectory.
(b) An enlarged view of the circle area.

4. Experimental Verification
4.1. Experimental Setup

An experiment platform is established to validate the effectiveness of the proposed
hysteresis model, as shown in Figure 11. The platform consists of a host computer, a target
computer, a FSM (S330, Physik Instrumente), a high voltage driver (E00, Harbin Core
Tomorrow), and an AD/DA card (PCI-6221, National Instruments). The PCI-6221 is used
to realize 16-bit AD and DA conversions. The high voltage driver E00 has a fixed gain of
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20. The strain gauge sensor (SGS) inside the FSM is used to measure the deflection angle.
The angle signal is also amplified by the E00 driver, and then sampled by the PCI-6221.

Figure 11. Experiment platform.

4.2. Parameter Identification

The first step before using the presented model is the parameter identification. In this
step, the parameters of the hysteresis operator are determined first and then those of the
BP neural network are identified.

A 0.5 Hz sine signal with peak-to-peak value 100 V is used to excite the FSM and the
input and output signals are collected by the PCI-6221. The normalized hysteresis trajectory
of the FSM, i.e., the major hysteresis loop, is shown in Figure 12. It is known that we only
need to determine the major ascending curve f0(x) before using the hysteresis operator.
Furthermore, the hysteresis operator only provides the basic hysteresis movement in our
method. Therefore, for the sake of simplicity, we have used the major ascending curve
of the FSM to model the hysteresis operator. Using the least-square method, the major
ascending curve f0(x) can be derived as follows:

f0(x) = −0.1347x5 + 0.5444x4 − 0.7945x3 + 0.7135x2 + 0.6712x (8)

where the order n of f0(x) is chosen as 5.

Figure 12. Input-output data and identified major curves.

Next, a triangle signal with decreasing amplitude is injected to the FSM to identify the
parameters of the BP neural network (see Equation (7)). To balance the efficiency and the
accuracy, twelve neurons are used in the middle layer of the neural network. According to
Equations (6) and (8), the input and output data of the hysteresis operator, which is also
the input data of the neural network, can be derived. Using the Levenberg-Marquardt
back-propagation algorithm, the parameters of the neural network can be trained. In
Equation (7), the value of c is −1.6447 and other parameters are listed in Table 1.
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4.3. Hysteresis Description Results

To validate the effectiveness of the proposed model, the sine signal in Figure 13a is
used to excite the FSM. The actual output angle and predictive angle of our model are
depicted in Figure 13b, and error signal is shown in Figure 13c, where the normalized
maximum error (NME) eN is

eN =
max|yai − yi|

max(yi)−min(yi)
× 100% = 1.38% (9)

and the normalized root-mean-square error (NRMSE) eR is

eR =

√
1
N ∑ (yai − yi)

2

max(yi)−min(yi)
× 100% = 0.22% (10)

where yai and yi are actual and predictive angle, respectively, and N is the number of
samples. The actual and predictive hysteresis loops are shown in Figure 13d, where we
can see that the proposed hysteresis model well describes the hysteresis nonlinearity of
the FSM.

Figure 13. Experimental verification. (a) Input signal. (b) Actual and predicative angle signals.
(c) Error. (d) Hysteresis loops.

Unlike the asymmetric hysteresis nonlinearity of a single piezoelectric ceramic, in
Figure 13d we can see that the hysteresis nonlinearity of FSMs does not show convex-
concave characteristic. Thus, one may wonder whether it is enough to describe the hystere-
sis nonlinearity with the symmetric hysteresis operator only. There are five hysteresis loops
in Figure 13d, and we depict the differences of each loop in Figure 14, where it is obvious
that the description accuracy is largely improved using the BP neural network. This fact
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could also be validated by the results in Figure 13c, where the NRMSE eR is reduced from
0.62% to 0.22% with the BP neural network.

Figure 14. Illustration of the complex nonlinearity of fast steering mirrors.

4.4. Hysteresis Compensation Results

To reduce the hysteresis effect, the traditional way is to construct an inverse hysteresis
model, as shown in Figure 15, where yd is the desired input and y is the actual output. The
inverse of the proposed hysteresis model can be obtained by replacing the input and the
output data of the FSM and performing the procedure of parameter identification again.
Figure 16a shows the compensation results, where the actual trajectory well follows the
desired trajectory. Figure 16b depicts the tracking error, where the NME eN and the NRMSE
eR are 2.42% and 0.71%, respectively. Figure 16c depicts the input-output relationships for
both the inverse model and the FSM, where it can be seen that the former is a reflection
of the later about the 45◦ line. It means that if the hysteresis nonlinearity of the FSM
can be describe by Φ, then the inverse model can be represented by Φ−1, and we have
y = Φ(Φ−1(yd)) = yd. Figure 16d illustrates the desired output versus the actual output,
where we can see that the hysteresis nonlinearity of the FSM is significantly reduced.

Figure 15. Hysteresis compensation with the inverse hysteresis model.
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Figure 16. Compensation results. (a) Desired and actual angle signals. (b) Error. (c) Symmetrical relationship between the
actual hysteresis and the inverse hysteresis model. (d) Actual angle versus input voltage.

5. Conclusions

In this paper, a systematic way to describe the hysteresis nonlinearity of fast steering
mirrors has been developed. The proposed hysteresis model consists of a hysteresis
operator and a cascaded back propagation neural network. The hysteresis operator, which
provides basic hysteresis motions, is developed based on Madelung’s rules. Using the
binary search, the current turning point and current hysteresis curve can be effectively
determined. Then, the BP neural network further modifies the output of the hysteresis
operator to promote the modelling accuracy. The wiping-out and congruency properties
of the proposed model are also investigated. The experimental results have shown that
the presented model well describes the hysteresis nonlinearity of FSMs, both for major
and inner hysteresis loops. Moreover, the effectiveness of the compensation method is also
validated by experiments.
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