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Abstract: This paper presents an integrated navigation system that can function more efficiently than
an inertial navigation system (INS), the results of which are not precise enough because of drifts
caused by accelerometers. The paper’s proposed approach depends primarily on integrating micro-
electrical-mechanical system (MEMS)-INS smartphone integrated sensors, the Global Positioning
System (GPS), and the visual navigation brain model (VNBM) to enhance navigation in bad weather
conditions. The recommended integrated navigation model, using an adaptive DFS combined filter,
has been well studied and tested under severe climate conditions on reference trajectories. This
integrated technique can easily detect and disable less accurate reference sources (GPS or VNBM)
and activate a more accurate one. According to the results, the proposed integrated data fusion
algorithm offers a reliable solution for errors in the previous strategies. Furthermore, compared to
the pure MEMS–INS method, the proposed system reduces navigational errors by approximately
93.76 percent, whereas the conventional centralized Kalman filter technique reduces such errors by
82.23 percent.

Keywords: smart VNBM; GPS; MEMS–INS smartphone sensors; adaptive; combined filter; data
fusion

1. Introduction

The most important issue for most vehicles is an autonomous navigation system that
provides non-stop and reliable service even in the most difficult weather and physical con-
ditions. Conventional navigation (e.g., inertial navigation system (INS), Global Positioning
System (GPS), and Doppler velocity system) provide real-time positioning information, but
have a high error rate during repeated positioning operations. To minimize INS navigation
error, most of these conventional navigation systems use the unified Kalman filter (KF) to
offer non-stop navigation [1–5] by using embedded INS with GPS and other multi-MEMS
navigation-assisted sensors.

Although navigation system errors caused by a decrease in GPS accuracy are resolved
by automated methods assisted by INS/GPS/Multi-MEMS programs, there are several
other incorporated techniques to enhance such positioning systems. To reduce data po-
sitioning errors when the GPS signal quality decreases, an adaptive fuzzy networked
inference system using an extended Kalman filter (EKF) is proposed [6]. Another sug-
gested method for improving navigation accuracy relies on an integrated neuro-fuzzy
(NF) method of GPS operation [7]. These methods are integrated to provide a navigation
solution for short-term decreased GPS precision. An integrated INS–GPS should support
the GPS when the signal encounters adverse effects such as blockages and reduce the

Micromachines 2021, 12, 718. https://doi.org/10.3390/mi12060718 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-0443-1049
https://doi.org/10.3390/mi12060718
https://doi.org/10.3390/mi12060718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12060718
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12060718?type=check_update&version=2


Micromachines 2021, 12, 718 2 of 17

propagation error encountered in an INS system over time. However, those incorporated
techniques are not expected to function appropriately if the GPS signal is vulnerable over
longer intervals due to accumulated INS error. To discover further smart integrated nav-
igation methods, researchers have studied how animals like ants and rats can find their
way home with no guided references however difficult the path [8]. The study’s findings
showed that animals know the world around them and can access reliable navigation data
to return home. Researchers discovered that animals have a component in their brains
called the hippocampus, which stores familiar landmarks on the path they have taken [9].
When an animal approaches a location that its brain has already processed, spatial position
knowledge, which is determined by the animal’s eyes, is incorporated using landmarks
recorded in the animal’s brain. Visual navigation systems based on camera (eye) systems
have been introduced to provide accurate navigation based on animal navigation meth-
ods [10–13]. A visual navigation method called Rat-Slam was proposed in 2004, and later
the Seq-Slam method, with higher efficiency and a wider scope, was proposed. However,
compared to the INS system referred to in this paper, these methods of visual navigation
cannot provide accurate navigation. As mentioned previously, all of the GPS, INS, and
Visual navigation systems have certain deficiencies. Therefore, this paper suggests com-
bined filter (CF) data fusion as an integrated navigation solution. Most modern mobile
devices include several micro-electromechanical system (MEMS)-INS sensors [14–16] with
accelerometers and gyroscopes that can be used in more effective navigation strategies
than INS systems as they minimize cost and scale [17]. Therefore, inspired by the animal
navigation approach, this paper suggests a modern navigation system based on optimized
micro-electrical-mechanical system (MEMS)-INS mobile sensors with GPS and a visual
navigation brain model (VNBM). This system also constantly captures camera (eye) snap-
shots of the surrounding area along the road and compares them with reference points on
the route to determine the exact location for position correction.

This paper can be summarized according to the following points: First, MEMS–INS
mobile sensors are used as the primary navigation device to determine speed and location.
Secondly, the position error of the MEMS–INS system is corrected using the GPS when
the signal is available and working smoothly. Third, in the VNBM model, the moving
vehicle captures snapshots that are matched to reference images on the path, using the
position error of the MEMS–INS system as a reference source when the GPS signal is weak
or unavailable. Finally, the paper proposes the use of the combined filter (CF) adaptive
data sharing factor (DSF) to process the data fusion.

The paper is divided as follows: Section 2 describes the principles of the navigation
equations of the GPS, MEMS–INS, and VNBM models. Section 3 introduces the combined
filter and the ADSF principles. The explanation and argument of the sensors proposed for
VNBM/GPS/MEMS–INS smartphones using the integrated technique of Adaptive DSF CF
are discussed in Section 4. The experimental works and estimated outcomes are discussed
in Section 5. Finally, Section 6 provides the paper’s conclusion.

2. Navigation Subsystem Basics and Errors Analysis
2.1. GPS Basics and Error Analysis
2.1.1. Principles of GPS

There are 24 satellites in the GPS, positioned 20,180 km above the Earth’s surface to
determine location (latitude, longitude, and height) information [18]. Any GPS device
needs input from at least four satellites to determine the information regarding the correct
position. A certain time of arrival from satellite to receiver can be calculated by the GPS
receiver [19]. The GPS receiver position is set as follows:

psi = ri + cb , (1)

g = c∆ , (2)

ri =

√
(x− xi)

2 + (y− yi)
2 + (z− zi)

2 (3)
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where i is satellite number; p is pseudo-range in meters; (xi, yi, zi) are receiver positions
along the three axes in meters; and cb is the clock bias normalized by the speed of light.

2.1.2. GPS Impairments

Most GPS errors are caused by multiple parameters that affect position information
accuracy. Errors in GPS analysis, described in [20], are classified into six categories: satellite
ephemeris, clock, ionosphere, troposphere, receiver, and multipath.

The GPS error is defined as:

z(k) = HkX(k) + u(k) (4)

where z(k) is the position error; Hk is the observation matrix; X(k) is the state vector; u(k) is
Gaussian White Noise (GWN); and k is the instance time index.

2.2. MEMS–INS Smart-Phone Sensors and Error Analysis
2.2.1. Structure of MEMS–INS

There are three gyroscopes and three accelerometers in MEMS smartphone sensors that
determine the angular rates (p, q, r) and accelerations (ax, ay, az) [21]. These parameters are
used to define the attitude and velocities in the Vehicle coordinate system (VCS) frame. The
attitude and velocities are denoted by (φ, θ, ψ), and (U, V, W), respectively. The attitude
is used to determine the direction cosine matrix (DCM). The DCM converts the velocities
from the VCS frame to the North-East-Up (NEU) frame [22]. The relationship between the
derivative of the Euler angles (φ, θ, ψ) and angular rates are given by

.
φ
.
θ
.
ψ

 =

 1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

 p
q
r

 (5)

The attitude (φ, θ, ψ) is given by integration depending upon the preliminary parame-
ters of attitude at a certain time [23,24]. The accelerometers of MEMS smartphones serve to
determine the accelerations in the VCS framework. The acceleration induced by gravity
(g) is considered a function of the position above the Earth’s surface as highlighted in the
following equation:

.
U = ax + rV − qW + g sin θ
.

V = ay − rU + pW − g cos θ sin φ
.

W = az + qU − pV − g cos θ cos φ

(6)

and it is integrated using the initial velocities to calculate (U, V, W) in the VCS frame. Then,
(U, V, W) are converted to velocities (VN, VE, VU) from the VCS frame to the NEU frame,
respectively, by using DCM. This is given as

DCM =

 cos θ cos ψ cos θ sin ψ − sin θ
sin θ sin φ cos ψ− sin ψ cos φ sin ψ sin θ sin φ + cos ψ cos φ sin φ cos θ
sin θ cos φ cos ψ + sin ψ sin φ sin φ sin θ cos φ− cos ψ sin θ cos φ cos θ

 (7)

The relationship between these velocities is presented in VN
VB
VD


INS

= DCMT

 U
V
W


INS

(8)

In this article, the geodetic (latitude, longitude, altitude) frame is used as a navigation
frame. Let λ, µ, and h̄ indicate the latitude, longitude, and altitude of the vehicle, respec-
tively. The relationship between the geodetic frame and velocities (VN, VE, VU) in the NEU
frame is given in
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.
λ
.
µ
.
ћ


INS

=


1

Re
0 0

0
1

Re cos λ
0

0 0 −1


 VN

VE
VU


MEMS

(9)

where Re is the Earth’s radius. By integrating and using the preliminary parameters of
a location at a certain time, (9) gives the location λ, µ, and h̄ in the geodetic frame. The
algorithm of MEMS–INS smartphone navigation is shown in Figure 1.
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Figure 1. Algorithm of MEMS–INS navigation.

2.2.2. MEMS–INS Analysis Errors

In the MEMS–INS system, incorrect arrangement angles, velocity, and location errors
are represented as state variables that are identified in

.
X = A0X (10)

where the included elements are defined by

X =
[

δPT
G δPT

B φT ∇T εT ]T (11)

A0 =


APG PG APG PB O3×3 O3×3 O3×3
APBPG APBPB APB APB∇ O3×3
AφPG AφPB Aφφ O3×3 Aφε

O2×2 O2×2 O3×3 O3×3 O3×3
O2×2 O2×2 O3×3 O3×3 O3×3

 (12)

where δPG = [δλG δµG]
Tsignifies the error of latitude and longitude coordinates between

the two systems, MEMS–INS and the GPS. δPB =
[

δλB δµB
]Tdenotes the same error

between MEMS–INS and VNBM. The Φ = [φ θ ψ]Tdenotes the attitude (roll, pitch, yaw)
incorrect arrangement angles, in turn. The ∇ =

[
∇x ∇y ∇z

]Tdenotes accelerometer bias
and ε =

[
εxεyεz

]
denotes the gyro drift. The O3×3 indicates a 3 × 3 matrix with zero value;

Aij(i = PG, PB, φ, j = PG, PB, φ,∇, ε) signifies the transform matrix j and i. The following
set of equations from (13) to (22) are used in the conversion process:

APG PG =

[
0 0

λG sec µ tan µG/R 0

]
(13)

APG PB =

[
0 1/R 0

sec µ tan λG/R 0 0

]
(14)
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APBPG =

[
2wn

ieyλB + λBµB sec2 µB/R 0

−
(

2wn
ieyµB + µ2

B sec2 µB/R
)

0

]
(15)

APBPB =

[
λB tan µB/R 2wn

iez + VE tan µB/R
−
(
2wn

iez + λR tan µB/R
)

0

]
(16)

AφPG =

 0 0
−wn

ieZ 0
wn

iey + VE sec2 λG/R 0

 (17)

AφPB =

 0 −1/R
1/R 0

tan µB/R 0

 (18)

Aφφ =


0 wn

iez + VE tan µG/R 0
−
(
wn

iez + VE tan µG/R
)

0 − λG
R

wn
iey +

µG
R

λG
R

0

 (19)

AVφ = [ f nX] (20)

AV∇ = DCMNEU
VCS (21)

Aεφ = DCMNEU
VCS (22)

where R = Rm is the radius of the Earth and DCMNEU
VCS changes the direct convert matrix

from the vehicle NEU frame to the NCS frame. The wn
iey = cos µG and wn

iez = wie sin µG

represents the angular velocities of the Earth’s rotation along the oy and oz axes, respectively.

2.3. VNBM and Error Analysis
2.3.1. Principle of VNBM

The VNBM block diagram is depicted in Figure 2. The camera in this system is based
on animal eyes that capture pathway images from the surrounding environment and relies
on path reference landmarks that are similar to the stored animal brain navigation data.
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Figure 2. Block Diagram of the VNBM System.

The VNBM system is arranged as follows: First, the camera captures sequence images
from the surrounding environment on the path [25,26]. Second, the captured images are
compared and matched with reference landmark images [27]. Finally, when the matching
process shows them to correspond, the estimated position can be calculated using the
coarse-to-fine (CTF) method [28] in which the image frames are matched in temporally
consecutive sequences. The localized coarse is provided by reducing the region (T) to
obtain the coarse place field (H) that gives the best matching image places.
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T = T(p(k) + ∆p∗) (23)

where p(k) and p∗ are the current time position and the predefined region, respectively.
The image place matching at the smallest scale sc in the coarse region is given by

[H, H + sc− 1] (24)

The best matching result for the coarse matching region is n with different scores D(Yn).
The lowest score is determined as the final matching result. Based on the CTF method,
each placed image is marked with the corresponding position. Therefore, from the lowest
image score, the estimated position PC of the examined images is given by

PC = p
(

(argminD(Yn))
n

)
(25)

2.3.2. Error Analysis for VNBM

The accuracy of VNBM is much better compared to that of the MEMS–INS smartphone.
Therefore, VBNM can correct the position error of MEMS–INS. However, the field of view
(FOV) of the camera and the weather conditions, such as light intensity and fog, are very
important factors that affect the accuracy of the VNBM model. The FOV of the camera is
given by

NFOV = 6.57e1.08 1− cos(A/2)
2

(26)

where NFOV is the average number of captured images on the path and A is the dimension
of the captured image. The Field of View is an angle that depends on the focal length and
sensor size, but it also computes the dimensional field of view sizes (width, height, or
diagonal) at a specific subject or background distance. The 300 mm lens with matching
35 mm film has an equivalent focal length of 300 mm. Therefore, the VNBM accuracy
decreases as the average number of the captured images is reduced, for example, by weather
conditions such as light intensity and fog. Therefore, to determine the accuracy of VNBM,
an investigational test was implemented. In the experiment, the highly accurate GPS and
VNBM model were installed on a vehicle that navigated along a reference trajectory for
about 800 s. The estimated location errors of the VNBM model are shown in Figure 3.
During the experimental test, weather factors changed the position accuracy of VBNM.
The location error depended on the average number of captured images in FOV.
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The relationship between the average of NFOV and the VNBM location error is
considered by fitting information (using Matlab), and it is given by

y(t) = 0.0636x3 + 1.4732x2 − 78.2011x + 632.6667 (27)

3. Combined Filter Based on Adaptive Data Sharing Factor (ADSF)
3.1. Principle of Combined Filter (CF)

Multi-sensor navigation system data are fused using two popular integrated methods:
centralized Kalman filter (KF) and combined filter (CF). The MEMS–INS position errors
detected by centralized KF, as observed variables, are corrected by the GPS and VNBM
information, assuming that the GPS and VNBM are more accurate than the MEMS–INS
smartphone system. The MEMS–INS navigation error resulting from (10) is, thus, expected
to improve the MEMS–INS system accuracy. The combined filter (CF) is widely used
because of its flexible design and good real-time performance [29–37]. In general, the
structure of CF depends on a double-stage data processing technique. In stage one, the
local Kalman filters (KF) are linked to specify the position information through navigation
subsystems. In stage two, the key filter processes are blended and merged locally with the
Kalman filters (KF). Figure 4 shows the integrated CF method.
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Every local Kalman filter was related to one of the navigation subsystems in Figure 4.
Furthermore, in each subsystem, the central filter checked the knowledge errors [38]. When
one of them has its accuracy decreased, this subsystem’s mean squared error matrix was
modified and increased. According to the key combined filter equations, the navigation
subsystem’s error calculation, inferred by a feedback flow, was modified by global co-
variance. Using local Kalman filter 1 as an example here, local KF1 covariance changed
as in

P−1
1 = B1[P−1

1K (I − K1H1)
−1 + P−1

2K (I − K2H2)
−1+

. . . . . . P−1
nK (I − Kn Hn)

−1]
(28)

when P−1
1 is calculated separately. It is signified as

P−1
1 = P−1

1K (I − K1H1)
−1 (29)

Calculating the local covariance P1 by global output is shown as
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P−1
1 = [P−1

1K (I − K1H1)
−1 + P−1

2K (I − K2H2)
−1+

· · · · · · P−1
nK (I − Kn Hn)

−1](I − K1H1)
−1 (30)

If P−1
1 is independently considered, it will only be influenced by local filter 1. This

implies that when the precision of a single navigation subsystem declines, the P−1
1 cannot

be updated via the key combined filter, and the local filter 1 error cannot be updated.
However, the P−1

1 can be refined by the main combined filter via the steady DSF calculated
by the global output. Although the CF-based integrated approach may be resolved by key
filter errors in any navigation device, the CF’s constant DSF cannot tailor its importance to
the specific navigation error that will impact the overall navigation system’s performance.
Therefore, the proposed system introduces the adaptive data sharing factor (ADSF) as a
new contributing parameter.

These terms are primarily determined from the merged filter. The central unified filter
reflects the ratio value of every navigation subsystem (GPS and VNBM), which implies
that the ratio value of navigation subsystem I will rise in the central combined filter stage
and fall when it decreases. It also implies that the value of navigation subsystem I and
all other navigation subsystems with greater precision should be set to a greater ratio
value in the key integrated filter stage. Therefore, the influence of the lower-accuracy
navigation subsystem rendered the integrated navigation device more reliable. Based on
the aforementioned method, the proposed adaptive DSF combined filter (CF) was avoided
and separated by the lower navigation subsystem. The one with the best accuracy used
an integrated navigation reference information method. Integrated VNBM/GPS/MEMS–
INS focusing on the adaptive DSF combined filter as a data fusion approach is, therefore,
the best choice for providing a safe and efficient navigation framework. In line with the
principle of our proposed ADSF combined filter, the adaptive parameter was made to
separate and avoid navigation subsystems with lower accuracy, which ultimately improved
the performance of the entire navigation system.

3.2. Adaptive Data Sharing Factor (ADSF) of Combined Filter (CF)

The core parameter of the combined filter is this research’s main contribution because
managing the precision of VNBM and DVL is the main problem influencing the precision
of the overall navigation device. Research, therefore, suggestd that the adaptive DSF can
manage the accuracy of the GPS and VNBM. This requires an expansion of the adaptive
DSF. The ADSF values are set according to

Cik = HikP−ik HT
ik + R−ik (31)

where Cik, R−ik , and HT
ik are the Kalman filter’s co-variance of invention, calculation co-

variance, and calculation matrix, respectively. As seen in Figure 4, i = 1, 2, ... n means local
KF1, KF2, and KFn.

Miscalculation errors, such as uncounted fault prejudice and unknown condition
variables, resulted in the creation of a CF that was subject to their effect as they are directly
included in the breakthrough equations. For example, if the right dynamic equations are
identified, the invention’s co-variance is equal. Since unknown data have a similar effect
when the precise equations of a calculation are not available, the Cik will increase. The
change in Cik can be used in the adaptive filter, and the increased innovation co-variance
Cik is given as

Cik =
1

M− 1

K

∑
j=K−M+1

ηij IT
ij (32)

where M is the size of the window that refers to the sampling frequency and performance
of every navigation subsystem. The relation between the Cik and Cik is illustrated in the
following equation:

αik = |tr(Cik)− tr(Cik)| (33)
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where tr( ) indicates the trace of the matrix. This is the mathematical relationship between
the two covariances that provides the constancy of the predestined result. The value
can be verified when the precise measurement noise is known and approximated to
zero. Nevertheless, while the noise modification measurement occurred abruptly and
the discovered accuracy decreased at time factor k, the time point k will differ from the
remaining period and the value will rise. The ADSF is therefore configured as in

Bik =
α
−1

ik

∑2
i=1 α

−1

ik

(34)

This implies that whenever a significant gap is found between the setting value and
the noise calculation, the result is poor and the contribution of this local filter reduces the
main integrated filter. Likewise, where there may be a moderate disparity between the
set-value and the calculation noise, the result is shown to be successful, and the efficacy of
this local filter is far better than that of the primary filter. The adaptive DSF is, consequently,
an excellent adaptive parameter for the combined filter that could enhance the steadiness
and accuracy of the combined filter as a whole = 0.

4. Proposed Multi-MEMS Integrated Navigation Method Using the Adaptive DSF
Combined Filter

The design of the integrated VNBM/GPS/MEMS–INS data fusion-dependent naviga-
tion system adaptive DSF hybrid filter is presented in Figure 5. The MEMS–INS smartphone
is the key system used by the suggested integrated technique. The GPS and the VNBM
serve as reference navigation subsystems to rectify the MEMS–INS location errors. Our
suggested optimized approach offers the following dynamics and estimated equations:

.
X(t) = A(t)X(t) + w(t) (35)

Zi(t) = Hi(t)X(t) + vi(t) (36)

where w(t), X(t) and vi(t) denote the estimated error, condition variable, and condition
error matrices, respectively. A, H, and Z symbolize the state transition matrix, the measure-
ment matrix, and the measurement equation of the local KF, in turn. The variable state is
presented by

X =
[
δPT

G δPT
B φT ∇T εT

]T
(37)

where δPG = [δλG δµG]
Trepresents the latitude and longitude error between the MEMS–

INS and GPS; δPB = [δλB δµB]
T denotes the latitude and longitude coordinate error

between the MEMS–INS and VNBM. The state transition matrix A is given by

A =
[

A0(13×13)O13×2

]
(38)

From (36) i = 1 and 2, and represents the number of Kalman filters. The measurement
matrixes H1 and H2 of both local Kalman filters are given by:

H1 = [I2×2O2×13] (39)

H2 =
[

O2×2 I2×2 O2×9 − I2×2
]

(40)

The observation of the measurement equations of the local KF1 describing the place
difference between the MEMS–INS and the GPS is given by:

Z1 = [λMEMS − λGµMEMS − µG] (41)
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Similarly, the inferences of the measurement equations of local KF2, which highlights
the difference in velocity between the MEMS–INS and the VNBM, is presented by

Z1 = [λMEMS − λBµMEMS − µB] (42)
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Based on Figure 5, the observed local KF1 parameter signified the distinction in
location between the MEMS–INS smartphone and the GPS, while the observed local KF2
parameter represented the distinction in velocity between the MEMS–INS smartphone and
the VNBM. The two local Kalman filters used the calculated effects as key filter data input
to approximate the final output. Next, the final approximate result was fed back into the
optimized central filter to fix the MEMS–INS mistake. At the same time, the adaptive DSF
adjusted local KF1 and local KF2, respectively, using the input data of P1 and P2. Assuming
that GPS precision was reduced at time point k in certain pockets on the Earth’s surface,
then the R1K value was inexact. Therefore, the P1, representing the approximate accuracy
of the local KF1, rose to allow the C1k to increase at time factor k relative to the average
from time factor k-M up to time factor k. This triggered a decrease in B1 and the input to
the local KF1. Consequently, the local KF1 P1 is effective, and the main filter data input
was also updated. Similarly, since the VNBM‘s accuracy fell at time factor k due to poor
weather conditions, it implied that the R2K value was inexact. Then, P2, representing the
approximate accuracy of local KF2, increased, allowing the C2k to increase at time factor k
relative to the average of time factor k-M up to time factor k. This eventually triggers a
decrease in B2 and input data to local KF2. Lastly, the local KF2 P2 proved to be efficient,
and the main filter data input was also updated. While adaptive DSF combined filter
processing data is more complicated than the centralized Kalman filter (KF) and constant
DSF-combined filter (CF), any decrease in the GPS or VNBM precision would be sensed
and differentiated by the adaptive DSF. Likewise, the easy-to-work navigation subsystems
that have the highest precision are used as reference sources to enhance the navigation
system. The necessary prerequisite for obtaining a highly stable and accurate navigation
device solution based on VNBM/GPS/MEMS–INS is then accomplished using an adaptive
DSF parameter input in the integrated data fusion of the combined filter.
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5. Experimental Work and Results
5.1. Integrated Navigation Methods

Three integrated navigation techniques were used to compare their consequent results
as presented in Figure 6. The three techniques were MEMS–INS, VNBM/GPS/MEMS–INS
using a centralized Kalman filter (KF) integrated system, and the suggested integrated
VNBM/GPS/MEMS–INS process using the adaptive DSF combined filter. Compared
to the other two integrated techniques, the suggested technique had a highly stable and
consistent navigation system resolution regarding the estimated results when the accuracy
of the GPS or VNBM was reduced.
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Figure 6. Structure of the three integrated methods.

5.2. Hardware and Reference Trajectory

The mobile GPS, MEMS–INS (accelerometers and gyroscopes), VNBM, and other
coordinated components are mounted onto the vehicle as shown in Figure 7. To prove the
efficiency of the proposed method, the three integrated methods were tested under bad
weather conditions, for approximately 800 s. A total of 9 reference landmarks were placed
on the 800 m reference trajectory, as seen in Figure 8, which corresponded to the retained
navigation data in the animal brain.
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5.3. Parameter Setting of Three Integrated Methods

Three integrated methods were included in the study. In Method 1, pure MEMS–INS
was introduced as a navigation technique without any integrated system as illustrated
in Section 2. In Method 2, the VNBM/GPS/MEMS–INS centralized KF technique was
presented as an integrated navigation system. The measurement matrix and dynamic
model of Method 1 is given by

H =

[
I2×2 O2×2 O2×9 O2×2

O2×2 I2×2 O2×9 − I2×2

]
(43)

The observed calculation of (44) reflects the position error between the MEMS–INS
and GPS, and the position error between the MEMS–INS and VNBM. It is illustrated as

Z =

[
λMEMS − λG µMEMS − µG
λMEMS − λB µMEMS − µB

]T

(44)

In this step, the primary value of the covariance matrix had to be set before navigation
could be processed. This represented the MEMS–INS smartphone error that was provided
by

Q0 = diag
([

3× 10−53× 10−56.73× 10−76.73× 10−76.73× 10−7
]2
)

(45)

In this method, the primary value of the mean square error matrix (P0) had to be stable
enough for its consistency to be tested according to the Kalman filter features. This was
provided by

P0 =
diag

([
0.20.21.75× 10−61.75× 10−61.85× 10−41.85× 10−4

1.85× 10−43.76× 10−83.76× 10−83.76× 10−8

1.30× 10−41.30× 10−41.30× 10−40.20.2
]2) (46)
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For this approach, the initial values of the covariance calculation noise matrix were
around 0.5 and 0.7 for the magnitude of Gaussian white noises for the GPS and VNBM
measurement meters, respectively. This is provided by

R0 =
([

1/Re 1/Re 0.5 0.7
]2) (47)

The last was Method 3, in which the VNBM/DVL/MEMS–INS adaptive DSFCF was
represented as an integrated navigation system. The preliminary values of the CF could
examine the setting value in Method 2. The difference between the first and the second
methods was illustrated in this integrated technique. However, in Method 3 the integrated
method depended on the adaptive DSFCF discussed in Section 3.

5.4. MEMS–INS, VNBM, and DVL Errors

The noise of the gyroscope is Gaussian white noise (GWN) with an amplitude of about
0.005◦ per hour, while the gyroscope drift is about 0.05◦ per hour. Similarly, the noise of
the accelerometer GPS and VNBM are also GWN. The GPS and VNBM operated smoothly
from time 0 to 310 s. Conversely, the precision of the GPS and VNBM systems was affected
in the period from 310 to 620 s along the reference trajectory due to bad weather. The
specifications for the navigation subsystem are listed in Table 1.

Table 1. Specifications of the navigation subsystems.

Parameter Index

Gyroscopes Dynamic Range ±100◦/s
Gyroscopes Bias Stability ≤100.50◦ per hour

Gyroscopes noise 0.05◦ per hour
Gyroscopes drift 0.005◦ per hour

Gyroscopes Nonlinear Degree of Scale Factor ≤20 ppm
Gyroscopes Frequency 50 Hz

Accelerometers Bias Stability 100 µg
Accelerometers Nonlinear Degree of Scale Factor ≤20 ppm

Accelerometers Frequency 50 Hz
GPS Position Error Noise 0.8 m, 0.8 m, 1 m

GPS Velocity Error 0.1 m/s, 0.1 m/s, 0.1m/s
GPS Frequency 1 Hz
Camera FOV 0.3 m

Camera Map Resolution 648 × 488
Camera Frequency 10 Hz

5.5. Comparison Results of USV Navigation Systems

The aforementioned results of the three integrated techniques are shown in Figure 9.
In Method 1, pure MEMS–INS was introduced as a navigation technique without any
integrated system. In Method 2, the VNBM/GPS/MEMS–INS centralized KF technique
was presented as an integrated navigation system. The preliminary values of the CF could
examine the setting value in Method 2. The difference between the first and the second
methods is illustrated in this integrated technique. The last method was Method 3, in
which the VNBM/DVL/MEMS–INS adaptive DSFCF was represented as an integrated
navigation system, which depended on adaptive DSFCF. The precision of the GPS and
VNBM was influenced by the duration of 310 s labeled as (•) up to 620 s labeled as (X)
due to bad weather along the reference trajectory. Figure 10 shows the adaptive data
sharing factor (ADSF) values. According to Figure 9, during bad weather, the root mean
square error (RMSE) of the position (106.75 m) in the first method increased over time
from accelerometer drifting. In the second method, the RMSE position error (15.65 m)
was less than the position errors of the first method. This is because the position errors of
MEMS–INS were amended by the VNBM/GPS-centralized Kalman filter. Nevertheless,
this predicted result was not accurate enough during bad weather because the centralized
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KF technique could not precisely detect and differentiate the less accurate reference source
from the more accurate one to rectify the MEMS–INS system position error. This affected
update processing of the main combined filter and the general navigation system as well.
In Method 3 (the proposed method), the estimated trajectory was nearly identical to the
reference trajectory, and its RMSE position errors (1.53 m) were low compared to those
of Method 1 and Method 2 because the adaptive DSF was precisely adjusting its values
in relation to the specific errors of the navigation subsystem. Consequently, the main
combined filter could be used to update the necessary values, as it accurately specified the
navigation error.
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In this technique, whenever the precision of the GPS declined, due to bad weather, the
assessed accuracy of the local KF1, represented by the P1, increased. The B1 will then be
decreased and, accordingly, the consequent data. Therefore, the P1 of the local KF1 was
modified and the entered data of the main filter was updated too. Similarly, when the
precision of VNBM decreased, P2, which represented the estimated accuracy of the local
KF2, rose. B2 was then decreased causing the feedback data to decrease. Finally, the P2 of
local KF2 was corrected and the input records of the main filter updated. Similarly, when
the accuracy of VNBM decreased, P2, which represented the expected precision of local
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KF2, increased. B2 was suppressed, making the feedback data decrease. Finally, the P2
of thelocal KF2 was corrected and the input data of the main filter updated. In line with
the adaptive DSF values in Figure 10, if the precision of the GPS were greater than that of
the VNBM, Beta 1, representing the ratio of the accuracy of the GPS in the main combined
filter, would rise; accordingly, Beta 2, which signifies the ratio of the precision of the VNBM,
would decrease. Similarly, if the ratio of the precision of the VNBM were higher than that
of the GPS, Beta 2, signifying the ratio of the precision of the VNBM in the main combined
filter, would rise and, simultaneously, Beta 1, which represented a decrease in the precision
level of the GPS, would decrease.

This proves that more reliable navigation subsystems required a greater area when
upgrading the database. Thus, the less accurate navigation subsystems could be isolated
and removed while modifying the main combined filter. The total approximate location
(latitude and longitude) errors of the three techniques caused by bad weather from 310 to
620 s are listed in Table 2. The approximate trajectories of the three handled approaches are
shown in Figure 11.

Table 2. Estimated position errors with the three integrated methods.

Methods\Errors
Maximum

Latitude Error
(m)

Maximum
Longitude Error

(m)

Latitude RMSE
(m)

Longitude RMSE
(m)

Position RMSE
(m)

Method 1 (Pure MEMS–INS) 100.98 110.23 72.543 78.32 106.75

Method 2
(VNBM/GPS/MEMS–

INS/Centralized
KF)

18.53 19.47 10.43 11.67 15.65

Method 3 (Proposed
VNBM/GPS/MEMS using

ADSF Combined filter)
0.93 0.82 0.96 0.97 1.53
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6. Conclusions

The proposed integrated method can provide accurate navigation solutions in urban
areas and in adverse weather conditions when the GPS signal is weak or inaccessible. The
system is based on the visual navigation brain model (VNBM), which relies on images
captured by the camera (eyes) from the surrounding environment along a path and the
subsequent matching with reference landmarks on the reference trajectory. Therefore,
the system provided an accurate position to rectify the position error of the integrated
navigation system and was based on a novel integrated method using adaptive data-
sharing factor (ADSF) combined filter (CF) data fusion. Based on the approximate results in
Table 2, the expected error in the location of the proposed integrated system was very low
relative to the two other integrated approaches. The error was reduced by 95.76% compared
to Method 1 and by 82.23% compared to Method 2. Furthermore, the approximate location
error of ADSFCF was restored in the MEMS–INS system to reduce its error and increase
the precision of the overall navigation device. Further experiments to apply the proposed
system in severe weather conditions are highly recommended.
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