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Abstract: In this paper, we review the phenomenology of random telegraph noise (RTN) in 3D
NAND Flash arrays. The main features of such arrays resulting from their mainstream integra-
tion scheme are first discussed, pointing out the relevant role played by the polycrystalline nature
of the string silicon channels on current transport. Starting from that, experimental data for RTN
in 3D arrays are presented and explained via theoretical and simulation models. The attention is
drawn, in particular, to the changes in the RTN dependences on the array working conditions that
resulted from the transition from planar to 3D architectures. Such changes are explained by consider-
ing the impact of highly-defective grain boundaries on percolative current transport in cell channels
in combination with the localized nature of the RTN traps.
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1. Introduction

Random telegraph noise (RTN) in MOS transistors has been an important topic of in-
terest in the solid-state device community since the 80s, when results of low-frequency
noise characterization [1] showed a transition from a typical 1/ f behavior at high tem-
peratures to a series of discrete switching events as temperature was lowered. Similar
observations were soon made when moving from large- to small-area devices [2], and
interpreted in terms of capture/emission of electrons by single interface traps. On the
theoretical side, this result highlighted the importance of the number fluctuation contribu-
tion to the flicker noise, but prompted the emergence of a new limitation to MOS device
operation as well [3].

Moving from early investigations and models [4–9], the RTN picture grew more complex,
as novel time and amplitude observations [10–14] hinted at a non-negligible role played by
non-uniform electron conduction in submicron devices [15,16]. This idea gained traction when
the phenomenon began to be investigated in Flash memories [17–23], demonstrating current
fluctuations up to 60% [22] and threshold voltage (VT) shifts reaching 700 mV [18] in 90-nm
technology node devices. The physical picture now accepted that accounts for such results
is based on the fact that, in scaled devices, dopants must be viewed as individual ions
rather than a continuous distribution, resulting in randomly-placed charges in the deple-
tion region. Such random point charges [24–27] give rise to sharp peaks in the band energy
profile of the channel of an MOS transistor, resulting in local modulation of the current flow
and filamentary conduction. If a “strategic” trap happens to be placed right above a current
path, electron trapping will effectively shut off such a path, resulting in a large drain current
and VT fluctuation [28–31]. On the other hand, if the trap is placed over a region in which
little current flows, its trapping/detrapping will barely affect the overall current. Such
an idea has been successfully applied to explain the statistical distribution of the RTN fluc-
tuations in NOR and NAND arrays, measured in terms of their amplitude [19,32,33] and
time constants [34–36], providing a useful tool for extracting information about the impact
of device parameters on RTN. A recent review of the issue can be found in [37].

The above-mentioned framework has served nicely the Flash community until the first
decade of the 21st century, when several limitations to the scaling of the planar NAND
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technology prompted the emergence of 3D arrays [38]. In such devices, the RTN picture just
outlined fell short of adequately describing the experimental data, in view of the peculiar
characteristics of the polycrystalline material used as conduction channel.

In the following, we will review in detail the physics of RTN in 3D NAND Flash
memories, discussing the main experimental data and physical models developed to quan-
titatively account for them. We begin our discussion with a brief summary of the main 3D
array architecture and cell structure, followed by a description of electron transport in
3D NAND channels. This will allow us to develop a consistent picture of RTN in 3D
NAND devices, whose main features will be highlighted. After this part, we will focus
our attention on the main experimental data presented in the literature, taking advantage
of the model results to provide interpretation for them.

2. Array and Cell Structure

Among the several architectural solutions for 3D storage [39–46], the one employing
vertical-channel strings crossed by a set of planar wordlines has become the most effective
one [47–50], and is the focus of this section. Here we will briefly describe the main features
of such an array, namely its organization and cell structure, referring to previous works
for further details [51].

A pictorial view of the array is shown in Figure 1 (left): note that the cell strings run
vertically from the substrate to the bitlines. As in planar arrays, select elements are needed
near the source and drain ends of the string, integrated in rows running orthogonally
to the bitlines. The rest of the cells are contacted by planar wordlines that span over
an entire block of the array. One of the advantages of this structure is that the large increase
in density allowed by the exploitation of the third dimension makes it possible to relieve
some of the pressure on channel length scaling and its many drawbacks from the viewpoint
of process complexity and reliability, well known in planar devices [52,53]: cell length in 3D
NAND is around 25–30 nm [54], with the additional advantage of becoming less dependent
on the availability of advanced lithography tools. A second advantage of this solution lies
in its manufacturing process: memory cells are not patterned individually, but they are
formed all at once as cylindrical holes are cut through the stacked wordlines, creating
the strings. This procedure entails that the elementary cell becomes a gate-all-around,
vertical-channel transistor, with the advantage of a better electrostatic control from the gate.
A schematic view of such a device is shown in Figure 1 (right): starting from the outside we
meet a contacted wordline, a blocking dielectric and a charge-storage layer, that can either
be a floating gate [47,55–59], similar to planar NAND devices, or a charge-trap layer [60–64],
followed by the tunnel oxide. Beyond the oxide, we can notice a thin silicon region and
an inner oxide filling the central region of the cylinder, labeled filler oxide for simplicity.
This structure, where the conductive channel is a hollow cylinder, is referred to as a
“Macaroni” MOSFET, and is the result of clever device engineering in 3D NAND: in fact,
after the vertical high-aspect ratio holes have been etched in the structure of Figure 1 (left),
and the blocking, storage and tunnel layers deposited, the remaining part of the cylinder
must be filled with silicon. The result is a polycrystalline channel whose central region is
plagued by a large defectivity, impairing the device performance. To avoid such a drawback,
a very thin polysilicon layer is deposited on the gate dielectric, while the remaining central
region of the cylinder is filled with a dielectric [40], gaining two distinct advantages: first,
thinning of the silicon body results in reduced short-channel effects and better electrostatic
control from the gate; second, defect removal further contributes to better subthreshold
slope and array performance.
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Figure 1. (Left) Conceptual view of a vertical-channel 3D NAND array with its main elements
(SSL = source select line, WLs = wordlines, DSL = drain select line, BLs = bitlines). (Right) pictorial
view of an array string highlighting the structure of the elementary memory cells.

3. Polysilicon Conduction

The overview on the memory cell design given in the previous section already sug-
gested that the polycrystalline character of the conduction channel is a key parameter from
the viewpoint of device performance. A polycrystalline material, in fact, is formed by
single-crystal regions labeled grains, with different crystallographic orientations. Such
regions are separated by highly-defective interfaces, or grain boundaries (GBs) [65]. A pic-
torial view of a NAND string of ten cells with its inner polysilicon region and grains is
shown in Figure 2: note the random structure of grains and GBs, that are the key elements
affecting device current and variability.

Figure 2. Pictorial view of a ten-cell memory string (left) and of the inner polysilicon regions
separated into polycrystalline grains (right). The example is the result of a TCAD simulation of
the cell structure where polysilicon grains are obtained via Voronoi tessellation of the silicon region.

One of the key properties of polysilicon is its trap density, whose value has been
estimated by several works, based on either direct optical or electrical experimental mea-
surements [66–74] or via numerical device simulations [75–79]. Many of such results
point to a double-exponential energy distribution of donor-like and acceptor-like states
of the form (for acceptor-like states in the upper half of the energy gap):

NGB(E) = NTe−(E−EC)/ET + NDe−(E−EC)/ED , (1)

where the reported range for the acceptor-like states parameters is listed in Table 1. Note
that the first exponential distribution is characterized by a large peak density NT and a
small characteristic energy ET , and is usually referred to as tail states distribution, as a con-
sequence of its location near the edge of the gap. The second has a lower peak density
ND but a higher energy ED, and is usually labeled deep states distribution. Note also that
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trap densities are given as volumetric densities: this was useful in early simulation works,
where a uniform trap density in the semiconductor body was assumed for simplicity. From
a physical viewpoint, however, traps are expected to be mainly located at GBs, and an areal
density σ is then needed. A conversion between volumetric and areal densities is readily
achieved assuming for simplicity a spherical grain size with radius rG, and placing all
volume traps on the sphere surface. This leads to

4πr2
Gσ =

4
3

πr3
G NGB ⇒ σ =

rG
3

NGB, (2)

or a very similar conversion factor as in [79].

Table 1. Range of parameter values for the acceptor-like states in the polysilicon, according to the lit-
erature (see text for references).

NT [cm−3 eV−1] ET [meV] ND [cm−3 eV−1] ED [meV]

9× 1019–1021 16.6–80 1.2× 1018–9 ×1019 80–500

Electron transport in polysilicon has been studied since the 70s, as this material found
applications in resistors, interconnections, and silicon-gate MOSFETs. From the viewpoint
of current conduction, we can identify two modeling approaches, that differ in the way GBs
are treated: one approach is to extend the drift-diffusion model usually adopted in monocrys-
talline silicon, describing GBs as trapping centers with a reduced mobility [80–82]; the other is
based on a thermionic emission model at the GBs [83–87]. Although the latter seems to be
gaining traction in recent literature, a definitive conclusion has not been reached, yet, and a
recent study of the different dependences implied by such models can be found in [88,89].

The above-mentioned numerical models of conduction have been used to investigate
the effect of GBs on variability in nanowires [90–95] and 3D NAND devices [96,97]. A re-
cent study based on a drift-diffusion transport within the grains and thermionic emission at
the GBs [98–101] has demonstrated a good capability to reproduce several features of
experimental data, including its temperature dependence. Figure 3 (left) shows a typical
conduction-band profile along the channel of a 3D NAND string, for increasing values
of the control-gate bias, as resulting from such model. Note that the profile is not smooth,
featuring peaks in correspondence of the highly-defective GBs. As gate bias is increased,
the band bending lowers the conduction-band profile, increasing the localized trap occu-
pation and sharpening the peaks, which become the true bottlenecks of conduction [100].
This result makes clear that GBs are an additional source of non-uniformity in the current
conduction, which means that they might be expected to play a main role in RTN. This
is even more apparent if we consider that GB trap densities (see Table 1) are much larger
than typical doping concentrations used in 3D NAND strings. A similar approach was also
followed by [102].

The above-mentioned model has been applied to investigate the impact of GB traps
on RTN [99,101] within a Monte Carlo approach: random configuration of GBs are first
generated in the silicon region after a Voronoi tessellation [92], and traps are placed at
the interfaces following the previously-discussed energy distribution. Drain current is
computed up to a specified threshold, defined at a constant current level, after which
an additional RTN trap is filled with an electron and the resulting VT shift computed.
Results for a template device are also reported in Figure 3, for the case of a single trap
placed at one random position in a GB, and for a trap placed at a random position at the
silicon/gate oxide interface. It is clear that GB traps are much more effective in modulating
the electron conduction and result in larger VT fluctuations.



Micromachines 2021, 12, 703 5 of 14

500 600 700
Distance	[nm]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

En
er

gy
	[e

V]

I	=	10-10	A
I	=	10-8	A
I	=	10-6	A

Figure 3. (Left) Conduction band profile for a 3D NAND string at different current levels. (right)
RTN complementary cumulative distribution functions (ccdfs) for traps placed at the GBs or at
the gate/oxide interface for a template device.

In spite of these encouraging results, several important features of this model still
have to be assessed, such as the actual grain size [103–105], the mobility degradation and
conduction process at the grain boundaries [106,107], and the impact of all these quantities,
including architectural parameters and cell design, on RTN.

4. Experimental Data

The previous section was meant to provide a framework for the interpretation of the most
relevant experimental data presented in the literature, that are discussed in the following. It
must be noted, however, that RTN, as well as other reliability concerns in 3D NAND memories,
remains a highly-confidential matter and very few data are published. We begin our analysis
of RTN with single-trap data, moving then to statistical distributions and impact on device
performance.

4.1. Single-Trap Data

Investigation of the microscopic properties of RTN single traps in 3D NAND de-
vices can be found in [108,109], where a statistical analysis of the noise power spectral
density was also carried out. In those papers it was reported that the string current fluctua-
tions due to single-trap RTN depend on the sensing current: as the current is increased,
its fluctuations also increase when measured in absolute terms, but decrease in terms
of relative change. Such a dependence was also found in [110] for the above-threshold
region, and ascribed to the effect of traps at the silicon-oxide interfaces. These depen-
dences reflect similar behaviors observed both experimentally and numerically in planar
or cylindrical devices [111–113], where the increased screening exerted by the mobile
carriers as the gate bias is raised, mitigating the effect of the RTN trap, was invoked as
an explanation. Several works reported investigations of the capture and emission time
constants and their dependence on gate bias and temperature, including the activation en-
ergies [114–117]. Their results do not point to any particular difference in the microscopic
nature of such traps with respect to those active in planar devices (apart from a faster cap-
ture/emission dynamics suggested in [114]): this of course is not surprising and supports
an interpretation of the RTN phenomenon based on the spatial distribution of such traps
rather than on some peculiar characteristics.

4.2. Array Statistical Data

From the viewpoint of the memory performance, the statistical distribution of the RTN-
induced ∆VT is the main parameter. This kind of fluctuations in poly-Si channels were
first shown (to our knowledge) in [118], on a nanowire structure (no filler oxide), showing
an exponential distribution for ∆VT , which is a typical result of a percolation process.
The same exponential dependence was reported on vertical NAND devices in [119–123],
suggesting that the RTN distribution in arrays follows an e−∆VT/λ law, and can be effectively
characterized by the slope λ of the exponential distribution.
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A comparison between 3D and planar cell RTN is reported in [124], where a larger
RTN distribution was reported for the former, while an opposite result was claimed
in [121]. It is obviously difficult if not impossible to critically assess those results and
search for the reason of this discrepancy. However, from a general standpoint, the slope λ
is related to both the trap density (affecting the percolation centers) and the electrostatic
impact of a single trapped electron, that have an opposite trend when moving from planar
to 3D devices: 3D cells are expected to have a higher trap density thanks to the presence
of GBs, but feature also a larger cell (i.e., a larger capacitance and a lower electrostatic
impact of a single electron). So, the different results might just be a consequence of different
cell designs.

The impact of GB traps on RTN can also be noted in the comparison reported in [125,126]
and carried out as a function of temperature in the range from −10 to 125 ◦C, that is shown
in Figure 4 (left). First, please note that the shape of the two distributions is different: in 2D
cells we notice clear exponential tails due to RTN departing from a central distribution,
related to measurement noise in cells not affected by RTN; in 3D arrays, instead, we notice a
single exponential distribution, suggesting that the large majority of cells in the 3D array are
affected by RTN. A second point to stress is that the slope of the exponential distribution is
reduced with respect to planar technologies [121,125,127]. Given the previous point, such
an improvement seems mainly a consequence of the larger cell size of 3D arrays, although a
role could also be played by the different conduction mechanism and percolation in planar
and 3D devices (see for example [113] for a discussion on the RTN dependences in 3D
devices). Finally, different temperature dependences are also apparent: while planar
device RTN is temperature-independent [128], 3D NAND exhibit a decrease in λ at higher
temperatures, as also reported in [115,116].
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Figure 4. (Left) RTN cumulative density function (cdf) and its complementary (ccdf) for 2D and 3D
NAND arrays at different temperatures [125,126], © 2017, IEEE. (Right) VT fluctuations due to single
RTN traps at different temperatures.

Such a different temperature dependence is important from a reliability standpoint
and deserves further investigation. To this aim, the right side of Figure 4 shows the behav-
ior of a single RTN trap as a function of time, for different temperatures. Besides a decrease
in the absolute value of VT for higher temperatures, reflecting an increase in the current, it
is obvious that the fluctuation amplitude is decreasing as well. This behavior has been ob-
served on a number of traps [126] and is the responsible for the improved RTN distribution.
At first glance, the temperature dependence could be simply related to the thermal energy
of the electrons and their better or worse capability to overcome the energy barriers, but this
would not explain the difference between planar and 3D dependences. So, we must assume
that temperature affects the percolation itself. To check this, we conducted simulations with
the model presented in the previous section [98–101], for a template 3D NAND device at
different temperatures. Results are presented in Figure 5 (left). Note that the decrease of the
RTN slope at higher temperature is accounted for by the model, allowing to exploit its
results to provide some more insight: to this aim, we have simulated a template device with
a single GB orthogonal to the current flow and placed at the middle of the gate. Results
for the conduction band at threshold at different temperatures are reported in Figure 5
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(right), and feature significant differences: indeed, the conduction band peak, located at
the GB and due to the localized trapped charge, becomes sharper at low temperatures,
meaning that there is an increased trapped charge at low temperatures, resulting in more
percolation centers. A reason for this lies in our definition of the threshold condition, that
is a constant-current (10 nA) criterion. When temperature is lowered, thermal emission is
reduced, and the string current lowers. To reach the same 10 nA value, gate bias must be
increased, lowering the conduction band and leading to additional trap filling. Note also
that this phenomenon does not take place in planar devices, where the percolation centers
are the ionized dopants, whose density obviously does not change with the gate bias.
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Figure 5. (Left) Simulation results for the RTN ccdf in a template 3D NAND device for different
temperatures. (Right) Conduction band profile at different temperatures for a template device with a
single GB located at the center of the channel.

Additional dependences exhibited by random telegraph noise in 3D NAND were
reported by [108,122] with reference to read current and pass voltage. Figure 6 (left)
shows RTN data for cells on different wordlines as a function of the read current and pass
voltage. While some cells do not exhibit significant RTN, the one labelled as WL2 features a
decreasing relative fluctuation of the current as the read current is increased, in agreement
with data previously discussed. However, data also show a dependence on the pass voltage,
whose increase leads to a higher RTN. Similar data are reported in Figure 6 (right), where
the RTN distribution is shown. Data show that the tail slope of the bitline current increases
as the pass voltage is increased. This result was related to the previous one by the authors
of [122], as increasing the pass voltage means a reduction of the read threshold voltage
and an increase in the RTN fluctuations. However, further analysis are needed to clarify
the link between the string operating conditions and the measured RTN.

Figure 6. RTN ccdf as a function of the read current (left) and of the pass bias, at a read current
of 100 nA (right). From [122], © 2016, IEEE.

Finally, the effect of cycling on RTN in 3D arrays has been investigated in [110,119,126]
and data from [126] are reported in Figure 7 (left). Note that the RTN ∆VT data for a fresh
and a cycled array show only a minimal increase in the height and slope of the distribution,



Micromachines 2021, 12, 703 8 of 14

which is again different from the noticeable increase in the RTN distribution reported
in planar devices (see [128,129]). Such a difference can also be appreciated in Figure 7 (right),
depicting the average number of traps 〈Nt〉 extracted from fitting the RTN distributions
with a simplified model [32]: note that the departing of 〈Nt〉 from the initial value takes
place at much higher cycling doses in the 3D NAND case than in the planar array. While this
suggests an increased hardening of 3D cells against cycling-induced defects, it should not
be forgotten that 3D cells feature a native trap density higher than their planar counterparts
(see Figure 4, left), mostly due to the GB traps not present in crystalline silicon, which
may hide the initial-stage growth of cycling-induced defects. It is also interesting to note
that a stronger dependence on cycling in 3D arrays was instead reported in [119], which
might be ascribed to either a larger trap generation rate due to different cycling conditions
or to a lower number of native traps, as fewer traps in the NAND cells would result in a
more noticeable increment due to cycling. Furthermore, a transient effect related to a
non-stationary condition, as hinted by the asymmetric RTN distribution there reported
(see [130] for discussion) could also affect the evaluation.
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Figure 7. (Left) RTN cdf for a 3D NAND before and after cycling to 10k cycles [126], © 2018, IEEE.
(Right) Average number of RTN traps as a function of cycling [126], © 2018, IEEE.

It is also interesting to note that data reported in Figure 7 were taken with programmed
cells. However, in [110,131] a higher sensitivity of RTN to cycling was reported when cells
are measured in the erased state (Figure 8). In the authors’ view, this result is not a
consequence of a different generation rate or annealing of stress-induced traps, but rather
the result of different conduction profiles of the electrons as a consequence of the charge
stored in the cells, enhancing the impact of newly-created traps at the interface. Such results
demonstrate that the RTN picture is still not complete, notwithstanding the excellent work
put forward by the scientific community.

Figure 8. RTN cdf before and after cycling for the case of erased (a) and programmed (b) cells [110],
© 2014, IEEE.
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5. Conclusions

Ever since its first detection in MOS devices, RTN has retained two opposite faces,
being a remarkable probe into the microscopic physics of carrier interactions with de-
fects on one side, and a reliability threat on the other. It appears safe to say that even
the transition to 3D NAND has not affected such characters, that are instead enhanced
by the additional challenges built by the polycrystalline conduction channel. In this frame,
this work has presented a review of the most significant experimental results in the field
of random telegraph noise in 3D NAND, highlighting its current understanding and some
open issues that require further efforts from the scientific and technological communities.
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