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Abstract: Capacitive micromachined ultrasonic transducer (CMUT) is an ultrasonic transducer based
on the microelectromechanical system (MEMS). CMUT elements are easily made into a high-density
array, which will increase the hardware complexity. In order to reduce the number of active channels,
this paper studies the grating lobes generated by CMUT periodic sparse array (PSA) pairs. Through the
design of active element positions in the transmitting and receiving processes, the simulation results of
effective aperture and beam patterns show that the common grating lobes (CGLs) generated by the
transmit and receive array are eliminated. On the basis of point targets imaging, a CMUT linear array
with 256 elements is used to carry out the PSA pairs experiment. Under the same sparse factor (SF),
the optimal sparse array configuration can be selected to reduce the imaging artifacts. This conclusion
is of great significance for the application of CMUT in three-dimensional ultrasound imaging.

Keywords: CMUT; sparse array; ultrasound imaging; MEMS

1. Introduction

The CMUT ultrasonic array, based on MEMS technology, has attracted great attention
from researchers, industry and clinical institutions. This is because the CMUT ultra-
sonic array is smaller and more sensitive than traditional ultrasonic components [1–5].
The research findings of Stanford are the most prominent when it comes to CMUT de-
vices [6–9]. The North University of China has also paid great attention to the CMUT
devices. We focused on the process structures used previously [10–12]. In recent years,
the ultrasound imaging field has demanded greater imaging clarity, especially for the
three-dimensional ultrasound imaging [13]. The requirements for the CMUT array ele-
ments, such as spacing, elements size, and element number, are also higher. The number
of array elements can reach the hundreds or even thousands, resulting in high hardware
complexity [14]. To solve this problem, researchers have provided a variety of strategies to
design the sparse array [15–19]. This has included reducing the side-lobes caused by sparse
array through optimization theories [20,21]. In reference [20], a new cost function was intro-
duced to optimize the weighting coefficients of the elements, and a new annealing-based
algorithm was proposed to compute the lowest cost solutions. However, the position of
sparse array elements designed by these optimization theories is irregular, resulting in an
uneven scanning line, which may affect the imaging quality. In this paper, the PSA pairs are
designed based on the Vernier arrays [15]. Vernier arrays take advantage of the periodicity
of the array elements: set p is a positive integer and d is array elements spacing; if the trans-
mit aperture array elements spacing is (p− 1)d and the receive aperture array elements
spacing is pd, the overall effective aperture with the array elements spacing of d can be
generated by convolution operation [22]. To make the effective aperture of Vernier arrays
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closer to the ideal effective aperture, in [23,24], a weighting method is proposed to ensure
the signal-to-noise ratio (SNR) and reduce the grating lobes. In references [20,22,25,26], the
studies of sparse array were limited to algorithm derivation and simulation imaging and
had not been verified by experimental imaging. CMUT is the new generation of ultrasonic
component [7], and its emission principle is different from that of a traditional piezoelectric
transducer. This paper studies the analysis method of [25] to study the optimal PSA pairs in
CMUT array imaging. It sets the array elements spacing to an arbitrary value (not limited
to the (p− 1) ∗ p), but the periodicity is guaranteed. For the CMUT arrays with the same SF,
the optimal sparse array configuration is selected by comparing the effective aperture and
beam patterns; the point targets imaging and CMUT linear array imaging are verified and
the CMUT array experimental verification is carried out according to the criteria derived
in [25]. Furthermore, Kaiser window apodization is performed on the optimal sparse array
during the process of CMUT ultrasonic transmission, which further reduce the artifacts of
CMUT sparse array imaging.

This article is organized as following. In Section 2, the structure of CMUT is introduced.
In Section 3, CMUT sparse model and simulation are explained. Section 4 presents the
selection of optimal sparse array configuration. Section 5 shows imaging verification.
Section 6 concludes this article.

2. Structure of CMUT

The CMUT component is based on a centralized diaphragm structure and consists
of many parallel cells. The cell structure from top to bottom is: top electrode, membrane;
cavity support, substrate, bottom electrode, and a vacuum cavity in the middle, as shown in
Figure 1. The top electrode and bottom electrode, made of aluminum material, are used to
connect the external electric signal and grounding. There is a superposition effect between
cells. At a given resonance frequency, cells can vibrate simultaneously to produce ultrasonic
waves, or they can vibrate under the action of ultrasonic waves, and then through a specific
circuit to produce voltage signals. When a CMUT is in a working state, direct current (DC)
bias voltage is applied to the two electrodes of the cells. For example, when the CMUT
is in the receiving state, the DC is applied to the top electrode, and the electrostatic force
causes the membrane to stretch downward until the electrostatic force and membrane
resilience reaches a dynamic balance [27]. Under the action of external ultrasonic signal,
the membrane vibrates and changes the capacitance between the top electrode and bottom
electrode. This makes the output charge change and generates a weak induced current
under the action of DC bias. The CMUT-induced current formula is [28]

iCMUT = VDC
C(t)2

ε0 A
∂d(t)

∂t
(1)

where VDC is the DC bias voltage, the unit is V. C(t) is the capacitance of the CMUT, the
unit is nF. ε0 is the dielectric constant of vacuum. A is the area of vibration membrane,
the unit is mm2. ∂d(t)

∂t is the speed of vibration membrane. It can be seen from Formula (1)
that VDC is proportional to iCMUT , so in the appropriate range, DC should be increased to
improve the output current of CMUT.

The structure diagram of CMUT linear array is shown in Figure 2, and the array
parameters are shown in Table 1.
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Figure 2. Structure of CMUT linear array.

Table 1. Parameters of CMUT linear array (KOLO [29,30], L22-8v).

Parameter Term Value

Channels of elements 256
Center frequency 15.00 MHz

Bandwidth (8.00 MHz, 22.00 MHz)
Element kerf 0.0377 mm
Element size 0.0703 mm × 2.50 mm

DC bias voltage 90.00 V

3. CMUT Sparse Model and Simulation
3.1. CMUT Sparse Model

Figure 3 shows the conventional phased array (CPA) of CMUT, which uses all elements
to transmit and receive. The one-way beam pattern can be expressed as [28]

DCPA(θ) =
sin[(Mks sin θ)/2]

sin[(ks sin θ)/2]
(2)

where M is the number of CPA array elements, k is the wave number, s is the center distance
of array elements, and θ is the deflection angle.
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The condition for the existence of grating lobes is
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|DCPA(ks sin θ)| = |DCPA(ks sin θ ± 2nπ)| (3)

when ks sin θ = 0, i.e., θ = ±2nπ(n = 1, 2, · · ·), the position of grating lobes can be
obtained as follows:

θn = arcsin(±nλ

s
), n = 1, 2, · · · (4)

Figure 4 is the periodic sparse model of CMUT linear array. The total number of array
elements is NP × P, the array elements are divided into NP periods, and each period has
P elements. The number of active elements is Lac. The array SF is defined as SF = Lac/P.
It should be noted that the active elements are continuous. According to Formula (4), when
the grating lobes position of the transmitting array and the receiving array are the same,
the grating lobes of the two-way beam pattern at the same position will occur, which is
called the common grating lobes (CGLs). The purpose of this article is to eliminate CGLs
by optimizing the layout of PSA pairs. Through the design of transmit sparse array (TSA)
and receive sparse array (RSA), CGLs can be eliminated completely.
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There are three criteria of CGLs elimination [25]:
(1) TSA (PT , 1)/RSA (PR, 1), when the greatest common divisor (GCD) of PT and PR is 1;
(2) TSA (PT , LT = PR)/RSA (PR, 1), when the GCD of PT and PR is PR, where PR ≤ PT ;
(3) TSA (PT , l0)/RSA (PR, 1) or TSA (PT , 1)/RSA (PR, l0), where l0 < min (PT , PR).
TSA/RSA pairs satisfying any one of the three criteria can eliminate CGLs in the

two-way beam patterns.

3.2. Effective Aperture Comparison

Take the SF of transmit array SFT = 1/2, and the SF of receive array SFR = 1/2,
namely SFtwo−way = SFT × SFR = 1/4. The CMUT sparse array configurations are:
TSA (4, 2)/RSA (2, 1), TSA (2, 1)/RSA (2, 1), TSA (6, 3)/RSA (2, 1). TSA (2, 1)/RSA
(2, 1) does not satisfy the criteria of CGLs elimination, yet TSA (4, 2)/RSA (2, 1) and
TSA (6, 3)/RSA (2, 1) do satisfy the criteria of CGLs elimination. Figure 5a shows the
effective aperture of CPA, which is a standard triangle [31]. Figure 5b–d shows the effective
aperture of TSA (4, 2)/RSA (2, 1), TSA (2, 1)/RSA (2, 1), and TSA (6, 3)/RSA (2, 1),
respectively. It can be seen that the effective aperture of TSA (2, 1)/RSA (2, 1) has the
largest oscillating pattern, and the oscillating pattern range of TSA (6, 3)/RSA (2, 1) is
reduced. The oscillating range of TSA (4, 2)/RSA (2, 1) is the smallest, which is the closest
to the effective aperture of CPA. It can be preliminarily judged that TSA (4, 2)/RSA (2, 1)
should be selected when the SF of the transmit array and receive array are both 1/2.

3.3. Beam Patterns Comparison

In this section, the continuous wave (CW) beam patterns and pulse wave (PW) beam
patterns comparisons are performed on TSA (2, 1)/RSA (2, 1), TSA (4, 2)/RSA (2, 1), and
TSA (6, 3)/RSA (2, 1). To make the side-lobes comparison clearer, the beam patterns
deflection is 40◦. Figure 6a shows the CW beam patterns comparison diagram. It can
be seen that at the position of −20◦, TSA (2, 1)/RSA (2, 1) has the highest grating lobe,
whereas the grating lobe of TSA (6, 3)/RSA (2, 1)) is reduced, though it still reaches the
height of −10 dB. TSA (4, 2)/RSA (2, 1), however, reduces the grating lobe to less than
−40 dB in the same position. Figure 6b shows the PW beam patterns comparison diagram
simulated in Field II. The side-lobe levels of the PW beam patterns are lower than those
of the CW beam patterns by no less than 30 dB; it can be seen that the side-lobes appear
at −20◦, the side-lobe of TSA (2, 1)/RSA (2, 1) is still the highest, while the side-lobe of
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TSA (6, 3)/RSA (2, 1) decreased by 10 dB. However, the side-lobe of TSA (4, 2)/RSA (2, 1)
is the lowest. The comparison of PW beam pattern results is consistent with that of CW
beam patterns.
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This section studies the sparse array configurations which satisfy the criteria of CGLs
elimination can reduce the side-lobe of beam patterns under the same SF. In the following
section, we will study the selection of the optimal sparse array configuration through the
beam patterns and perform imaging verification.

4. Selection of Optimal Sparse Array Configuration

This section takes SFtwo−way = 1/6 as an example. There are five sparse array configu-
rations that satisfy the criteria of CGLs elimination: TSA (3, 1)/RSA (2, 1), TSA (6, 2)/RSA
(2, 1), TSA (6, 3)/RSA (3, 1), TSA (6, 4)/RSA (4, 1), TSA (6, 5)/RSA (5, 1).

Figure 7 shows the comparison result of the PW beam patterns. It can be seen that
the side-lobe levels of TSA (6, 4)/RSA (4, 1) and TSA (6,5)/RSA (5,1) are higher, while
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TSA (3, 1)/RSA (2, 1), TSA (6, 2)/RSA (2, 1), TSA (6, 3)/RSA (3, 1) have relatively lower
side-lobe levels.
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For a quantitative comparison of the five sparse array configurations in Figure 7,
Table 2 provides the mean side-lobe level and the peak side-lobe level in the region
−30◦ < θ < 30◦ of each sparse array configuration in Figure 7. Table 2 shows that the
side-lobe levels of TSA (6, 4)/RSA (4, 1) and TSA (6, 5)/RSA (5, 1) are higher, and al-
though there is no significant difference in the side-lobe levels of TSA (3, 1)/RSA (2, 1),
TSA (6, 2)/RSA (2, 1), and TSA (6, 3)/RSA (3, 1), it can be seen that the TSA (3, 1)/RSA (2, 1)
has the lowest the peak side-lobe level and mean side-lobe level. Therefore, TSA (3, 1)/RSA
(2, 1) should be selected as the optimal sparse array configuration.

Table 2. Comparisons of mean and peak side-lobe levels in the region −30◦ < θ < 30◦ for different
sparse array configurations.

Sparse Array Configuration Mean (dB) Peak (dB)

TSA (3, 1)/RSA (2, 1) −58.98 −59.03
TSA (6, 2)/RSA (2, 1) −58.43 −54.39
TSA (6, 3)/RSA (3, 1) −57.24 −53.84
TSA (6, 4)/RSA (4, 1) −55.64 −50.73
TSA (6, 5)/RSA (5, 1) −53.70 −41.35

5. Verification
5.1. Simulation Verification

To verify the imaging effect of the optimal PSA pairs, point targets imaging are carried
out. In point targets imaging, 15 spatial points are set on the Oxz plane, as shown in
Figure 8. The coordinates are: (−6.00 mm, 0.00 mm, 3.00 mm), (−3.00 mm, 0.00 mm,
3.00 mm), (0.00 mm, 0.00 mm, 3.00 mm), (3.00 mm, 0.00 mm, 3.00 mm), (6.00 mm, 0.00 mm,
3.00 mm), (0.00 mm, 0.00 mm, 6.00 mm), (−1.50 mm, 0.00 mm, 9.00 mm), (0.00 mm, 0.00 mm,
9.00 mm), (1.50 mm, 0.00 mm, 9.00 mm), (0.00 mm, 0.00 mm, 12.00 mm), (−6.00 mm,
0.00 mm, 15.00 mm), (−3.00 mm, 0.00 mm, 15.00 mm), (0.00 mm, 0.00 mm, 15.00 mm),
(3.00 mm, 0.00 mm, 15.00 mm), (6.00 mm, 0.00 mm, 15.00 mm).

Figure 9 shows the point targets imaging comparison results of SFtwo−way = 1/4,
in which the TSA (2, 1)/RSA (2, 1) does not satisfy the criteria of CGLs elimination.
As shown by the red dotted line, TSA (2, 1)/RSA (2, 1) in Figure 9 shows that the
point targets’ imaging artifacts brightness is the highest, while TSA (6, 3)/RSA (2, 1)
and TSA (4, 2)/RSA (2, 1) with the same SF can effectively reduce the brightness of arti-
facts because they satisfy the criteria of CGLs elimination. Compared with TSA (4, 2)/RSA
(2, 1) and TSA (6, 3)/RSA (2, 1), TSA (4, 2)/RSA (2, 1) has fewer artifacts, which pre-
liminarily verifies the validity of beam patterns. In order to quantitatively compare the
point targets imaging results of SFtwo−way = 1/4, and taking the point targets imaging
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result of CPA as the standard, the mean square error (MSE) and peak signal-to-noise ratio
(PSNR) [32] are compared. The comparison results are shown in Table 3. It can be seen from
the quantitative comparison results that, under the same SFtwo−way = 1/4, the imaging
result of TSA (4, 2)/RSA (2, 1) is the best.
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Table 3. Point-targets imaging quantitative comparison of SFtwo−way = 1/4.

Point-Targets Imaging MSE PSNR

TSA (2, 1)/RSA (2, 1) 4369.84 24.33
TSA (6, 3)/RSA (2, 1) 3656.92 30.40
TSA (4, 2)/RSA (2, 1) 1755.90 33.89

Figure 10 shows the point targets imaging comparison results of SFtwo−way = 1/6.
All sparse array configurations satisfy the criteria of CGLs elimination. It can be seen that
TSA (6, 4)/RSA (4, 1) and TSA (6, 5)/RSA (5, 1) have a higher artifacts brightness. Com-
pared with the three sparse array configurations TSA (3, 1)/RSA (2, 1), TSA (6, 2)/RSA (2, 1)
and TSA (6, 3)/RSA (3, 1), TSA (3, 1)/RSA (2, 1) has the lowest artifacts brightness rel-
ative to TSA (6, 2)/RSA (2, 1) and TSA (6, 3)/RSA (3, 1), which can be used as the
optimal sparse array configuration. In the same way, quantitative comparison results
of point targets imaging under the same SFtwo−way = 1/6 are performed in Table 4.
This conclusion verifies the beam patterns of Figure 7.

Table 4. Point targets imaging quantitative comparison of SFtwo−way = 1/6.

Point-Targets Imaging MSE PSNR

TSA (3, 1)/RSA (2, 1) 3795.83 34.22
TSA (6, 2)/RSA (2, 1) 3837.70 34.07
TSA (6, 3)/RSA (3, 1) 3975.23 33.92
TSA (6, 4)/RSA (4, 1) 4115.12 33.77
TSA (6, 5)/RSA (5, 1) 4257.40 27.74

The simulation results of point targets imaging show that under the same SF, the
sparse array configurations that satisfy the criteria of CGLs elimination can reduce side-
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lobes and artifacts, and thereby reduce hardware complexity. It is preliminarily concluded
that the beam patterns can be used to select the optimal sparse array configuration.
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5.2. Experimental Verification

In this paper, a 256-element CMUT linear array is used for experimental verification.
The parameters of CMUT linear array are shown in Table 1; the alternating voltage (AC)
of CMUT linear array is 13 V in this experiment. The experimental platform is shown in
Figure 11. The experiment is carried out on the Verasonics ultrasound platform [33–35];
four nails are fixed on the foam pad, using the CMUT linear array to image these four nails
underwater. Each nail’s number is shown in the figure; the heights of nail 1, nail 2, nail 3,
nail 4 are 15.00 mm, 20.00 mm, 19.00 mm, 16.00 mm, respectively. The distance between
nail 1 and nail 2 is 5.00 mm, the distance between nail 2 and nail 3 is 6.00 mm, and the
distance between nail 3 and nail 4 is 6.00 mm. In this section, two groups of experiments
SFtwo−way = 1/4 and SFtwo−way = 1/6 are carried out, and the sparse array configurations
are the same as that of point targets imaging.

5.2.1. Criteria of CGLs Elimination Experimental Verification (SFtwo−way = 1/4)

In order to verify that the sparse array configuration under the same SF satisfies the
criteria of CGLs elimination can reduce beam side-lobes and artifacts, experiments are
carried out on the sparse array configuration of SFtwo−way = 1/4.

Figure 12 shows the imaging comparison of TSA (2, 1)/RSA (2, 1), TSA (6, 3)/RSA
(2, 1) and TSA (4, 2)/RSA (2, 1). From the TSA (2, 1)/RSA (2, 1) imaging result, the
red circle and arrow indicate that the artifacts are obvious, especially the artifacts at the
red circle, which cause the border of the nail 4 to be blurred. The artifacts brightness of
TSA (6, 3)/RSA (2, 1) is lower than TSA (2, 1)/RSA (2, 1). The artifacts of TSA (4, 2)/RSA
(2, 1) is almost disappeared, and the outline of nail cap can be clearly seen.
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5.2.2. Experimental Verification of Optimal Sparse Array Configuration Selection
(SFtwo−way = 1/6)

The CMUT linear array is used to perform imaging experiments on all sparse array
configurations (satisfy the criteria of CGLs elimination) of SFtwo−way = 1/6, the imaging
comparison results are shown in Figure 13. Consistent with the beam patterns and simu-
lation imaging results, the artifacts of TSA (3, 1)/RSA (2, 1) are the least in these sparse
array configurations, and the artifacts of TSA (6, 5)/RSA (5, 1) have the highest artifacts
brightness, almost the same as the brightness of nails. Imaging comparison results show
that, for a CMUT array with the same SF, different sparse array configurations have great
differences in imaging quality. Therefore, it is very effective to use the beam patterns to
select the optimal sparse array configuration before actual imaging.

From the imaging comparison results, it can be seen that selecting the optimal sparse
array configuration can reduce artifacts. To further improve the imaging effect of sparse
array and produce similar results to the imaging effect of CPA, the Kaiser window apodiza-
tion [36–38] is added during the ultrasonic transmitting process of CMUT array. Selecting
the optimal array configuration TSA (3, 1)/RSA (2, 1) and Kaiser window [39–41] parame-
ter β = 8, Figure 14 shows the comparison diagram of imaging results. It is obvious that
the artifacts at the point indicated by the arrow are significantly reduced, and the imaging
contrast of the nails is increased. This experiment shows that by further improving the
imaging process of optimal sparse array configuration, the imaging effect of the CMUT
sparse array is closer to that of CPA on the basis of reducing hardware complexity.
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6. Conclusions

In this paper, the PSA of CMUT linear array is studied. The effective aperture and
beam patterns are used to preliminarily verify the criteria of CGLs elimination. Under the
condition of the same SF, the optimal sparse array configuration is selected and verified
by point targets imaging and experimental imaging. The imaging results show that the
periodic sparse method in this article can not only reduce the hardware complexity, but also
render the imaging quality very close to that of CPA. In particular, the experimental results
of CMUT linear array prove the feasibility of PSA pairs, which is of great significance for
the application of CMUT in the field of three-dimensional ultrasound imaging.
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