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Abstract: The continuous phase plate (CPP) is the vital diffractive optical element involved in
laser beam shaping and smoothing in high-power laser systems. The high gradients, small spatial
periods, and complex features make it difficult to achieve high accuracy when manufacturing such
systems. A high-accuracy and high-efficiency surface topography manufacturing method for CPP
is presented in this paper. The atmospheric pressure plasma jet (APPJ) system is presented and
the removal characteristics are studied to obtain the optimal processing parameters. An optimized
iterative algorithm based on the dwell point matrix and a fast Fourier transform (FFT) is proposed to
improve the accuracy and efficiency in the dwell time calculation process. A 120 mm × 120 mm CPP
surface topography with a 1326.2 nm peak-to-valley (PV) value is fabricated with four iteration steps
after approximately 1.6 h of plasma processing. The residual figure error between the prescribed
surface topography and plasma-processed surface topography is 28.08 nm root mean square (RMS).
The far-field distribution characteristic of the plasma-fabricated surface is analyzed, for which the
energy radius deviation is 11 µm at 90% encircled energy. The experimental results demonstrates the
potential of the APPJ approach for the manufacturing of complex surface topographies.

Keywords: atmospheric pressure plasma jet; continuous phase plate; surface topography; high
accuracy and efficiency

1. Introduction

High-powered laser systems require precise control of the laser beam shape and energy
distribution in the target plane [1]. The continuous phase plate (CPP), as a beam-shaping
optical element, can manipulate the incident laser to allow beam shaping and smoothing
with complex surface topographies [2]. The surface topography of the CPP, having multiple
spatial scales, high peak-to-valley (PV) values, large gradients, and high accuracy, causes
much difficulty in fabrication [3].

Subaperture technology is mainly used to imprint the topography deterministically to
obtain CPP elements [4]. Menapace et al. [5] developed the magnetorheological finishing
(MRF) technique to fabricate large-aperture CPPs for the National Ignition Facility (NIF),
in which the spatial periods of the surface topography are usually larger than 4 mm and
the PV values are as high as 8.6 µm [6,7]. Microstructures with smaller spatial periods are
difficult to process with MRF due to the limitations of tool sizes. Ion beam figuring (IBF)
has the potential to process smaller period structures, as the beam sizes can be changed
easily with a shielding diaphragm to as small as 1 mm. Xu et al. [8,9] used the ion beam
figuring (IBF) approach with different beam diameters based on the frequency filtering
method to improve the machining accuracy and efficiency of CPPs. However, the low
removal rate limits its application for large-aperture CPPs.

The atmospheric pressure plasma jet (APPJ) approach is an efficient manufacturing
technology with the advantages of high material removal efficiency, adjustable tool function
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size, and no subsurface damage. It is based on the chemical reaction removal mechanism,
involving a chemically reactive plasma jet driven with radio frequency (RF) power under
atmospheric pressure conditions. The plasma jet is fed by a mixture of fluorine-containing
reactive gases (NF3, CF4, SF6). The reactive gases dissociate in the plasma, producing
chemically reactive fluorine radicals that react with the workpiece surface to form volatile
products. In the case of silicon-based materials, SiF4 is formed and exhausted as a waste
product. It has been shown that plasma jet technology is a very efficient tool for the
treatment of optical surfaces made of silicon, silicon-based materials such as fused sil-
ica for damage-free optics in high-powered laser systems, and silicon carbide for space
applications.

The plasma jet technology combines the advantages of a non-contact machining
technique with material removal rates comparable to traditional polishing methods. As
a key advantage, subsurface damage is avoided owing to the material being removed
by plasma-assisted chemical etching without any mechanical or physical contribution.
The high-density distribution of reactive species can allow high material removal rates.
Furthermore, the lateral dimensions of the plasma jets can be adjusted easily from around
14 mm down to the sub-mm range. Thus, these plasma jets are suitable for pre-shaping
with high machining depths and for deterministic shape correction with high spatial
resolution. Due to the pure chemical removal mechanism, the surface roughness increases
while surface contaminants are efficiently removed the during processing. At present, the
disadvantage of the plasma jet approach is solved by using a combined processing chain.

Several fluorine-plasma-based machining techniques have been developed for op-
tical surface fabrication and freeform manufacturing. Castelli et al. [10,11] adopted the
reactive atom plasma (RAP) approach for large-optics rapid surface figuring, bringing
the figure error corrections down to 30 nm RMS on a ULE workpiece measuring 400 mm
in diameter with a 3 m radius of curvature (ROC). Yamamura et al. [12,13] developed
the plasma chemical vaporization machining (PCVM) approach to correct thickness de-
viations of quartz crystal wafer, whereby the thickness distribution for 14.4 nm PV was
obtained after two correction steps. Arnold et al. [14–16] proposed plasm jet machin-
ing (PJM) and investigated the effects of the surface temperature on the etching rate. A
three-dimensional finite element heat transfer model was built to assess the spatiotempo-
ral variations of the surface temperature and temperature-dependent material removal.
Su et al. [17] applied atmospheric pressure plasma processing (APPP) to CPP fabrication,
whereby 320 mm × 320 mm CPP of B33 with 2.78 µm PV was fabricated and the RMS of
the form error was 96 nm. Li [18,19] proposed a multiaperture plasma processing method
to structure a 30 mm × 30 mm CPP, for which the peak-to-valley error was 163.4 nm. The
potential of plasma processing for manufacturing CPP has been proven but the fabrication
accuracy and efficiency need to be further improved to meet the performance requirements.

In this paper, an optimized iterative algorithm for high-accuracy and high-efficiency
CPP manufacturing is presented. The APPJ system and surface topography processing
are first introduced and the removal function characteristics are investigated to obtain
the optimal processing parameters. Then, an optimized iterative algorithm based on the
dwell point matrix and FFT is proposed to improve the accuracy and efficiency of the
APPJ processing. The experimental processing is carried out to validate the accuracy and
efficiency of the APPJ in fabricating CPP. Finally, the far-field distribution characteristics of
the processed CPP are calculated.

2. Experiment
2.1. Experiment Setup

The APPJ made use of a radio frequency inductively coupled plasma (ICP) torch as a
tool to generate the plasma jet. The plasma jet source consisted of three coaxially arranged
conducting tubes guiding the plasma gas Ar and reactive gas CF4 together to a nozzle. The
plasma jet was generated through the excitation energy (radio frequency at 13.56 MHz)
and the CF4 was decomposed into active fluorine atoms. These reactive fluorine atoms
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acted as the main reactant, which was carried by plasma jet and reacted with the substrate
to form the volatile reaction products SiF4 and CO2. A schematic diagram of the APPJ used
for CPP processing is shown in Figure 1.

Micromachines 2021, 12, x  3 of 12 
 

 

2. Experiment 
2.1. Experiment Setup 

The APPJ made use of a radio frequency inductively coupled plasma (ICP) torch as 
a tool to generate the plasma jet. The plasma jet source consisted of three coaxially 
arranged conducting tubes guiding the plasma gas Ar and reactive gas CF4 together to a 
nozzle. The plasma jet was generated through the excitation energy (radio frequency at 
13.56 MHz) and the CF4 was decomposed into active fluorine atoms. These reactive 
fluorine atoms acted as the main reactant, which was carried by plasma jet and reacted 
with the substrate to form the volatile reaction products SiF4 and CO2. A schematic 
diagram of the APPJ used for CPP processing is shown in Figure 1. 

 
Figure 1. Schematic diagram of the APPJ used for CPP processing. 

The lateral dimensions of the primary plasma discharge can be modified within a 
range between 2 mm and 14 mm by varying the inner diameter of the exit nozzle or by 
adding additional beam-shaping nozzles and apertures. In this way, the material removal 
rates of 0.01 to 10 mm3/min are achieved. 

2.2. APPJ Processing of Surface Topography 
The fundamentals of the APPJ processing flow chart include targeted removal, dwell 

time calculations, plasma processing, and testing, as shown in Figure 2. First, the 
prescribed surface data were inverted and superimposed with the existing measured 
surface figure and the targeted removal map was obtained. Then, the dwell time and 
residual error were calculated through the removal function and the targeted surface 
deconvolution iteration, while the CNC program was also generated according to the 
dwell time and path. After this, the APPJ processing was performed to structure the phase 
topography on the optic substrate. The residual error was obtained by comparing the 
measured surface topography with the prescribed surface. Several plasma processing 
iterations were required until effective convergence of the residual error was achieved. 
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The lateral dimensions of the primary plasma discharge can be modified within a
range between 2 mm and 14 mm by varying the inner diameter of the exit nozzle or by
adding additional beam-shaping nozzles and apertures. In this way, the material removal
rates of 0.01 to 10 mm3/min are achieved.

2.2. APPJ Processing of Surface Topography

The fundamentals of the APPJ processing flow chart include targeted removal, dwell
time calculations, plasma processing, and testing, as shown in Figure 2. First, the prescribed
surface data were inverted and superimposed with the existing measured surface figure
and the targeted removal map was obtained. Then, the dwell time and residual error were
calculated through the removal function and the targeted surface deconvolution iteration,
while the CNC program was also generated according to the dwell time and path. After
this, the APPJ processing was performed to structure the phase topography on the optic
substrate. The residual error was obtained by comparing the measured surface topography
with the prescribed surface. Several plasma processing iterations were required until
effective convergence of the residual error was achieved.

The APPJ approach uses the removal function and dwell time to differentially remove
material from areas of an optic so that the desired surface can be obtained. Two main aspects
in the plasma surface topography processing deserve mention, namely the size and removal
rate of the removal function used to structure the topography. The physical characteristics
of the removal function determine the accuracy and success of the plasma processing on
the surface topography. The dwell time calculation is another key aspect during APPJ
processing, in which the APPJ process integrates interferometry and a computer algorithm
to generate the required instrument stage motions to deterministically remove material
surfaces. The algorithm attempts to converge to a solution that minimizes the RMS of the
residual error between the prescribed surface and plasma processing surface.
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Figure 2. The fundamentals of APPJ processing.

3. Methods
3.1. Removal Function

The most important factor to achieve precise etch depths for phase plate fabrication
is well-founded knowledge of the etch rate and its stability during the etching process.
Therefore, the peak removal rates were investigated closely as functions of the plasma RF
power and the CF4–Ar gas mixture flow and ratio. The key experimental parameters and
variation range for removal characteristic groups are listed in Table 1. In practical plasma
processing, the plasma jet stability, shape of the influence function, and material removal
efficiency need to be considered. Combined with the experimental results, the processing
parameters were determined. As the cooling gas, Ar is immitted through the external
tube with a tangential inlet at a flow of 16 slm (standard liter per minute). The plasma
gas, also Ar, is immitted through the intermediate tube at a rate of 1 slm, whereas the
reactive gas CF4 is kept at a flow rate of 5–70 sccm (standard cubic centimeter per minute,
1 sccm = 10−3 slm) when entering the center tube. The effects of the plasma parameters on
the peak removal rates are shown in Figure 3.

Table 1. Experimental parameters used for investigation of the removal characteristics.

Parameter Value

Ar flow rate 16 slm
RF power 800~1300 W

CF4 flow rate 5~70 sccm
Ratio of O2 and CF4 0~100%
Processing distance 12 mm

Dwell time 3 s

Figure 3a shows the peak removal rates with the RF power values ranging from 800 W
to 1300 W. It can be seen that the peak removal rates significantly increase with the increase
of RF power, which provides reactive species to promote material remove. Figure 3b shows
the peak removal rates with the flow rates of the reactive gas CF4 ranging from 5 sccm
to 70 sccm. It is clear that the peak removal rates increase linearly with the CF4 flow,
reaching 48 µm/min at 60 sccm; when the CF4 flow rate exceeded 70 sccm, the plasma
discharge became unstable. Figure 3c shows the peak removal rates with the O2/CF4 ratio,
whereby the addition of O2 to CF4 gas leads to fluorine-rich plasma, which can improve
the removal rate, while the peak removal rate reaches a peak value at about 40% of O2/CF4
and then decreases upon the addition of O2. Figure 3d shows the repeatability of the
removal function with processing parameters at 1100 W RF power, 60 sccm CF4 flow, and
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40% O2/CF4 ratio, where five removal functions are etched with the same parameters and
the maximum deviation of the peak removal rate is about 6.3%.
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3.2. Dwell Time Algorithm

The dwell time is the input control for surface topography structure configuration,
meaning the dwell time algorithm is the key issue in APPJ processing. For a conventional
dwell time calculation, the removed material F(x, y) is equal to the convolution of the
removal function R(x, y) and the dwell time T(x, y) is given as follows:

F(x, y) = R(x, y) ∗ T(x, y) (1)

The dwell time T(x, y) can be obtained by calculating the deconvolution of the removed
material F(x, y) and the removal function R(x, y) [20]. However, with this deconvolution
calculation process, it is difficult to achieve convergence for the prescribed surface topogra-
phy and the calculation process is also time-consuming, especially for complex structure
components, for which the calculation scale is large and the accuracy and efficiency of con-
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ventional calculations are difficult to match with the processing requirements. Therefore,
an iterative algorithm based on the dwell point matrix and fast Fourier transform (FFT)
was proposed to achieve high accuracy and efficiency in the dwell time calculation.

During plasma processing, the plasma jet scanning follows the raster path. A schematic
of the plasma jet with the raster path is shown in Figure 4.
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Assuming that the number of original surface data points is M × N and the number
of dwell time points is U × V, the material removal convolution equation can be converted
into the matrix-based form as follows:

f11 f12 · · · f1N
f21 f22 · · · f2N
...

...
. . .

...
fM1 fM2 · · · fMN

=


r11 r12 · · · r1Q
r21 r22 · · · r2Q
...

...
. . .

...
rP1 rP2 · · · rPQ

∗


t11 t12 · · · t1V
t21 t22 · · · t2V
...

...
. . .

...
tU1 tU2 · · · tUV

 (2)

Generally, the number of dwell points is less than that of the surface data points
(U < M, V ≤ N) and the size of the dwell time matrix D is not equal to the original data
matrix P, so the dwell time matrix D and the removal function matrix R cannot be directly
used for the convolution operation to obtain the matrix P [21].

To achieve fast calculation without loss of accuracy when calculating the dwell time,
the concept of the dwell point matrix DP is proposed in this paper. The size of matrix DP
is M × N, which is equal to the original data matrix P, while the value of the dwell point is
1 and of the non-dwell point is 0. The dwell time matrix T performs the matrix Hadamard
product operation [22,23] with the dwell point matrix DP, as shown in Equation (3), so that
the value of the non-dwell point in the dwell time matrix is equal to zero, which ensures
that the amount of material removal is calculated only when the removal function is at
the dwell point. The standard convolution method can be used to calculate the amount of
material removal with the dwell point matrix DP:

T =


t11 t12 · · · t1V
t21 t22 · · · t2V
...

...
. . .

...
tU1 tU2 · · · tUV

•


1 1 · · · 1
0 0 · · · 0
1 1 · · · 1
...

...
. . .

...
0M1 0M2 · · · 0MN

 =


t11 t12 · · · t1N
t21 t22 · · · t2N
...

...
. . .

...
tM1 tM2 · · · tMN

 (3)
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When the calculation scale is large, the calculation speed of the matrix convolution
according to the definition of the convolution is slow. To improve the speed of the convolu-
tion calculation, as the spatial domain convolution calculation is equal to the frequency
domain product operation, in this paper we propose using a fast Fourier transform (FFT)
algorithm for convolution calculations.

T ∗ R = IFFT(FFT(T)•FFT(R)) (4)

In Equation (4), FFT represents the fast Fourier transform and IFFT represents the
inverse fast Fourier transform. In the convolution calculation, first we perform the FFT
transformation on the matrix and then separately perform the Hadamard product oper-
ation on the results of the FFT transformation. Finally, we perform the inverse FFT on
the multiplied result to obtain the final convolution calculation result. The convolution
calculation based on the FFT has a very fast calculation speed compared to the convolution
calculation according to the definition in the large-scale calculation.

A flow chart of the dwell time algorithm is shown in Figure 5. The dwell point matrix
DP is established according to various parameters, such as the line spacing and step length.
Once the necessary parameters have been chosen, the initial value of the dwell time, the
permission iteration error Errmax, and the maximum iteration number itmax are set. Then,
the dwell time matrix T is calculated with the main iterative loop, then the dwell time
matrix T is multiplied by the Hadamard product matrix DP and the residual error matrix
E is calculated using a multicore parallel FFT convolution calculation. Finally, the iterative
loop is terminated when the calculated residual error is less than the permission error and
the dwell time Tk+1 and residual error Ek+1 can be obtained.
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4. Results

The dwell time iterative calculation was used to fabricate a 120 mm × 120 mm × 5 mm
CPP substrate. The prescribed surface of the CPP has a random surface topography with
1326.2 nm PV and 292.2 nm RMS, as shown in Figure 6a. All figuring experiments were
performed in our self-developed APPJ system. After the experiment, the 4D interferome-
ter was used to measure the CPP and the specified evaluation aperture for the CPP was
100 mm × 100 mm. After four plasma iteration steps, the surface topography measure-
ments for the CPP were 1306.4 nm PV and 286.5 nm RMS, as shown in Figure 6b. The
interferometer measurements and a photo of the substrate after the APPJ process are shown
in Figure 6c. The actual residual error after the plasma process was 28.08 nm, as shown in
Figure 6d.
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During plasma processing, further iteration steps comprise the dwell time matrix
calculation using the modified topography. Several iterations are performed until the
residual error obtained from the difference between the measured topography and the
designed topography is less than that required by the specifications. The topographical
profiles have RMS errors of <30 nm relative to the idealized CPP prescription. Figure 7
shows the convergence of the residual error of the material removal at four iteration
steps for the CPP shape. After the first plasma processing stage, the surface topography
was generated and a residual figure error of 115.413 nm remained, after which a further
three correction steps were applied, resulting in a residual figure error of 28.08 nm.
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5. Discussion

The far-field characteristics of the surface shape can be analyzed using numerical
simulation, whereby an ideal plane shines light through the component, making the far
field of the modulated beam a direct reflection of the far-field characteristics of the CPP
component, for which the wavelength λ = 633 nm and the focal distance d = 200 mm are
used in the calculation. Figure 8 shows the far-field focal spot distribution of the prescribed
surface and the plasma-processed surface, respectively. From the simulation results, the
fabricated plasma has a reasonable beam-shaping function as the prescribed surface.

Micromachines 2021, 12, x  10 of 12 
 

 

5. Discussion 
The far-field characteristics of the surface shape can be analyzed using numerical 

simulation, whereby an ideal plane shines light through the component, making the far 
field of the modulated beam a direct reflection of the far-field characteristics of the CPP 
component, for which the wavelength λ = 633 nm and the focal distance d = 200 mm are 
used in the calculation. Figure 8 shows the far-field focal spot distribution of the 
prescribed surface and the plasma-processed surface, respectively. From the simulation 
results, the fabricated plasma has a reasonable beam-shaping function as the prescribed 
surface. 

Figure 8. Far field distribution of the prescribed surface and plasma-processed surface: (a) Far-
field distribution of prescribed surface; (b) Far-field distribution of plasma-processed surface. 

To provide more information on the far-field distribution, the one-dimensional 
distributions of the far field focal spot are plotted in Figure 9. It can be seen from the figure 
that for the phase plate, the one-dimensional distribution of the focal spot is regular and 
the energy is concentrated. The cross-section profile of the plasma-processed surface is 
mainly consistent with prescribed surface profile, while the waveform of the intensity 
indicates non-uniformity of the energy distribution. 

 
Figure 9. One-dimensional distribution of the focal spot. 

The non-uniformity is scaled by the focal spot contrast in a circle with the energy 
included. The relationship between the energy proportion and the diameter from the 
centroid are given in Figure 10. The 90% encircled energy radius values for the prescribed 

-600 -400 -200 0 200 400 600
0

2

4

6

8

10

12

14
x 104

X (μm)

In
te

ns
ity

 (W
/c

m
2 )

 

 

Prescribed surface profile
Plasma processed profile

  
(a)  (b)  

X (μm)

Y 
( μ

m
)

 

 

-1000 -500 0 500 1000

-800

-600

-400

-200

0

200

400

600

800

0.5

1

1.5

2

x 105

X (μm)

Y 
( μ

m
)

 

 

-1000 -500 0 500 1000

-800

-600

-400

-200

0

200

400

600

800

0.5

1

1.5

2

x 105

Figure 8. Far field distribution of the prescribed surface and plasma-processed surface: (a) Far-field distribution of prescribed
surface; (b) Far-field distribution of plasma-processed surface.

To provide more information on the far-field distribution, the one-dimensional distri-
butions of the far field focal spot are plotted in Figure 9. It can be seen from the figure that
for the phase plate, the one-dimensional distribution of the focal spot is regular and the
energy is concentrated. The cross-section profile of the plasma-processed surface is mainly
consistent with prescribed surface profile, while the waveform of the intensity indicates
non-uniformity of the energy distribution.
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Figure 9. One-dimensional distribution of the focal spot.

The non-uniformity is scaled by the focal spot contrast in a circle with the energy
included. The relationship between the energy proportion and the diameter from the
centroid are given in Figure 10. The 90% encircled energy radius values for the prescribed
surface and plasma-fabricated surface are 374 and 363 µm, respectively. The energy radius
deviation is 11µm, which is less than the specification of 15 µm.
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6. Conclusions

In this paper, the figuring capability of the atmospheric pressure plasma jet technology
for the spatial surface topography was proven at 28.08 nm RMS. An optimized iterative
algorithm based on the dwell point matrix combined with the FFT convolution calculation
method was proposed in order to improve the convergence accuracy and efficiency of
the dwell time calculation. The experimental results verified that this optimized method
could efficiently imprint a prescribed surface topography of 120 mm × 120 mm CPP with
a residual figure error of 28.08 nm (RMS) after 1.6 h of plasma processing. Comparing the
far-field focal spots of the prescribed CPP and fabricated CPP, the energy radius deviation
was 11µm at 90% encircled energy. Meanwhile, the peak removal rate of the APPJ system
reached 48 µm/min, showing the high efficiency of the system for large-aperture optics.
This study provides a new technical option for the fabrication of large-aperture optics
with complex surface topographies. Ongoing process development for the APPJ process
is expected to confirm its effectiveness for surface structures of wide spatial wavelength
ranges and its advantages for lightweight optical components such as SiC.
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