
micromachines

Review

Advancements in Microprocessor Architecture for Ubiquitous
AI—An Overview on History, Evolution, and Upcoming
Challenges in AI Implementation

Fatima Hameed Khan, Muhammad Adeel Pasha * and Shahid Masud *

����������
�������

Citation: Khan, F.H.; Pasha, M.A.;

Masud, S. Advancements in

Microprocessor Architecture for

Ubiquitous AI—An Overview on

History, Evolution, and Upcoming

Challenges in AI Implementation.

Micromachines 2021, 12, 665.

https://doi.org/10.3390/mi12060665

Academic Editor: Piero Malcovati

Received: 5 May 2021

Accepted: 3 June 2021

Published: 6 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, Lahore University of Management Sciences (LUMS), Lahore,
Punjab 54792, Pakistan; 20060029@lums.edu.pk
* Correspondence: adeel.pasha@lums.edu.pk (M.A.P.); smasud@lums.edu.pk (S.M.)

Abstract: Artificial intelligence (AI) has successfully made its way into contemporary industrial
sectors such as automobiles, defense, industrial automation 4.0, healthcare technologies, agriculture,
and many other domains because of its ability to act autonomously without continuous human
interventions. However, this capability requires processing huge amounts of learning data to extract
useful information in real time. The buzz around AI is not new, as this term has been widely known
for the past half century. In the 1960s, scientists began to think about machines acting more like
humans, which resulted in the development of the first natural language processing computers.
It laid the foundation of AI, but there were only a handful of applications until the 1990s due to
limitations in processing speed, memory, and computational power available. Since the 1990s,
advancements in computer architecture and memory organization have enabled microprocessors
to deliver much higher performance. Simultaneously, improvements in the understanding and
mathematical representation of AI gave birth to its subset, referred to as machine learning (ML). ML
includes different algorithms for independent learning, and the most promising ones are based on
brain-inspired techniques classified as artificial neural networks (ANNs). ANNs have subsequently
evolved to have deeper and larger structures and are often characterized as deep neural networks
(DNN) and convolution neural networks (CNN). In tandem with the emergence of multicore pro-
cessors, ML techniques started to be embedded in a range of scenarios and applications. Recently,
application-specific instruction-set architecture for AI applications has also been supported in differ-
ent microprocessors. Thus, continuous improvement in microprocessor capabilities has reached a
stage where it is now possible to implement complex real-time intelligent applications like computer
vision, object identification, speech recognition, data security, spectrum sensing, etc. This paper
presents an overview on the evolution of AI and how the increasing capabilities of microprocessors
have fueled the adoption of AI in a plethora of application domains. The paper also discusses the
upcoming trends in microprocessor architectures and how they will further propel the assimilation
of AI in our daily lives.

Keywords: artificial intelligence; microprocessors; instruction set architecture; application-specific in-
tegrated circuits; real-time processing; machine learning; intelligent systems; automation; multicores

1. Introduction

Artificial intelligence (AI) is a thriving tool that has coupled human intelligence and
machine efficiency to excel in various disciplines of life. The idea of building intelligent
machines is even older than the field of AI itself. In 1950, Alan Turing presented the
possibility of implementing an intelligent machine and gave the parameters to judge
its intelligence, known as the Turing test [1]. The term “artificial intelligence” was first
mentioned in the Dartmouth Conference in 1956, which was attended by those who later
became the leading figures of this field. Early AI research included several programs
and methodologies, such as General Problem Solver [2], Theorem Prover [3], natural

Micromachines 2021, 12, 665. https://doi.org/10.3390/mi12060665 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-9892-5201
https://doi.org/10.3390/mi12060665
https://doi.org/10.3390/mi12060665
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12060665
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12060665?type=check_update&version=2

Micromachines 2021, 12, 665 2 of 22

language processor ELIZA [4] and the discovery of the perceptron [5]. Intrigued by the
success of these projects, the Defense Advanced Research Projects Agency (DARPA) also
invested massively in this field to utilize machine intelligence for various national security
projects [6]. After this first wave, AI encountered technological barriers that curtailed the
vast expectations of AI. In the following decades, as the market for personal computers
(PCs) was established, the paradigm of AI shifted to a knowledge-based-system, also
known as Expert Systems [7]. It was programmed using symbolic programming languages
such as LISP or Prolog. Expert Systems were used to implement human expert knowledge
in a machine that makes decisions based on stored information [8]. Due to problems
in accuracy and efficiency, Expert Systems could not find widespread acceptability in
the market.

Finally, the increase in computing power and development of more sophisticated
mathematical modeling tools gave birth to a new AI paradigm that became more successful
than before. The more advanced subset of AI algorithms in the form of machine learning
(ML) addressed the complex problems of AI and showed a promising way forward because
of its ability to make autonomous decisions based on previous learning and the scenarios
at hand [9]. The algorithms used in ML can find applications in diverse use cases, such
as the use of decision trees to monitor the depth of anesthesia [10] and support vector
machines (SVM) in financial research [11]. Artificial neural networks (ANN) have not
only outperformed other ML algorithms but also surpassed human intelligence in specific
tasks, e.g., image classification on an ImageNet dataset [12]. It motivated researchers to
delve deeper into the ANN structure, which resulted in networks with more parameters,
layers, and operations, which came to be classified as deep neural networks (DNN) [13].
DNNs can be further divided into structured network techniques for various applications,
i.e., recurrent neural networks (RNN) and transformer networks that mainly focus on
natural language processing. In recent years, AI has revolutionized society by covering a
wide range of applications, from the simplest smartphones in our hands to security and
surveillance [14] and autonomous vehicle controls [15]. Currently, it is being used in agri-
culture [16], healthcare departments for diagnosing different diseases [17,18], business and
finance [19,20], robotics [21], web searches [22], computer vision [23,24], etc. A taxonomy
of AI and its various sub-fields is shown in Figure 1.

Micromachines 2021, 12, x 2 of 23

telligence, known as the Turing test [1]. The term “artificial intelligence” was first men-
tioned in the Dartmouth Conference in 1956, which was attended by those who later be-
came the leading figures of this field. Early AI research included several programs and
methodologies, such as General Problem Solver [2], Theorem Prover [3], natural language
processor ELIZA [4] and the discovery of the perceptron [5]. Intrigued by the success of
these projects, the Defense Advanced Research Projects Agency (DARPA) also invested
massively in this field to utilize machine intelligence for various national security projects
[6]. After this first wave, AI encountered technological barriers that curtailed the vast ex-
pectations of AI. In the following decades, as the market for personal computers (PCs)
was established, the paradigm of AI shifted to a knowledge-based-system, also known as
Expert Systems [7]. It was programmed using symbolic programming languages such as
LISP or Prolog. Expert Systems were used to implement human expert knowledge in a
machine that makes decisions based on stored information [8]. Due to problems in accu-
racy and efficiency, Expert Systems could not find widespread acceptability in the market.

Finally, the increase in computing power and development of more sophisticated
mathematical modeling tools gave birth to a new AI paradigm that became more success-
ful than before. The more advanced subset of AI algorithms in the form of machine learn-
ing (ML) addressed the complex problems of AI and showed a promising way forward
because of its ability to make autonomous decisions based on previous learning and the
scenarios at hand [9]. The algorithms used in ML can find applications in diverse use
cases, such as the use of decision trees to monitor the depth of anesthesia [10] and support
vector machines (SVM) in financial research [11]. Artificial neural networks (ANN) have
not only outperformed other ML algorithms but also surpassed human intelligence in
specific tasks, e.g., image classification on an ImageNet dataset [12]. It motivated research-
ers to delve deeper into the ANN structure, which resulted in networks with more param-
eters, layers, and operations, which came to be classified as deep neural networks (DNN)
[13]. DNNs can be further divided into structured network techniques for various appli-
cations, i.e., recurrent neural networks (RNN) and transformer networks that mainly fo-
cus on natural language processing. In recent years, AI has revolutionized society by cov-
ering a wide range of applications, from the simplest smartphones in our hands to security
and surveillance [14] and autonomous vehicle controls [15]. Currently, it is being used in
agriculture [16], healthcare departments for diagnosing different diseases [17–18], busi-
ness and finance [19–20], robotics [21], web searches [22], computer vision [23–24], etc. A
taxonomy of AI and its various sub-fields is shown in Figure 1.

Figure 1. Taxonomy of AI and its sub-fields.

Initially, limited computing power and memory restricted the growth of AI. Scien-
tists could not go beyond certain performance limits of computers, as the execution time

Figure 1. Taxonomy of AI and its sub-fields.

Initially, limited computing power and memory restricted the growth of AI. Scientists
could not go beyond certain performance limits of computers, as the execution time
increased exponentially with the algorithmic complexity. Quillian [25] used a vocabulary
of only 20 words to present his work on natural language due to computer memory
constraints. Even today, when processors are able to deliver 221 K MIPS at 5.0 GHz

Micromachines 2021, 12, 665 3 of 22

(Intel core i7-8086 K [26]) compared to the 80 to 130 MIPS in the fastest supercomputer
from 1976 (Cray-1 [27]), the architecture for AI applications still demands high resource
management to fulfill its real-time requirements. The remarkable research potential of
ANN created an appetite for the drastic increase in computational and memory resources
as the number of layers in DNNs exceeded 10,000 [28]. Billions of multiply-and-accumulate
(MAC) operations necessitated the development of a suitable hardware platform for DNN
implementation. It is also worth mentioning that each MAC operation requires frequent
memory accesses: three memory reads and one memory write per MAC in worst case, i.e.,
with no data reuse [9]. Apart from computation and memory requirements, latency is also
one of the vital constraints for several real-time applications like self-driving cars, where
the slightest processing delay can result in catastrophic consequences [9].

Along with the advancements in intelligent algorithms, the adoption of AI is also
driven by the improvement in performance of microprocessors that carry out all the
required operations. In 1971, Intel launched the Intel 4004 chip along with its chipset, and
the first commercial microprocessor came into being. Intel 4004 [29] was a 4-bit device
made up of 2300 transistors and would execute 92600 instructions per second (IPS) at
a clock frequency of 740 kHz. Subsequently, a diverse range of microprocessors was
developed and the market for computers became ubiquitous. The IBM PC, based on an
8-bit microprocessor (Intel 8088, Intel Corporation, Santa Clara, CA, USA), was introduced
in 1979 [30] and became a standard for personal computers (PCs).

Researchers attempted to further increase the processing bandwidth, but the complex
micro-architecture became a big hurdle in terms of instruction-set decoding. It led to the
idea of reduced instruction set computer (RISC) [31] architecture, which was demonstrated
by Acorn RISC Machines (also known as ARM, ARM Ltd., Cambridge, England) based
on a 32-bit RISC processor [32]. Driven by Moore’s Law [33], the exponential reduction
in transistor size over the years paved the way for 4-bit microprocessors to expand to
64-bit bandwidth while introducing many complex architectural optimizations, i.e., pipelin-
ing, cache memory, virtual memory, and application-specific very large instruction words
(VLIW) [34]. Major limitations to the implementation of AI were addressed by advance-
ments in different functional modules of microprocessors. For example, an increase in
memory bandwidth reduces the operation of frequent data swapping from the memory,
which is a major performance bottleneck of AI algorithms, especially for DNNs [35]. AI
processors accomplished higher amounts of computing power and reduced memory access
time by overcoming the famous power wall [36] and memory wall [37] issues. Still, the
general-purpose computers with high-end microprocessors were not able to satisfy the
ever-increasing demands of ML and DNN algorithms because of limited number of cores
and their monolithic architecture.

Later, graphic processing units (GPUs) equipped with high performance parallelism
and memory bandwidth were widely adopted for implementing power-hungry DNN
algorithms; this is currently a popular approach for AI implementation [38]. However, in
recent years, research in AI architecture has moved towards AI or NN application-specific
hardware (commonly known as AI accelerators), which has shown promising results [39].
Many AI-specific accelerators, implemented on FPGA or ASIC, have been proposed to
improve energy efficiency, such as DaDianNao [40], PuDianNao [41], Cambricon [42], etc.
An innovative industrial approach was developed by Google, called the tensor processing
unit (TPU), [43] which reduces the computational precision to accelerate AI operations
for the TensorFlow software. Many efficient solutions are emerging for smart embedded
processors, but there is room for innovation in this emerging area.

This interaction between the evolution of AI and advancement in microprocessors
is following a symbiotic trend that motivated us to write this review paper. Although,
many survey papers have been published that give an overview of microprocessor devel-
opment [44,45] and the emergence of AI [6,9,46] separately, this paper is intended to give
an overview of how the progress in microprocessors has enabled the implementation of
AI in a broad spectrum of real-life applications. We have restricted this work to the im-

Micromachines 2021, 12, 665 4 of 22

plementation of general-purpose architecture for AI applications because domain-specific
hardware is yet an emerging branch of AI [39]. More time needs to pass to evaluate the
benefits and directions that AI accelerators will take.

The rest of the of the paper is organized as follows: Section 2 discusses the history
and evolution of AI before the exponential improvement in microprocessor capabilities.
In Section 3, trends in microprocessors that eventually resulted in the latest accolades in
the AI field are elaborated. Section 4 includes a discussion on the confluence of AI and
microprocessors and the impact each of these had on the other over the course of the last
few decades. Section 5 includes a brief overview of the roadmap followed by trends and
the challenges that are expected in future. Section 6 concludes the paper with important
observations.

2. Origin and Evolution of AI

The idea of making a machine that autonomously performs different tasks has fasci-
nated the human mind even before the advent of digital computers. In 1930, Vannevar
Bush presented a set of rules to automatically solve differential equations [47]. After a
few years, the British mathematician Alan Turing established the concept of solving any
algorithmic problem on a machine that is popularly known as the Turing machine [48].
Practical implementation of AI was made possible by the invention of programmable
computers in 1944. Turing’s famous work on measuring machine intelligence gave a jump
start to AI. The Turing test [1] is based on the idea of distinguishing between a computer
and a human being by observing the conversations between them. In 1952, the first AI
program for checkers demonstrated the learning ability of computers [49], and later it was
significantly improved by Samuel in 1959 [50] to challenge any decent player of that time.
Then, the logic theorist approach was developed using critical concepts of AI to prove
some of the geometric theorems [51].

The field of AI officially began with a conference at Dartmouth College in 1956, where
the term “artificial intelligence” was first coined by John McCarthy. Many researchers, in-
cluding the creators of the logic theory machine (Newell and Simon), attended this session
and everyone was very curious and positive about the success of AI in the future. The same
duo, Newell and Simon, built another AI machine, the General Problem Solver (GPS) [2],
and claimed that the GPS could solve any problem given a well-formed description. The
GPS, however, did not meet expectations when it came to solving complex problems re-
quiring run-time information handling. It was not that the machine could not solve those
problems, but that the time taken to compute answers for complex problems was so long
that a machine was impractical. In 1958, McCarthy introduced the first AI programming
language, list processing language (LISP) [52] which empowered scientists to store infor-
mation in the form of objects instead of numbers. Meanwhile, Rosenbaltt’s discovery of
the basic unit of neural networks, the perceptron algorithm, gave birth to the concept of
connectionism. It was predicted to be the “embryo of an electronic computer,” but further
research into this problem was halted due to the work of Minsky and Seymour in 1969 [53]
that highlighted severe limitations of the perceptron and Rosenbaltt’s prediction algorithm.

Rapid growth in the research of AI led to the creation of the first ever industrial
robot, Unimate, in 1961, to work on assembly lines [54]. Furthermore, the first ever
LISP program, known as symbolic automatic integrator (SAINT), to heuristically solve
calculus problems was developed by James Slagle [55]. Another approach for mathematical
computation called STUDENT was presented by Daniel Bobro [56], which could solve
algebra word problems. It is cited as one of the earliest natural language processors, as it
was programmed to accept natural language as its input. Later, Joseph Weizenbaum made
the first interactive computer program, ELIZA [4], which could hold conversations with
human subjects based on some grammatical rules. Weizenbaum was himself surprised to
see that many people failed to differentiate between ELIZA and humans. Then, Stanford
University produced the first general purpose robot, Shakey [57], which was capable of
reasoning on its actions and combined logical reasoning with physical response. The fusion

Micromachines 2021, 12, 665 5 of 22

of the two fields, computer vision and natural language processing (NLP), added a new
flavor to the field of AI. In a similar vein, another computer program, SHRDLU, was
designed to have conversations in English, to plan robot operations, and to apply different
actions on simple toy objects [58].

Despite all this success in developing AI algorithms and applications, the most ad-
vanced systems were able to handle only a limited scope of problems. In the beginning, the
field of AI was perceived with great optimism in all areas of applications. When AI failed
to meet expectations, in the 1970s there was a drastic loss of enthusiasm for AI-related
research activities both in academia and industry. The main impediment was that AI was
unable to overcome the computational barriers in real-time implementation due to the
unavailability of powerful processing devices. Scientists had realized that the exponential
growth of problem complexity prevented the execution of computer programs in real time.
The initial hype of AI attracted many agencies like DARPA, the National Research Council
(NRC), and other governmental organizations globally to invest huge funds in this field for
different objectives.

Two famous reports, ALPAC (from the US) [59] and Lighthill (from the UK) [60],
showed great disappointment in yielding little from AI technology with large investments.
Another reason for the drop in AI was the book by Minsky and Seymour, titled “Per-
ceptrons,” in which the authors argued against a learning machine and that only fixed
networks were possible. This book had a widespread impact and stopped any further
progress in connectionism for almost a decade. Historians called this period an “AI winter”.

In the 1980s, the rise of Expert Systems gave new life to AI. The working of Expert
Systems was based on a knowledge database with the rules and facts of a particular domain
and an inference engine to manipulate the stored symbols [7]. This approach was used
to gain human expertise in that specific application. Though Expert Systems became
popular in the 1980s, its development had begun in 1965 by Edward Feigenbaum. He built
Dendral, which was an Expert System specialized in identifying organic compounds [61].
With passing time, Expert Systems gained commercial attention and MYCIN was built
to diagnose blood infectious diseases and prescribe a suitable medicine for them [8].
Another AI programming language, Prolog, was also created in 1972, and mainly focused
on linguistic processing [62]. The development of a program, XCON was marked as an
enormous success for Expert Systems. It was created for the Digital Equipment Corporation
(DEC) to automatically choose computer components according to the requirements. XCON
enabled the company to save USD 40 million per year in 1986 [63]. It was the time when
Expert Systems were considered to have rejuvenated the field of AI, as they were oriented
to solving practical problems at the industrial level. In the late 1980s, many companies were
aiming to develop or maintain Expert Systems [64]. Figure 2 shows the generic workflow
of an Expert System.

Micromachines 2021, 12, x 6 of 23

Figure 2. Generic operation of an Expert System.

This surge in the field of AI pulled many investments, especially in Japan, where the
government dedicated a huge amount of funds to their Fifth Generation Computer Sys-
tem project [65]. Its purpose was to build a machine that could communicate, translate
languages, recognize pictures, and argue like a human. This decade also witnessed the
revival of connectionism, as John Hopfield proposed a recurrent neural network, Hopfield
Net, in 1982 [66]. This neural network offered a remarkable improvement in learning pro-
cess, which proved to be a hard competitor for the symbolic and logical AI. Rehmalhart
et al. [67] also contributed to the revival of neural networks (NNs) by suggesting a back-
propagation technique to train NN models. However, it was still too early to implement
useful NN applications, as the lack of training data and restricted computing resources
ultimately set the limit on its growth.

At the start of the 1990s, Expert Systems also lost steam because of the difficulty in
knowledge acquisition and its analysis in real time. The knowledge acquisition process
discovered the rules of the real word and linked them to solve any problem in a human
manner, but it was not possible to reflect all human skills and feed them into Expert Sys-
tems [64]. Moreover, Expert Systems did not have the capability to learn, adapt, and
evolve based on their interaction with the users. The situation was worsened by the AI
symbolic languages LISP and Prolog, as they led to integration issues in complex systems.
The environment of Expert Systems was not compatible with applications programmed
in other languages (e.g., C). The rising performance of PCs led to the fading out of Expert
Systems, which resulted in a loss of millions of USD for the industries based on Expert
Systems [68]. After this downfall, researchers hesitated to put efforts in this field of AI,
but many continued to work under different banners such as “machine learning,” “intel-
ligent systems,” and “knowledge-based systems.” The re-branding of all these terms
made the survival of AI possible in the future. It also gave fine boundaries to the sub-
branches of AI that further evolved with advancements in AI. Figure 3 shows the evolu-
tion of AI, going from a simple program solver to deep learning by addressing more and
more complex application domains.

Figure 2. Generic operation of an Expert System.

This surge in the field of AI pulled many investments, especially in Japan, where the
government dedicated a huge amount of funds to their Fifth Generation Computer System
project [65]. Its purpose was to build a machine that could communicate, translate lan-

Micromachines 2021, 12, 665 6 of 22

guages, recognize pictures, and argue like a human. This decade also witnessed the revival
of connectionism, as John Hopfield proposed a recurrent neural network, Hopfield Net,
in 1982 [66]. This neural network offered a remarkable improvement in learning process,
which proved to be a hard competitor for the symbolic and logical AI. Rehmalhart et al. [67]
also contributed to the revival of neural networks (NNs) by suggesting a backpropagation
technique to train NN models. However, it was still too early to implement useful NN
applications, as the lack of training data and restricted computing resources ultimately set
the limit on its growth.

At the start of the 1990s, Expert Systems also lost steam because of the difficulty in
knowledge acquisition and its analysis in real time. The knowledge acquisition process
discovered the rules of the real word and linked them to solve any problem in a human
manner, but it was not possible to reflect all human skills and feed them into Expert
Systems [64]. Moreover, Expert Systems did not have the capability to learn, adapt, and
evolve based on their interaction with the users. The situation was worsened by the AI
symbolic languages LISP and Prolog, as they led to integration issues in complex systems.
The environment of Expert Systems was not compatible with applications programmed
in other languages (e.g., C). The rising performance of PCs led to the fading out of Expert
Systems, which resulted in a loss of millions of USD for the industries based on Expert
Systems [68]. After this downfall, researchers hesitated to put efforts in this field of AI, but
many continued to work under different banners such as “machine learning,” “intelligent
systems,” and “knowledge-based systems.” The re-branding of all these terms made the
survival of AI possible in the future. It also gave fine boundaries to the sub-branches of AI
that further evolved with advancements in AI. Figure 3 shows the evolution of AI, going
from a simple program solver to deep learning by addressing more and more complex
application domains.

Micromachines 2021, 12, x 6 of 23

Figure 2. Generic operation of an Expert System.

This surge in the field of AI pulled many investments, especially in Japan, where the
government dedicated a huge amount of funds to their Fifth Generation Computer Sys-
tem project [65]. Its purpose was to build a machine that could communicate, translate
languages, recognize pictures, and argue like a human. This decade also witnessed the
revival of connectionism, as John Hopfield proposed a recurrent neural network, Hopfield
Net, in 1982 [66]. This neural network offered a remarkable improvement in learning pro-
cess, which proved to be a hard competitor for the symbolic and logical AI. Rehmalhart
et al. [67] also contributed to the revival of neural networks (NNs) by suggesting a back-
propagation technique to train NN models. However, it was still too early to implement
useful NN applications, as the lack of training data and restricted computing resources
ultimately set the limit on its growth.

At the start of the 1990s, Expert Systems also lost steam because of the difficulty in
knowledge acquisition and its analysis in real time. The knowledge acquisition process
discovered the rules of the real word and linked them to solve any problem in a human
manner, but it was not possible to reflect all human skills and feed them into Expert Sys-
tems [64]. Moreover, Expert Systems did not have the capability to learn, adapt, and
evolve based on their interaction with the users. The situation was worsened by the AI
symbolic languages LISP and Prolog, as they led to integration issues in complex systems.
The environment of Expert Systems was not compatible with applications programmed
in other languages (e.g., C). The rising performance of PCs led to the fading out of Expert
Systems, which resulted in a loss of millions of USD for the industries based on Expert
Systems [68]. After this downfall, researchers hesitated to put efforts in this field of AI,
but many continued to work under different banners such as “machine learning,” “intel-
ligent systems,” and “knowledge-based systems.” The re-branding of all these terms
made the survival of AI possible in the future. It also gave fine boundaries to the sub-
branches of AI that further evolved with advancements in AI. Figure 3 shows the evolu-
tion of AI, going from a simple program solver to deep learning by addressing more and
more complex application domains.

Figure 3. Artificial intelligence over the years.

3. Emergence of Microprocessors

The development of microprocessors is a direct consequence of the invention of
semiconductor transistors by Bell Labs in 1947 and the creation of integrated circuit (IC)
chips by Robert Noyce in 1961. In 1969, Busicom (Busicom, Osaka and Tokyo, Japan), a
calculator company, contacted Intel to order 12 chips for their calculators. In return, Intel
came up with four designs, and one of them could be programmed in different ways to
fulfill the customers’ requirements. Intel named it Intel 4004 and launched it along with its
chipset in 1971. Intel 4004 [29] is known as the first microprocessor, though it was not very
powerful, as it could only perform simple 4-bit arithmetic operations. Meanwhile, Texas
Instrument (TI) also filed a patent on microprocessors, which was issued in 1973 [69]. TI’s
first microprocessor was introduced in 1974, with the name TMS1000, which was also a
4-bit microprocessor with 32 byte RAM and 1 KB ROM. It initiated an avalanche of research

Micromachines 2021, 12, 665 7 of 22

and development in this field. Continued interest in improvement in IC technology led to
a diverse range of 8- and 16-bit microprocessors within the next few years.

Intel 4004 was followed by the Intel 8008 and 8080 microprocessors. Intel 8080 was an
8-bit microprocessor and the first one to be a part of home-based personal computers. It was
later updated to Intel 8085 by adding more instructions, interrupt, and serial input/output
(I/O) pins. Motorola also developed its 8-bit microprocessor, the 6800 family, at about the
same time. Motorola’s 6800 (Motorola, Chicago, IL, United States) did not play a significant
role in minicomputers, but made a great impact on the automotive market [70]. In this way
a huge market for embedded processors in the automotive industry was established. The
success of Intel 8080 and Motorola’s 6800 led to the development of microcomputers like
Atari 2600 (Atari Inc., Sunnyvale, CA, USA), Nintendo Entertainment System (Nintendo,
Kyoto, Japan); Commodore 64 (Commodore International, West Chester, PA, USA), Zilog
Z80 (Zilog, Milpitas, CA, USA) also came with a DRAM refresh signal and on-chip clock
signals to provide better interfacing capability [44]. The increase in acceptance of metal
oxide semiconductor (MOS) fabrication technology mainly drove the computer revolution
in the 1980s.

The 8-bit architecture of Intel’s 8085 and 8088 was improved to 16 bits in the form
of the Intel 8086 microprocessor. The 8086 consisted of bus interface units (BIUs) and
execution units (EUs), which were structured to carry out simple pipelined operations
wherein the BIU fetched the instructions and EU processed them. The 8086 was also
accompanied by a matching floating-point math co-processor chip, 8087, which was based
on the implementation of IEEE floating point standard IEEE-754 [71]. Around the same
time, the 16-/32-bit Motorola 68000 further advanced microprocessor architecture to fetch
the instructions of one or more 16-bit words, which eventually paved the way for a full
32-bit architecture. Another Motorola processor, the 68010, introduced the concept of
virtual memory. In 1984, Motorola’s 68020 turned out to be first 32-bit microprocessor with
an actual pipeline and an on-chip 256-byte instruction cache.

Thanks to these advancements in processor architecture, computers became accessible
to the common person, albeit for use in business and entertainment. Although embedded
applications also featured microprocessors, the major requirements of embedded devices in
the 1980s and 1990s (calculators, watches, PID controllers, industry displays, etc.) were low
cost and convenience of use. Their manufacturers could choose any low-cost microproces-
sor that gave the necessary performance for that specific application. On the other hand, PC
users demanded more variety of applications on the same desktop and got accustomed to
utilizing different software libraries. In this scenario, the performance of general-purpose
microprocessors became one of the main concerns for customers. The release of continuous
updated versions of operating system software and high-level languages, e.g., Windows,
C++, Java, etc., also increased the emphasis on the technology of PCs. The Motorola 68000
offered an advanced architecture, but IBM adopted an 8-bit microprocessor, Intel 8088, to
power its initial IBM PC in 1981, as it provided a better software interface and utilization
with 8-bit peripherals [72]. Not only did IBM establish itself as a leader in the PC market,
but also set benchmarks and standards for others.

The development of PCs laid the foundation of the new era for microprocessors. In
addition, the evolving complementary metal oxide semiconductor (CMOS) technologies
corroborated Moore’s Law and played a vital role in giving shape to new architecture of
microprocessors. Mead and Conway’s work [73] on very large-scale integration (VLSI)
introduced new design methodologies for academia and industry. Many computer-aided
design (CAD) and simulation tools were created, e.g., those from Cadence [74], Synop-
sys [75], Mentor Graphics [76], etc., to draw schematics and analyze VLSI circuits at various
performance levels [73]. It enabled the designers to test new design methodologies and
evaluate their performance in the design stage to bring innovations to the architecture of mi-
croprocessors. The ever-shrinking geometry of CMOS also helped catalyze the evolution of
microprocessors. The transistor channel length deceased to below 1.25 microns in 1985 [77],
which resulted in Intel’s 386DX microprocessor, with a gate length equal to 1 micron. It

Micromachines 2021, 12, 665 8 of 22

became possible to integrate the entire CPU (excluding memory and floating-point units)
on a single chip by the end of the 1980s. The previously used NMOS technology was
overruled by CMOS due to its low power dissipation. At that point, the semiconductor
vendors were the dominant microprocessor suppliers, who had pretty good knowledge
of fabrication and chip making, but lacked intricate details about the internal processor
architecture. The future complexities of architecture required specialized knowledge to
shift the market to 16-bit architecture as well as embedded microprocessors.

After the mid-1980s, the emphasis shifted to the development of efficient and powerful
16-bit and 32-bit microprocessors as well as corresponding technologies for memory storage
and interconnections. Previously, VAX 11/780 by DEC had been a prominent 32-bit
mini-computer, but its architecture was based on smaller multi-chip processors. On the
other hand, Patterson and Ditzel’s work [31] introduced a new paradigm, called reduced
instruction set computer (RISC) architecture, that provided a possible solution to optimize
the hardware within given resources as compared to the multi-chip idea of VAX 11/780.
The project at University of California, Berkeley, also supported the idea of RISC by
designing the Barkley RISC I/II processors [78]. The RISC setup added proper pipelined
architecture to microprocessors. For example, RISC I and II used two-stage and three-stage
pipelining, respectively. John Cocke’s IBM 801 minicomputer also reinforced RISC concepts
on other types of computer organizations [79]. Later, Stanford University took architecture
optimization to a new level by introducing a microprocessor without interlocked pipeline
stages. They called this millions of instructions per second (MIPS) architecture [80].

Contrary to the previously used complex instruction set computer (CISC) architecture
such as Intel 80386, RISC architecture supported 32-bit fixed-length instructions, larger
general-purpose registers, and pipelined stages, and avoided memory-to-memory instruc-
tions. The simple and regular instruction set for RISC obviated micro-coded ROM, which
created more space for full 32-bit instructions. Initially, only smaller OEM accepted the
argument about RISC; Acorn Computer in the UK was one of them. They started by
amending previously emerging 16-bit microprocessors but were hindered by two major
problems: (i) real-time performance in I/O handling and (ii) memory bandwidth utilization.
They built their own 32-bit design popularly known as the Acorn RISC Machine (ARM) to
overcome these drawbacks [45].

Driven by promising claims of RISC architecture, the first commercial RISC CPU,
MIPS R2000, entered the market by the mid-1980s [44]. Intel and Motorola also started the
development of their own RISC-based microprocessors. A year after the introduction of
Motorola 68020, Intel also built its first 32-bit microprocessor, the 80386DX. Motorola 68020
and Intel 80360DX constituted a limited number of pipelined stages. Intel modified its first-
generation microprocessors (8086, 80286) by adding new modes of memory addressing,
more instructions, and an on-chip memory management unit (MMU). Three years later,
Motorola developed 68030, with an integrated MMU and dynamic bus size selection [81].
The increasing number of transistors in microprocessors deepened the pipeline to five
stages, as shown in Figure 4, and also incorporated caches and their control functions, the
MMU and floating-point unit (FPU), on a single chip. In 1989, Intel used 1.2 M transistors
in 80486DX (as compared to 275K in 803868DX) with on-chip FPU [82].

The RISC philosophy and increasing transistor density elucidated the architecture
of microprocessors by adding deeper pipelined stages, more on-chip functional units
and multilevel caches, higher issue rates, and wider bandwidths [83]. The design of
microprocessors was further driven by the race of higher clock rates. It was believed
that increasing the clock frequency would directly increase the performance, in line with
Moore’s Law. Alpha 21064 was among the first microprocessors to attain a frequency
of 150 MHz, and it was followed by Alpha 21164 with 500 MHz [84]. In competition,
Motorola, IBM, and Apple collectively designed PowerPC, with a clock speed of 233 MHz.
PowerPC adopted a more balanced design scheme as compared to the Alpha series, which
compromised the number of instructions and latency for higher clock rates [84]. The
desktop market was overtaken by the 32-bit Superscalar Intel Pentium, which sped up

Micromachines 2021, 12, 665 9 of 22

many PC-based applications, and its performance limits were further stretched by super-
pipelined Pentium Pro. In later years, many versions of the Pentium series were introduced,
leading to Pentium III, which pushed the operating frequency beyond 1 GHz [85]. Another
company, AMD, giving competition to Intel, developed its first processor, working at
75 to 133 MHz, in 1996 [86]. AMD also jumped in the race of clock rates and released
many successors with higher clock speeds. A major advancement was AMD’s Athlon
processors, which supported the first 64-bit data path in 2003, and with that the world
of microprocessors had reached a new level of performance [86]. At the same time, the
embedded market was also developing simultaneously. ARM was quick to cater to this
emerging market and established itself as a leader in the mobile handset area through
the use of a 16-bit thumb instruction set [87] and easy integration in a system on a chip
(SoC) [88]. Table 1 describes some basic features of the popular superscalar architectures of
the 1990s and early 2000s.

Micromachines 2021, 12, x 9 of 23

years later, Motorola developed 68030, with an integrated MMU and dynamic bus size
selection [81]. The increasing number of transistors in microprocessors deepened the pipe-
line to five stages, as shown in Figure 4, and also incorporated caches and their control
functions, the MMU and floating-point unit (FPU), on a single chip. In 1989, Intel used 1.2
M transistors in 80486DX (as compared to 275K in 803868DX) with on-chip FPU [82].

Figure 4. Five stages of pipelining in microprocessors.

The RISC philosophy and increasing transistor density elucidated the architecture of
microprocessors by adding deeper pipelined stages, more on-chip functional units and
multilevel caches, higher issue rates, and wider bandwidths [83]. The design of micropro-
cessors was further driven by the race of higher clock rates. It was believed that increasing
the clock frequency would directly increase the performance, in line with Moore’s Law.
Alpha 21064 was among the first microprocessors to attain a frequency of 150 MHz, and
it was followed by Alpha 21164 with 500 MHz [84]. In competition, Motorola, IBM, and
Apple collectively designed PowerPC, with a clock speed of 233 MHz. PowerPC adopted
a more balanced design scheme as compared to the Alpha series, which compromised the
number of instructions and latency for higher clock rates [84]. The desktop market was
overtaken by the 32-bit Superscalar Intel Pentium, which sped up many PC-based appli-
cations, and its performance limits were further stretched by super-pipelined Pentium
Pro. In later years, many versions of the Pentium series were introduced, leading to Pen-
tium III, which pushed the operating frequency beyond 1 GHz [85]. Another company,
AMD, giving competition to Intel, developed its first processor, working at 75 to 133 MHz,
in 1996 [86]. AMD also jumped in the race of clock rates and released many successors
with higher clock speeds. A major advancement was AMD’s Athlon processors, which
supported the first 64-bit data path in 2003, and with that the world of microprocessors
had reached a new level of performance [86]. At the same time, the embedded market was
also developing simultaneously. ARM was quick to cater to this emerging market and
established itself as a leader in the mobile handset area through the use of a 16-bit thumb
instruction set [87] and easy integration in a system on a chip (SoC) [88]. Table 1 describes
some basic features of the popular superscalar architectures of the 1990s and early 2000s.

In the mid-2000s, the interest in the continuous increase in clock frequency was di-
minished because of power dissipation barriers. Both Intel and AMD strived for smaller
feature sizes to achieve high operating frequency, but the chips became too hot and de-
manded impractical cooling systems for such high transistor densities. Figure 5 represents
the predicted trend in heat dissipation levels due to the increase in the power density of
Intel chips. Surprisingly, if the chips continued to be manufactured with the same increas-
ing densities, then they could have reached the power dissipation level of a rocket nozzle
[89].

Figure 4. Five stages of pipelining in microprocessors.

Table 1. Basic features of popular superscalar microprocessors (1990s–2000s).

High-Performance (Superscalar) Microprocessors

Microprocessor Year Clock Speed
(MHz)

Transistor
Size

(microns)
Cache

Size (KB) Pipe Stages

Intel 486 (Intel, Santa
Clara, CA, USA) 1989 25 to 50 0.8–1 8 5

Intel Pentium Pro (Intel,
Santa Clara, CA, USA) 1995 200 0.35–0.6 8/8 12–14

DEC Alpha 21164 (DEC,
Maynard, MA, USA) 1996 500 0.5 8/8/96 7

Power PC 604e 1997 233 0.25 32/32 6
AMD K5 (AMD, Santa

Clara, CA, USA) 1996 75–133 0.35–0.5 8/16 5

MIPS R10000 (MIPS
Technologies, Sunnyvale,

CA, USA)
1996 200 0.35 32/32 5

Intel Pentium IV (Intel,
Santa Clara, CA, USA) 2000 1400–2000 0.18 256 20

In the mid-2000s, the interest in the continuous increase in clock frequency was dimin-
ished because of power dissipation barriers. Both Intel and AMD strived for smaller feature
sizes to achieve high operating frequency, but the chips became too hot and demanded
impractical cooling systems for such high transistor densities. Figure 5 represents the
predicted trend in heat dissipation levels due to the increase in the power density of Intel

Micromachines 2021, 12, 665 10 of 22

chips. Surprisingly, if the chips continued to be manufactured with the same increasing
densities, then they could have reached the power dissipation level of a rocket nozzle [89].

Micromachines 2021, 12, x 10 of 23

Table 1. Basic features of popular superscalar microprocessors (1990s–2000s).

High-Performance (Superscalar) Microprocessors

Microprocessor Year
Clock
Speed
(MHz)

Transistor
Size

(microns)

Cache Size
(KB)

Pipe Stages

Intel 486 (Intel, Santa
Clara, CA,, USA)

1989 25 to 50 0.8–1 8 5

Intel Pentium Pro
(Intel, Santa Clara,

CA,, USA)
1995 200 0.35–0.6 8/8 12–14

DEC Alpha 21164
(DEC, Maynard,

MA, USA)
1996 500 0.5 8/8/96 7

Power PC 604e 1997 233 0.25 32/32 6
AMD K5 (AMD,
Santa Clara, CA,

USA)
1996 75–133 0.35–0.5 8/16 5

MIPS R10000 (MIPS
Technologies,

Sunnyvale, CA,
USA)

1996 200 0.35 32/32 5

Intel Pentium IV
(Intel, Santa Clara,

CA,, USA)
2000 1400–2000 0.18 256 20

Figure 5. Trend of heat dissipation with the increase in power density of Intel chips.

Later, the performance bottleneck in microprocessors was overcome by adopting
parallel computing techniques using closely coupled multiple processor cores on a single
chip [90]. In 2005, AMD released its first dual core processor, Athlon 64 X2 [86]. Intel also
rushed into multi-core design and came up with the Core-2 Duo processor for desktop
and laptop computers. Some processors, like the Intel Core-2 Duo, were designed with a
shared level-2 (L2) cache, whereas Intel Pentium-D and AMD Opteron came with a pri-
vate L2 cache for each core or processor [91]. Multi-processor chip (MPC) architecture
further improved to quad and more cores and initiated a new era of performance gains

Figure 5. Trend of heat dissipation with the increase in power density of Intel chips.

Later, the performance bottleneck in microprocessors was overcome by adopting
parallel computing techniques using closely coupled multiple processor cores on a single
chip [90]. In 2005, AMD released its first dual core processor, Athlon 64 X2 [86]. Intel also
rushed into multi-core design and came up with the Core-2 Duo processor for desktop
and laptop computers. Some processors, like the Intel Core-2 Duo, were designed with a
shared level-2 (L2) cache, whereas Intel Pentium-D and AMD Opteron came with a private
L2 cache for each core or processor [91]. Multi-processor chip (MPC) architecture further
improved to quad and more cores and initiated a new era of performance gains that yielded
profitable results in terms of cost, power dissipation, and a corresponding range of new
applications [92].

The Intel Core 2 Quad series enhanced the speed technology of desktop and mobile
processors by incorporating four cores with greater sizes of cache memory on a single chip.
The family of Core 2 Quad was followed by generations of high-end performance proces-
sors, Intel Core i-7. The grouping of Core i7 was usually based on its microarchitecture,
with the first generation designed on 45 nm technology, and the recent 10th generation is
based on 14 nm processing for up to 8-core chips. AMD also launched a series of processors
under the name of “Ryzen” in 2017, which mainly featured the 8-core and 16-thread designs.
In the following years, new generations of AMD Ryzen, built on advanced semiconductor
technology, came to improve the performance, but significant improvement was witnessed
in the third generation of the Ryzen brand [93], which was designed using 7 nm technology.
In 2020, the Ryzen 5000 series crossed the Ryzen III gen’s performance by providing a
19% increase in instructions per cycle (IPC) on the same technology. Intel marketed the
Xeon family of processors, which mainly targets the workstation, servers, and embedded
devices. The AMD Ryzen Threadripper beat the Intel in core count by incorporating a
maximum of 64 cores on 7 nm technology. The Intel Xeon processors are designed using
same architecture as desktop processors, but support higher number of cores, larger RAM
size, advanced cache memory, and many other useful features. Table 2 summarizes the
basic features of some of the most prominent multicore processors.

In tandem, the developments in cache memories, storage technologies, and faster
interconnects have provided a support structure that enables microprocessors to provide
maximum utilization of advances in their internal architecture to end-user applications [94].
Figure 6 shows the trends in the main characteristics of popular general-purpose CPUs
over time. As this paper is aimed at discussing processor architectures, we will not digress,
but it is important to mention the significant improvements in associated technologies that
allow full performance gains to be obtained from microprocessors.

Micromachines 2021, 12, 665 11 of 22

Table 2. Basic features of popular multicore microprocessors (2005 onwards).

Multicore Microprocessors

Microprocessor Year Clock Speed
(GHz)

Transistor
Size (nm)

Caches
(MB) Cores

AMD Athlon 64 X2 2005 2 90–65 0.5 2
Intel Core 2 Duo 2006 2.66 65 4 2

Intel Core 2 Quad Q6600 2007 2.4 65 8 4
Intel Core i7-3770 2012 3.4 22 8 4

AMD Ryzen 7 1700x 2017 3-3.6 14 4/16 8
Intel Core i9 10900 2020 5.20 14 20 10

Intel Xeon Platinum 9282 2019 3.8 14 77 56
AMD Ryzen Threadripper
3990X (AMD, Santa Clara,

CA, USA)
2020 4.3 7 32/256 64Micromachines 2021, 12, x 12 of 23

Figure 6. Performance evolution of general-purpose microprocessors.

4. Confluence between Artificial Intelligence and Microprocessors
As microprocessors evolved to cater to more complex processing and application do-

mains, the field of AI was also able to overcome many constraints and provide imple-
mentable solutions for different challenging tasks. The first practical AI implementation
was a handwritten digit recognizer, LeNet [95]. It led to the development of hardware for
shallow neural networks, for example, Intel ETANN [96,97], SYNAPSE-1 [98], and ANNA
[99]. The AI field flourished under the banner of machine learning (ML), and many self -
learning algorithms were proposed to classify images, categorize text, and recognize
hand-written characters [100–102]. Within the ML domain, neural networks (NNs) be-
came the most popular choice because of their accuracy and straightforward implemen-
tation. Deep learning (DL) enhanced the multi-layered architecture of NNs by extracting
features at new levels of abstractions [13]. A major breakthrough for DL was seen in the
early 2010s, when a large amount of information was incorporated for the training of AI
models such as MNIST [103] and CIFAR [104]. The ImageNet dataset was launched about
the same time, with more than 3 million labeled images of different categories [105]. Mi-
crosoft presented its speech-recognition system based on deep neural networks in 2011
[106]. Further exemplary performances of DL were illustrated by the ImageNet annual
challenge [107]. In 2012, the error rate of ImageNet classification dropped to approxi-
mately 15% from 25% by utilizing a convolution neural network (CNN)-based model,
AlexNet [108]. The classification error rate was further decreased to only a few percent in
later years. This success for CNNs in AI implementation shifted the research direction to
DL and inspired the development of different hardware platforms for its implementation.

Even though the speed of sequential microprocessors increased drastically over the

years, it could only improve performance to a certain extent. The massive computational
demands of early AI networks could not be fulfilled by available microprocessors, as some
of the AI models needed more than 1 giga floating point operations per second (GFLOPS)
to be able to execute in real time [109]. The advancement in the processing throughput of
microprocessors came about mainly due to the increase in frequency and most im-
portantly due to the enhanced increase of parallelism. The parallel computation was ex-
ploited through multiple instructions issue through pipelining as well as superscalar ar-
chitectures [90]. Thread level parallelism (TLP) was introduced using multiple processors
on a single chip [90]. The boost in performance obtained by multicore processors took the

Figure 6. Performance evolution of general-purpose microprocessors.

4. Confluence between Artificial Intelligence and Microprocessors

As microprocessors evolved to cater to more complex processing and application
domains, the field of AI was also able to overcome many constraints and provide imple-
mentable solutions for different challenging tasks. The first practical AI implementation
was a handwritten digit recognizer, LeNet [95]. It led to the development of hardware
for shallow neural networks, for example, Intel ETANN [96,97], SYNAPSE-1 [98], and
ANNA [99]. The AI field flourished under the banner of machine learning (ML), and many
self -learning algorithms were proposed to classify images, categorize text, and recognize
hand-written characters [100–102]. Within the ML domain, neural networks (NNs) became
the most popular choice because of their accuracy and straightforward implementation.
Deep learning (DL) enhanced the multi-layered architecture of NNs by extracting features
at new levels of abstractions [13]. A major breakthrough for DL was seen in the early 2010s,
when a large amount of information was incorporated for the training of AI models such
as MNIST [103] and CIFAR [104]. The ImageNet dataset was launched about the same
time, with more than 3 million labeled images of different categories [105]. Microsoft pre-
sented its speech-recognition system based on deep neural networks in 2011 [106]. Further
exemplary performances of DL were illustrated by the ImageNet annual challenge [107].

Micromachines 2021, 12, 665 12 of 22

In 2012, the error rate of ImageNet classification dropped to approximately 15% from
25% by utilizing a convolution neural network (CNN)-based model, AlexNet [108]. The
classification error rate was further decreased to only a few percent in later years. This
success for CNNs in AI implementation shifted the research direction to DL and inspired
the development of different hardware platforms for its implementation.

Even though the speed of sequential microprocessors increased drastically over the
years, it could only improve performance to a certain extent. The massive computational
demands of early AI networks could not be fulfilled by available microprocessors, as
some of the AI models needed more than 1 giga floating point operations per second
(GFLOPS) to be able to execute in real time [109]. The advancement in the processing
throughput of microprocessors came about mainly due to the increase in frequency and
most importantly due to the enhanced increase of parallelism. The parallel computation
was exploited through multiple instructions issue through pipelining as well as superscalar
architectures [90]. Thread level parallelism (TLP) was introduced using multiple processors
on a single chip [90]. The boost in performance obtained by multicore processors took the
performance gains to the next level, which paved the way for real-time processing of AI
applications. Figure 7 shows the comparison between CPU operations per second for single-
core Intel Pentium IV 2.4 GHz and Intel Pentium IV 2.8 GHz with dual-core Intel Pentium
G640T 2.4 GHz [110]. Intel Core 2 Extreme quad-core provided impressive performance
for AI-based applications, especially for gaming on desktops [92]. The multilevel cache
memories also contributed to the deployment of AI by providing a faster way to access the
memory for huge AI models and large datasets.

Micromachines 2021, 12, x 13 of 23

performance gains to the next level, which paved the way for real-time processing of AI
applications. Figure 7 shows the comparison between CPU operations per second for sin-
gle-core Intel Pentium IV 2.4 GHz and Intel Pentium IV 2.8 GHz with dual-core Intel Pen-
tium G640T 2.4 GHz [110]. Intel Core 2 Extreme quad-core provided impressive perfor-
mance for AI-based applications, especially for gaming on desktops [92]. The multilevel
cache memories also contributed to the deployment of AI by providing a faster way to
access the memory for huge AI models and large datasets.

Figure 7. Comparison between CPU operations per second for single core and dual core.

The most demanding calculation in CNN computation is the multiply and
accumulate (MAC) operation between input and trained weights, which can be performed
on multiple data elements simultaneously to achieve faster execution. To facilitate the NN
processing, many modern processors feature a special vector instruction set to employ
single instruction, multiple data (SIMD). Intel included advanced vector extensions, a 256-
bit vector (Intel AVX-256), for each core, which could support the processing of eight
single-precision (32-bit) floating point (FP) operations or four double-precision FP
operations in a single instruction. Later, Intel AVX-512 increased the size of the vector unit
to 512 bits, which doubled the FP operations per instruction [111]. Many updated Intel
Xeon processors, like the Xeon Phi series, supported Intel AVX-512 architecture, where
they had a designated vector unit per core, as shown in Figure 8 [112]. ARM also launched
the ARM Scalable Vector Extension (ASVE) in their modern processors like the ARM
Neon [113]. The parallelization technique is further enhanced by mapping fully connected
(FC) and convolution (Conv) layers of NNs into matrix multiplications [114,115]. Figure 9
represents the mapping of FC layers as a matrix-vector multiplication with one input
feature map with C ⨯ H ⨯ W = Input_Channels ⨯ Height ⨯ Width and matrix–matrix
multiplication for N number of input feature maps. Figure 10 shows the mapping and
arrangement of a Conv layer onto matrix–matrix multiplications. Several compatible
optimized software libraries were also launched to support matrix multiplication for
DNNs running on these high-performance architectures. Open BLAS (basic linear algebra
subroutines) is for multiple microprocessors like ARM, Intel, and MIPS. Intel also
developed the Math Kernel Library (MKL) for its processors [116]. There is another
popular deep learning framework, called Caffe, for Intel processors [117]. Many tech
companies like Facebook and Google have contributed to optimizing other software
technologies for Intel architecture for the flexible implementation of modern DNNs.

Figure 7. Comparison between CPU operations per second for single core and dual core.

The most demanding calculation in CNN computation is the multiply and accumulate
(MAC) operation between input and trained weights, which can be performed on multiple
data elements simultaneously to achieve faster execution. To facilitate the NN processing,
many modern processors feature a special vector instruction set to employ single instruc-
tion, multiple data (SIMD). Intel included advanced vector extensions, a 256-bit vector
(Intel AVX-256), for each core, which could support the processing of eight single-precision
(32-bit) floating point (FP) operations or four double-precision FP operations in a single
instruction. Later, Intel AVX-512 increased the size of the vector unit to 512 bits, which dou-
bled the FP operations per instruction [111]. Many updated Intel Xeon processors, like the
Xeon Phi series, supported Intel AVX-512 architecture, where they had a designated vector
unit per core, as shown in Figure 8 [112]. ARM also launched the ARM Scalable Vector
Extension (ASVE) in their modern processors like the ARM Neon [113]. The parallelization
technique is further enhanced by mapping fully connected (FC) and convolution (Conv)
layers of NNs into matrix multiplications [114,115]. Figure 9 represents the mapping of
FC layers as a matrix-vector multiplication with one input feature map with C × H × W
= Input_Channels × Height × Width and matrix–matrix multiplication for N number of
input feature maps. Figure 10 shows the mapping and arrangement of a Conv layer onto
matrix–matrix multiplications. Several compatible optimized software libraries were also

Micromachines 2021, 12, 665 13 of 22

launched to support matrix multiplication for DNNs running on these high-performance
architectures. Open BLAS (basic linear algebra subroutines) is for multiple microprocessors
like ARM, Intel, and MIPS. Intel also developed the Math Kernel Library (MKL) for its
processors [116]. There is another popular deep learning framework, called Caffe, for Intel
processors [117]. Many tech companies like Facebook and Google have contributed to
optimizing other software technologies for Intel architecture for the flexible implementation
of modern DNNs.

Micromachines 2021, 12, x 14 of 23

Figure 8. Single-instruction multiple-data (SIMD) operation.

Intel built Xeon Scalable processors specialized in running complex AI architectures
efficiently along with other workloads using the Intel Deep Learning Boost (DL Boost)
library. It extended the Intel AVX-512 with Intel inference boost instructions to optimize
the vector neural network instructions (VNNI) for deep learning inference. This brought
significant performance improvement to image classification, language translation, object
detection, speech recognition, and other AI applications in mobile phones, desktops, and
servers [118]. Intel DL Boost sped up AI processing by a factor of two, as it used a single
int-8 instruction to handle DL convolution, which was previously using three AVX-512
instructions [118]. Previously used 32-bit single-precision FP instructions were converted
to 16-bit integer instructions for training and INT8-bit for the inference of DL models with
negligible loss in accuracy. Memory access is a bottleneck in the processing of DNNs and
also requires a higher order of energy compared to the computational workload [119]. The
lower numerical precision not only led to the reduction of memory bandwidth but also
helped in efficient utilization of cache memories. Furthermore, it also increased the overall
computational throughput [120]. The Intel DL Boost incorporated the brain floating-point
format (bfloat16), which enabled a dynamic range of numerical values using a floating
radix point [121]. The bfloat16 data type is also included in ARM [122] and AMD [123]
microprocessors.

Figure 9. Mapping of fully connected (FC) layers onto matrix multiplication.

Figure 8. Single-instruction multiple-data (SIMD) operation.

Micromachines 2021, 12, x 14 of 23

Figure 8. Single-instruction multiple-data (SIMD) operation.

Intel built Xeon Scalable processors specialized in running complex AI architectures
efficiently along with other workloads using the Intel Deep Learning Boost (DL Boost)
library. It extended the Intel AVX-512 with Intel inference boost instructions to optimize
the vector neural network instructions (VNNI) for deep learning inference. This brought
significant performance improvement to image classification, language translation, object
detection, speech recognition, and other AI applications in mobile phones, desktops, and
servers [118]. Intel DL Boost sped up AI processing by a factor of two, as it used a single
int-8 instruction to handle DL convolution, which was previously using three AVX-512
instructions [118]. Previously used 32-bit single-precision FP instructions were converted
to 16-bit integer instructions for training and INT8-bit for the inference of DL models with
negligible loss in accuracy. Memory access is a bottleneck in the processing of DNNs and
also requires a higher order of energy compared to the computational workload [119]. The
lower numerical precision not only led to the reduction of memory bandwidth but also
helped in efficient utilization of cache memories. Furthermore, it also increased the overall
computational throughput [120]. The Intel DL Boost incorporated the brain floating-point
format (bfloat16), which enabled a dynamic range of numerical values using a floating
radix point [121]. The bfloat16 data type is also included in ARM [122] and AMD [123]
microprocessors.

Figure 9. Mapping of fully connected (FC) layers onto matrix multiplication. Figure 9. Mapping of fully connected (FC) layers onto matrix multiplication.

Intel built Xeon Scalable processors specialized in running complex AI architectures
efficiently along with other workloads using the Intel Deep Learning Boost (DL Boost)
library. It extended the Intel AVX-512 with Intel inference boost instructions to optimize
the vector neural network instructions (VNNI) for deep learning inference. This brought
significant performance improvement to image classification, language translation, object
detection, speech recognition, and other AI applications in mobile phones, desktops, and
servers [118]. Intel DL Boost sped up AI processing by a factor of two, as it used a single
int-8 instruction to handle DL convolution, which was previously using three AVX-512
instructions [118]. Previously used 32-bit single-precision FP instructions were converted
to 16-bit integer instructions for training and INT8-bit for the inference of DL models with
negligible loss in accuracy. Memory access is a bottleneck in the processing of DNNs and
also requires a higher order of energy compared to the computational workload [119]. The

Micromachines 2021, 12, 665 14 of 22

lower numerical precision not only led to the reduction of memory bandwidth but also
helped in efficient utilization of cache memories. Furthermore, it also increased the overall
computational throughput [120]. The Intel DL Boost incorporated the brain floating-point
format (bfloat16), which enabled a dynamic range of numerical values using a floating
radix point [121]. The bfloat16 data type is also included in ARM [122] and AMD [123]
microprocessors.

Micromachines 2021, 12, x 15 of 23

Figure 10. Mapping of convolution (Conv) layers onto matrix multiplication.

As mentioned above, NN computation is highly parallel in nature, whereas the gen-

eral-purpose CPUs deal with a wide variety of sequential applications, e.g., binary search
trees, data retrieval, string matching, etc. Consequently, graphic processing units (GPUs),
which are inherently parallel, became the warehouse for AI processing. Initially, GPUs
were used for computer graphics, which is a highly parallel application. The revolution
in the architecture of GPUs enabled its use in general-purpose applications. GPUs work
efficiently for massively parallel algorithms like AI because of the integration of hundreds
(recently, thousands) of cores into one chip [38]. Nvidia realized this potential of GPUs
and developed a software library called Compute Unified Device Architecture (CUDA)
along with compatible hardware architectures [38]. The Nvidia V100 architecture has 5120
x 32-bit floating-point cores and 2560 x 64-bit floating-point cores, whereas the Intel Xeon
Phi family includes 64 to 72 general-purpose cores [124], as mentioned in Table 3 [125].
Due to high computing requirements, AlexNet [108] was implemented with GPUs for the
processing of 61 million weights and 724 million MAC operations. It led to the evolution
of deeper architecture for convolution networks. A popular DNN called Overfeat adopted
the architecture of AlexNet but with a greater number of arithmetic operations (2.8 giga
MACs per image) [126]. Another DNN, VGG-16, saw a further increase in the number of
weights and MACs of up to 138 million and 15.5 giga operations, respectively [127]. The
GoogLeNet comes with a 22-layered architecture with an inception module [128] and it is
designed to store all the trained weights in a GPU memory. The multidimensional filters
are key to extracting the useful pattern or features of the input data in CNNs, and Goog-
LeNet uses the filter size of 1 × 1 to reduce the number of weights [129]. There are many
updated versions of GoogleLeNet with increased accuracy and corresponding computing
cost [130,131].

Table 3: Comparison of the number of CPU and GPU cores.

CPU GPU

Processors Minimum
Cores

Maximum
Cores

Processors Tensor
Cores

CUDA
Cores

Figure 10. Mapping of convolution (Conv) layers onto matrix multiplication.

As mentioned above, NN computation is highly parallel in nature, whereas the general-
purpose CPUs deal with a wide variety of sequential applications, e.g., binary search trees,
data retrieval, string matching, etc. Consequently, graphic processing units (GPUs), which
are inherently parallel, became the warehouse for AI processing. Initially, GPUs were
used for computer graphics, which is a highly parallel application. The revolution in
the architecture of GPUs enabled its use in general-purpose applications. GPUs work
efficiently for massively parallel algorithms like AI because of the integration of hundreds
(recently, thousands) of cores into one chip [38]. Nvidia realized this potential of GPUs
and developed a software library called Compute Unified Device Architecture (CUDA)
along with compatible hardware architectures [38]. The Nvidia V100 architecture has 5120
× 32-bit floating-point cores and 2560 × 64-bit floating-point cores, whereas the Intel Xeon
Phi family includes 64 to 72 general-purpose cores [124], as mentioned in Table 3 [125].
Due to high computing requirements, AlexNet [108] was implemented with GPUs for the
processing of 61 million weights and 724 million MAC operations. It led to the evolution of
deeper architecture for convolution networks. A popular DNN called Overfeat adopted
the architecture of AlexNet but with a greater number of arithmetic operations (2.8 giga
MACs per image) [126]. Another DNN, VGG-16, saw a further increase in the number
of weights and MACs of up to 138 million and 15.5 giga operations, respectively [127].
The GoogLeNet comes with a 22-layered architecture with an inception module [128] and
it is designed to store all the trained weights in a GPU memory. The multidimensional
filters are key to extracting the useful pattern or features of the input data in CNNs, and
GoogLeNet uses the filter size of 1 × 1 to reduce the number of weights [129]. There
are many updated versions of GoogleLeNet with increased accuracy and corresponding
computing cost [130,131].

Micromachines 2021, 12, 665 15 of 22

Table 3. Comparison of the number of CPU and GPU cores.

CPU GPU

Processors Minimum
Cores

Maximum
Cores Processors Tensor

Cores
CUDA
Cores

Intel Core i7, 10th Gen 4 8 Nvidia
RTX 2080

- 4352AMD Ryzen 4 16
Intel Core i9, 10th Gen 8 28 Nvidia

V100
640 5120Intel Xeon Plat. I Gen 4 28

Intel Xeon Plat. II Gen 4 56 Nvidia
A100

432 6912AMD Ryzen
Threadripper 24 64

ResNet went even deeper, with 34 layers [132], and it was the first one to achieve
an error rate of less than 5% in the ImageNet challenge. Nvidia’s GPU allowed the
implementation of such complex NNs using popular DL frameworks like PyTorch [133],
Caffe [117], and Tensorflow [134] through the use of the CuDNN [135] library. The CuDNN
library belongs to CUDA-X AI [136], which is a collection of libraries for Nvidia GPUs
to accelerate DL and ML. Nvidia’s latest two GPUs (V100 and A100) [137,138] were built
with a combination of traditional CUDA and tensor cores. The tensor cores specialize in
accelerating the large mixed-precision Matrix MAC operations in a single instruction. The
pairing of CUDA and tensor cores enables the Tesla V100 architecture to deliver 120 TFLOPs
for DL [137]. The Nvidia A100 GPU enhanced the performance by increasing the number
of cores (see Table 3) and supporting numerical formats like INT4, TF32, and others. Tensor
format TF32 is a new format to accelerate 32-bit floating-point instructions up to 10 times
faster than the V100 32-bit floating-point instruction in DL frameworks. This was further
improved 2× by adding a new feature of sparsity in tensor cores [138]. The A100 sparsity
pruned the trained weights with the supported sparse pattern and by making an efficient
hardware architecture to process the trained weights [138].

Recently, technology has been heading towards a dedicated hardware platform for
application-specific AI processing. Many DNN accelerators have been proposed and imple-
mented on FPGAs [139] and ASIC [40–42] and are usually based on a spatial architecture,
as shown in Figure 11. The spatial architecture is designed using dataflow processing
through a connected array of processing engines (PEs) (a combination of ALU and its local
memory). This two-dimensional (2D) interconnection of PEs facilitates the reuse of the
data to reduce the frequency of memory access and increase the parallel computation. The
data from the memory can flow left to right and top to bottom through the array of PEs.
The PEs are assigned to perform MAC operations on the coming data in a specific manner
depending on the dataflow technique.

Micromachines 2021, 12, x 16 of 23

Intel Core i7, 10th
Gen

4 8 Nvidia RTX
2080 - 4352

AMD Ryzen 4 16
Intel Core i9, 10th

Gen 8 28 Nvidia V100 640 5120
Intel Xeon Plat. I Gen 4 28

Intel Xeon Plat. II
Gen 4 56

Nvidia A100 432 6912
AMD Ryzen
Threadripper

24 64

ResNet went even deeper, with 34 layers [132], and it was the first one to achieve an

error rate of less than 5% in the ImageNet challenge. Nvidia’s GPU allowed the imple-
mentation of such complex NNs using popular DL frameworks like PyTorch [133], Caffe
[117], and Tensorflow [134] through the use of the CuDNN [135] library. The CuDNN
library belongs to CUDA-X AI [136], which is a collection of libraries for Nvidia GPUs to
accelerate DL and ML. Nvidia’s latest two GPUs (V100 and A100) [137,138] were built
with a combination of traditional CUDA and tensor cores. The tensor cores specialize in
accelerating the large mixed-precision Matrix MAC operations in a single instruction. The
pairing of CUDA and tensor cores enables the Tesla V100 architecture to deliver 120
TFLOPs for DL [137]. The Nvidia A100 GPU enhanced the performance by increasing the
number of cores (see Table 3) and supporting numerical formats like INT4, TF32, and oth-
ers. Tensor format TF32 is a new format to accelerate 32-bit floating-point instructions up
to 10 times faster than the V100 32-bit floating-point instruction in DL frameworks. This
was further improved 2⨯ by adding a new feature of sparsity in tensor cores [138]. The
A100 sparsity pruned the trained weights with the supported sparse pattern and by mak-
ing an efficient hardware architecture to process the trained weights [138].

Recently, technology has been heading towards a dedicated hardware platform for
application-specific AI processing. Many DNN accelerators have been proposed and im-
plemented on FPGAs [139] and ASIC [40–42] and are usually based on a spatial architec-
ture, as shown in Figure 11. The spatial architecture is designed using dataflow processing
through a connected array of processing engines (PEs) (a combination of ALU and its local
memory). This two-dimensional (2D) interconnection of PEs facilitates the reuse of the
data to reduce the frequency of memory access and increase the parallel computation. The
data from the memory can flow left to right and top to bottom through the array of PEs.
The PEs are assigned to perform MAC operations on the coming data in a specific manner
depending on the dataflow technique.

Figure 11. Hardware block diagram showing the generic structure of a spatial architecture. Figure 11. Hardware block diagram showing the generic structure of a spatial architecture.

Micromachines 2021, 12, 665 16 of 22

The data-handling techniques in a spatial architecture can be classified as:

• Weight Stationary (WS): The weights are kept fixed in PEs while inputs flow through
the array of PEs with the movement of partial sums. An example includes neu-
Flow [140] and others [43,141].

• Output Stationary (OS): The accumulation of partial sums is kept constant in PEs
to minimize the energy consumption of reading and writing partial sums while
broadcasting the inputs and weights to the array of PEs just like in ShiDianNao [142].

• No Local Reuse (NLR): Nothing stays stationary, as the local memory for PEs is
eliminated to reduce the area requirement. For instance, DianNao [143] has an
NLR dataflow.

• Row Stationary (RS): It aims to minimize the memory access cost by reusing all types
of data (weights, inputs, and partial sums) by mapping the rows of convolution
on PEs for each sliding window. Eyeriss [144] is one of the accelerators based on
RS architecture.

The highlight among all these is an industrial platform called Tensor Processing Unit
(TPU), developed by Google. The first TPU was deployed in the Google data center in
2015 [43]. It consisted of systolic arrays of PEs designed for WS dataflow that resembles 2D
SIMD architecture. It was followed by another TPU that could process both the training
and inference of DNNs in the data center [145]. Later, Google also launched its “edge TPU”
for inference in Internet of Things (IoT) applications [146].

5. Future Roadmap and Challenges

In the past decade, AI has grown rapidly in its performance and range of applications.
It has affected every industry and every human directly or indirectly. Many real-life
applications have integrated AI into their functionalities to give exceptional benefits. Still,
we are at the beginning of AI in many practical fields. As observed by the current trend in
higher accuracy afforded by DNNs, AI algorithms will continue to go deeper into neural
structure to attain the capabilities of the human brain to precisely handle critical tasks [147].
Many companies like Apple and Google have huge budgets dedicated to the progress of
AI, and academic institutions are also recognizing AI as a distinct field of learning [148].
In this scenario, AI is expected to progress in new and more innovative directions. AI has
already given a tremendous boost to several upcoming fields like IoT, big data, autonomous
vehicles, and intelligent robotics, and it will continue to drive these technologies in the
future. The ongoing revolution of AI will only see an improved uptake in the near future.

Computing capabilities have always been a challenge to the progress of AI. The main
focus is on hardware platforms to manage sufficient resources that will be able to fulfill
the growing demands of AI. Most of the progress in microprocessors to date has been due
to a reduction in transistor size (courtesy of Moore’s Law), but it has already deviated
from the predicted performance path, as thermal issues become unavoidable after a certain
clock limit. Still, microchips are designed on a very thin layer of silicon wafer, but there
some ideas revolving around the three-dimensional structure of microchips to increase the
efficiency of microprocessors [149]. Along with benefiting high performance, this concept
raises many thermal and interconnectivity issues that researchers need to address before its
successful adoption. In other words, microprocessors will prevail with the current trends
in architecture for another decade. At the same time, we cannot deny the possibility of
novel techniques like quantum computing and molecular computing to change the design
of future microchips [150].

Microprocessors have also attained a new level of performance and efficiency due
to various parallelization and vector processing techniques that proved to be a driving
tool for AI. Considering the limitation of parallel hardware in microprocessors and the
deviation from Moore’s Law, it is predicted that the next generation computers will be
based on microprocessors working along with highly specialized accelerators dedicated to
processing power-hungry AI algorithms. The current research field of AI accelerators will
continue to grow and evolve with more advanced trends to make finely tuned accelerators

Micromachines 2021, 12, 665 17 of 22

for AI [151]. TPUs are a successful example of application-specific hardware, but it will
take some time to adapt the application-specific approach to smart computers, mobile
phones, and other embedded applications.

There were huge expectations from AI to change the shape of daily lives, but privacy
and security issues are now becoming a major concern in the contemporary era of IoT
and big data. There are already hackers out there attacking sensitive industries and
data [152,153]. These attacks are expected to increase with the deeper penetration of AI in
society through the adoption of smart cities, autonomous vehicles, and intelligent industrial
machines. To increase trust in machine intelligence, there is a need for high-performance
hardware-enhanced secure technologies. Overall, looking at the evolution of AI since the
1950s, it can be foreseen that the AI field will surmount all these challenges and evolve
further in the future with the help from the increasing capabilities of microprocessors.

6. Conclusions

The idea of artificial intelligence was initiated way before the birth of microprocessors.
For the first 30 years, most AI work was at the algorithmic level. The advent of micropro-
cessors created the need for AI machines, but AI was simultaneously evolving in different
directions, and this sluggish progress in the initial years made scientists lose interest in
its widespread acceptance. Thus, AI has seen many downfalls during its evolution, but
every time it has risen again with new hope and promise. In parallel, the microproces-
sor was progressing with its dynamics governed by Moore’s Law and MOS technology.
The advancements in microprocessor architecture significantly improved its performance
and efficiency. The introduction of RISC architecture, superscalar, deep pipelining, and
multicore designs gave an exponential boost to the computing power of microprocessors.
AI developers soon realized the available computing capability and started to make in-
roads with machine learning, deep learning and associated datasets. After witnessing
the promising results of AI in various applications, microprocessors started supporting
AI by amending their architecture in such a manner that they could execute the complex
algorithms of AI efficiently for different tasks in the form of SIMD, GPUs, and TPUs. Since
then, the two fields, computer architecture and AI, have complimented each other, as mi-
croprocessors have adopted different techniques to fuel the growing demands of complex
AI models. This confluence between both fields brings AI to every home and industry
through PCs, smart gadgets, and other embedded platforms. It can be safely predicted
that AI and microprocessor architecture will continue to evolve together in the future with
new topologies and dedicated accelerators to deal with challenges like data security and
information complexity of data-intensive applications like big data.

Author Contributions: Conceptualization, M.A.P. and S.M.; methodology, F.H.K., M.A.P. and S.M.;
writing—original draft preparation, F.H.K., M.A.P. and S.M.; writing—review and editing, F.H.K.,
M.A.P. and S.M.; supervision, M.A.P. and S.M.; All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Turing, A.M. Computing Machinery and Intelligence. Mind 1950, 59, 433–460. [CrossRef]
2. Newell, A.; Shaw, J.C.; Simon, H.A. Report on General Problem-Solving Program. In Proceedings of the International Confer-

enceon Information Processing, Paris, France, 30 December 1958.
3. Gelernter, H.L.; Rochester, N. Intelligent Behaviour in Problem- Solving Machines. IBM J. Res. Dev. 1958, 2, 336. [CrossRef]
4. Weizenbaum, J. ELIZA—A Computer Program for the Study of Natural Language Communication between Man and Machine.

Commun. Assoc. Comput. Mach. (ACM) 1966, 9, 36–45. [CrossRef]

http://doi.org/10.1093/mind/LIX.236.433
http://doi.org/10.1147/rd.24.0336
http://doi.org/10.1145/365153.365168

Micromachines 2021, 12, 665 18 of 22

5. Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65,
386–408. [CrossRef] [PubMed]

6. Delipetrev, B.; Tsinaraki, C.; Kostic, U. Historical Evolution of Artificial Intelligence; EUR 30221 EN; Publications Office of the
European Union: Luxembourg, 2020.

7. Nikolopoulos, C. Expert Systems: Introduction to First and Second Generation and Hybrid Knowledge Based Systems; Marcel Dekker,
Inc.: New York, NY, USA, 1997.

8. Shortliffe, E.H.; Davis, R.; Axline, S.G.; Buchanan, B.G.; Green, C.C.; Cohen, S.N. Computer-based Consultations in Clinical
Therapeutics: Explanation and Rule Acquisition Capabilities of the MYCIN System. Comput. Biomed. Res. 1975, 8, 303–320.
[CrossRef]

9. Shafique, M.; Theocharides, T.; Bouganis, C.S.; Hanif, M.A.; Khalid, F.; Hafız, R.; Rehman, S. An overview of next-generation
architectures for machine learning: Roadmap, opportunities and challenges in the IoT era. In Proceedings of the 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018.

10. Khan, F.H.; Ashraf, U.; Altaf, M.A.B.; Saadeh, W. A Patient-Specific Machine Learning based EEG Processor for Accurate
Estimation of Depth of Anesthesia. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS),
Cleveland, OH, USA, 17–19 October 2018.

11. Cao, B.; Zhan, D.; Wu, X. Application of SVM in Financial Research. In Proceedings of the 2009 International Joint Conference on
Computational Sciences and Optimization, Sanya, China, 24–26 April 2009.

12. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015.

13. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
14. Wiafe, I.; Koranteng, F.N.; Obeng, E.N.; Assyne, N.; Wiafe, A.; Gulliver, A.S.R. Artificial Intelligence for Cybersecurity: A

Systematic Mapping of Literature. IEEE Access 2020, 8, 146598–146612. [CrossRef]
15. Vishnukumar, H.J.; Butting, B.; Müller, C.; Sax, E. Machine learning and Deep Neural Network—Artificial Intelligence Core for

Lab and Real-world Test and Validation for ADAS and Autonomous Vehicles: AI for Efficient and Quality Test and Validation. In
Proceedings of the Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017.

16. Hashimoto, Y.; Murase, H.; Morimoto, T.; Torii, T. Intelligent Systems for Agriculture in Japan. IEEE Control Syst. Mag. 2001, 21,
71–85.

17. Khan, F.H.; Saadeh, W. An EEG-Based Hypnotic State Monitor for Patients During General Anesthesia. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 2021, 29, 950–961. [CrossRef]

18. Mohsen, H.; El-Dahshan, E.-S.A.; El-Horbaty, E.-S.M.; Salem, A.-B.M. Classification using Deep Learning Neural Networks for
Brain Tumors. Future Comput. Inform. J. 2018, 3, 68–71. [CrossRef]

19. Ying, J.J.; Huan, P.; Chang, C.; Yang, D. A preliminary study on deep learning for predicting social insurance payment behavior.
In Proceedings of the IEEE International Conference on Big Data (Big Data), Boton, MA, USA, 11–14 December 2017.

20. Zanc, R.; Cioara, T.; Anghel, I. Forecasting Financial Markets using Deep Learning. In Proceedings of the IEEE 15th International
Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 5–7 September 2019.

21. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of Deep Learning Techniques for Autonomous Driving. J. Field
Robot. 2020, 37, 362–386. [CrossRef]

22. Huang, P.-S.; He, X.; Gao, J.; Deng, A.A.L.; Heck, L. Learning Deep Structured Semantic Models for Web Wearch using
Clickthrough Data. In Proceedings of the 22nd ACM international conference on Information & Knowledge Management (CIKM
‘13), New York, NY, USA, 27 October–1 November 2013.

23. Dahl, G.E.; Sainath, T.N.; Hinton, G.E. Improving Deep Neural Networks for LVCSR using Rectified Linear Units and Dropout.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31
May 2013.

24. Zhang, D.; Liu, S.E. Top-Down Saliency Object Localization Based on Deep-Learned Features. In Proceedings of the 11th
International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China,
13–15 October 2018.

25. Quillian, M.R. The Teachable Language Comprehender: A Simulation Program and Theory of Language. Assoc. Comput. Mach.
1969, 12, 459–476. [CrossRef]

26. Details for Component Intel Core i7-8086K. SiSoftware Official Live Ranker. Available online: https://ranker.sisoftware.co.uk/
show_device.php?q=c9a598d1bfcbaec2e2a1cebcd9f990a78ab282ba8cc7e186bb96a781f3ceffd9b08dbd9bf3cefed8a09dad8bee8
bb686a0d3eed6&l=en (accessed on 6 April 2021).

27. Cray-1 Computer System Hardware Reference Manual 2240004. Cray Research, Inc., 4 November 1977. Available online:
http://bitsavers.trailing-edge.com/pdf/cray/CRAY-1/2240004C_CRAY-1_Hardware_Reference_Nov77.pdf (accessed on 6 April
2021).

28. Xiao, L.; Bahri, Y.; Sohl-Dickstein, J.; Schoenholz, S.S.; Pennington, J. Dynamical Isometry and a Mean Field Theory of CNNs:
How to Train 10000-layer Vanilla Convolutional Neural Networks. 2018. Available online: http://arxiv.org/abs/1806.05393
(accessed on 6 April 2021).

29. Intel’s Museum Archive, i4004datasheet. Available online: http://www.intel.com/Assets/PDF/DataSheet/4004_datasheet.pdf
(accessed on 10 April 2021).

http://doi.org/10.1037/h0042519
http://www.ncbi.nlm.nih.gov/pubmed/13602029
http://doi.org/10.1016/0010-4809(75)90009-9
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1109/ACCESS.2020.3013145
http://doi.org/10.1109/TVLSI.2021.3058047
http://doi.org/10.1016/j.fcij.2017.12.001
http://doi.org/10.1002/rob.21918
http://doi.org/10.1145/363196.363214
https://ranker.sisoftware.co.uk/show_device.php?q=c9a598d1bfcbaec2e2a1cebcd9f990a78ab282ba8cc7e186bb96a781f3ceffd9b08dbd9bf3cefed8a09dad8bee8bb686a0d3eed6&l=en
https://ranker.sisoftware.co.uk/show_device.php?q=c9a598d1bfcbaec2e2a1cebcd9f990a78ab282ba8cc7e186bb96a781f3ceffd9b08dbd9bf3cefed8a09dad8bee8bb686a0d3eed6&l=en
https://ranker.sisoftware.co.uk/show_device.php?q=c9a598d1bfcbaec2e2a1cebcd9f990a78ab282ba8cc7e186bb96a781f3ceffd9b08dbd9bf3cefed8a09dad8bee8bb686a0d3eed6&l=en
http://bitsavers.trailing-edge.com/pdf/cray/CRAY-1/2240004C_CRAY-1_Hardware_Reference_Nov77.pdf
http://arxiv.org/abs/1806.05393
http://www.intel.com/Assets/PDF/DataSheet/4004_datasheet.pdf

Micromachines 2021, 12, 665 19 of 22

30. iAPX 86, 88 USER’S MANUAL. August 1981. Available online: http://www.bitsavers.org/components/intel/_dataBooks/1981
_iAPX_86_88_Users_Manual.pdf (accessed on 4 June 2021).

31. Patterson, D.A.; Ditzel, D.R. The Case for the Reduced Instruction Set Computer. SIGARCH Comput. Archit. News 1980, 8, 25–33.
[CrossRef]

32. History of the Development of the Arm Chip at Acorn. Available online: https://www.cs.umd.edu/~{}meesh/cmsc411/website/
proj01/arm/history.html (accessed on 6 April 2021).

33. Moore, G. Cramming more Components onto Integrated Circuits. Electronics 1965, 114–117. [CrossRef]
34. Hennessy, J.L.; Patterson, D.A. Computer Architecture: A Quantitative Approach; Morgan Kaufman Publishers, Inc.: San Mateo, CA,

USA, 2012.
35. Seto, K.; Nejatollah, H.; Kang, J.A.S.; Dutt, N. Small Memory Footprint Neural Network Accelerators. In Proceedings of the 20th

International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 6–7 March 2019.
36. Guo, X.; Ipek, E.; Soyata, T. Resistive Computation: Avoiding the Power Wall with Low-Leakage, STT-MRAM based Computing.

SIGARCH Comput. Archit. 2010, 38, 371–382. [CrossRef]
37. Wulf, W.A.; McKee, S.A. Hitting the memory wall: Implications of the obvious. SIGARCH Comput. Archit. 1995, 23, 20–24.

[CrossRef]
38. Baji, T. Evolution of the GPU Device widely used in AI and Massive Parallel Processing. In Proceedings of the 2018 IEEE 2nd

Electron Devices Technology and Manufacturing Conference (EDTM), Kobe, Japan, 13–16 March 2018.
39. Deng, L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive

Survey. Proc. IEEE 2020, 108, 485–532. [CrossRef]
40. Chen, Y.; Luo, T.; Liu, S.; Zhang, S.; He, L.; Wang, J.; Li, L.; Chen, T.; Xu, Z.; Sun, N.; et al. DaDianNao: A Machine-Learning

Supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge, UK,
13–17 December 2014.

41. Liu, D.; Chen, T.; Liu, S.; Zhou, J.; Zhou, S.; Teman, O.; Feng, X.; Zhou, X.; Chen, Y. PuDianNao: A Polyvalent Machine Learning
Accelerator. SIGARCH Comput. Archit. 2015, 43, 369–381. [CrossRef]

42. Liu, S.; Du, Z.; Tao, J.; Han, D.; Luo, T.; Xie, Y.; Chen, Y.; Chen, T. Cambricon: An Instruction Set Architecture for Neural Networks.
In Proceedings of the ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22
June 2016.

43. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.
In-datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture, Toronto, ON, Canada, 24–28 June 2017.

44. Betker, M.R.; Fernando, J.S.; Whalen, S.P. The History of the Microprocessor. Bell Labs Tech. J. 1997, 2, 29–56. [CrossRef]
45. Furber, S. Microprocessors: The Engines of the Digital Age. Proc. R. Soc. 2017, 473, 20160893. [CrossRef]
46. Brunette, E.S.; Flemmer, R.C.; Flemmer, C.L. A Review of Artificial Intelligence. In Proceedings of the 4th International Conference

on Autonomous Robots and Agents, Wellington, New Zealand, 10–12 February 2009.
47. Bush, V. The Differental Analyzer. J. Frankl. Inst. 1931, 212, 447–488. [CrossRef]
48. Turing, A.M. On Computable Numbers, with an Application to the Entscheidungs problem. Proc. Lond. Math. Soc. 1937, 2,

230–265. [CrossRef]
49. Strachey, C. Logical or Non-Mathematical Programmes. In Proceedings of the 1952 ACM National Meeting, Toronto, ON, Canada,

1 June 1952; pp. 46–49.
50. Samuel, A. Some Studies in Machine Learning using the Game of Checkers. IBM J. 1959, 3, 210–299. [CrossRef]
51. Newell, A.; Simon, H.A. The Logic Theory Machine a Complex Information Processing System. 15 June 1956. Available online:

http://shelf1.library.cmu.edu/IMLS/MindModels/logictheorymachine.pdf (accessed on 10 April 2021).
52. McCarthy, J. Recursive Functions of Symbolic Expressions and their Computation by Machine, Part I. Commun. ACM 1960, 3,

184–195. [CrossRef]
53. Minsky, M.; Papert, S.A. Perceptrons: An introduction to Computational Geometry; MIT Press: Cambridge, MA, USA, 1969.
54. Nof, S.Y. Handbook of Industrial Robotics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999; pp. 3–5.
55. Slagle, J.R. A Heuristic Program that Solves Symbolic Integration Problems in Freshman Calculus. J. ACM 1963, 10, 507–520.
56. Bobrow, D.G. A Question-Answering System for High School Algebra Word Problems. In Proceedings of the Fall Joint Computer

Conference, Part I (AFIPS ‘64 (Fall, Part I)), New York, NY, USA, 27–29 October 1964.
57. Raphael, B. Robot Research at Stanford Research Institute; Stanford Research Institute: Menlo Park, CA, USA, 1972.
58. Winograd, T. Procedures as a Representation for Data in a Computer Program for Understanding Natural Language. Cogn.

Psychol. 1972, 3, 1–191. [CrossRef]
59. Pierce, J.R.; Carroll, J.B.; Hamp, E.P.; Hays, D.G.; Hockett, C.F.; Oettinger, A.G.; Perlis, A. Languages and Machines: Computers in

Translation and Linguistics; The National Academies Press: Washington, DC, USA, 1966. [CrossRef]
60. Artificial Intelligence: A Paper Symposium; Science Research Council: London, UK, 1973.
61. Buchanan, B.G.; Feigenbaum, E.A. Dendral and Meta-dendral: Their Applications Dimension. Artif. Intell. 1978, 11, 5–24.

[CrossRef]
62. Colmerauer, A.; Roussel, P. The Birth of Prolog. Assoc. Comput. Mach. 1993, 28, 37–52.
63. Crevier, D. AI: The Tumultuous Search for Artificial Intelligence; Basic Books: New York, NY, USA, 1993; p. 198.

http://www.bitsavers.org/components/intel/_dataBooks/1981_iAPX_86_88_Users_Manual.pdf
http://www.bitsavers.org/components/intel/_dataBooks/1981_iAPX_86_88_Users_Manual.pdf
http://doi.org/10.1145/641914.641917
https://www.cs.umd.edu/~{}meesh/cmsc411/website/proj01/arm/history.html
https://www.cs.umd.edu/~{}meesh/cmsc411/website/proj01/arm/history.html
http://doi.org/10.1109/JPROC.1998.658762
http://doi.org/10.1145/1816038.1816012
http://doi.org/10.1145/216585.216588
http://doi.org/10.1109/JPROC.2020.2976475
http://doi.org/10.1145/2786763.2694358
http://doi.org/10.1002/bltj.2082
http://doi.org/10.1098/rspa.2016.0893
http://doi.org/10.1016/S0016-0032(31)90616-9
http://doi.org/10.1112/plms/s2-42.1.230
http://doi.org/10.1147/rd.33.0210
http://shelf1.library.cmu.edu/IMLS/MindModels/logictheorymachine.pdf
http://doi.org/10.1145/367177.367199
http://doi.org/10.1016/0010-0285(72)90002-3
http://doi.org/10.17226/9547
http://doi.org/10.1016/0004-3702(78)90010-3

Micromachines 2021, 12, 665 20 of 22

64. Enslow, B. The Payoff from Expert Systems. Across Board 1989, 54. Available online: https://stacks.stanford.edu/file/druid:
sb599zp1950/sb599zp1950.pdf (accessed on 6 May 2021).

65. McKinzie, W. The fifth generation. Proc. IEEE 1985, 73, 493–494. [CrossRef]
66. Hopfield, J.J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci.

USA 1982, 79, 2554–2558. [CrossRef]
67. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation. Calif. Univ. San Diego La

Jolla Inst. Cogn. Sci. 1986, 1, 318–362.
68. Coats, P.K. Why Expert Systems Fail. Financ. Manag. 1988, 17, 77–86. [CrossRef]
69. Boone, G.W. Variable Function Programmed Calculator. US Patent 4,074,351, 14 February 1978.
70. Laws, D. Motorola 6800 Oral History Panel: Development and Promotion; Computer History Museum: Tempe, AZ, USA, 2008.
71. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Stand. 1985, 754, 1–20.
72. Patterson, D. Reduced Instruction Set Computers. Commun. Assoc. Mach. 1985, 28, 14. [CrossRef]
73. Mead, C.; Conway, L. Introduction to VSLI Systems; Addison-Wesley: Boston, MA, USA, 1980.
74. The Street How Cadence Designs the Future. Available online: https://www.thestreet.com/tech/news/cadence072120 (accessed

on 7 April 2021).
75. Freeman, R.; Kawa, J.; Singhal, K. Synopsys’ Journey to Enable TCAD and EDA Tools for Superconducting Electronics. 2020.

Available online: https://www.synopsys.com/content/dam/synopsys/solutions/documents/gomac-synopsys-supertools-
paper.pdf (accessed on 7 April 2021).

76. Yilmaz, M.; Erdogan, E.S.; Roberts, M.B. Introduction to Mentor Graphics Design Tools. 2009. Available online: http://people.ee.
duke.edu/~{}jmorizio/ece261/LABMANUALS/mentor_toolsv7_windows.pdf (accessed on 7 April 2021).

77. How Intel Makes Chips: Transistors to Transformations. Available online: https://www.intel.com/content/www/us/en/
history/museum-transistors-to-transformations-brochure.html (accessed on 7 April 2021).

78. Patterson, D.A.; Sequin, C.H. RISC I: A Reduced Instruction Set VLSI Computer. In Proceedings of the 8th Annual Symposium
on Computer Architecture, Washington, DC, USA, 27 June–2 July 1981.

79. Radin, G. The 801 Minicomputer. IBM J. Res. Dev. 1982, 27, 237–246. [CrossRef]
80. Hennessy, J.; Hennessy, J.N.; Przybylski, S.; Rowen, C.; Gross, T.; Baskett, F.; Gill, J. MIPS: A Microprocessor Architecture.

SIGMICRO Newsl. 1982, 13, 17–22. [CrossRef]
81. MC68030 Product Summary Page-Freescale. 2012. Available online: https://web.archive.org/web/20141006204732/http:

//www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68030 (accessed on 6 April 2021).
82. Intel 80486 DX Microprocessor Datasheet. Available online: https://datasheetspdf.com/pdf-file/493187/Intel/80486DX/1

(accessed on 6 April 2021).
83. Patterson, D.; Hennessy, J. Computer Organization and Design: The Hardware Software Interface, 5th ed.; Morgan Kaufmann:

Burlington, MA, USA, 2013.
84. Smith, E.; Weiss, S. PowerPC601 and Alpha21064: A Tale of Two RISCs. Computer 1994, 27, 46–58. [CrossRef]
85. Intel® Pentium® III Processor 1.00 GHz, 256K Cache, 133 MHz FSB. Available online: https://ark.intel.com/content/www/us/

en/ark/products/27529/intel-pentium-iii-processor-1-00-ghz-256k-cache-133-mhz-fsb.html (accessed on 6 April 2021).
86. Welker, M.W. AMD Processor Performance Evaluation Guide; ADVANCED MICRO DEVICES One AMD Place: Sunnyvale, CA,

USA, 2005.
87. Jagger, D. Advanced RISC Machines Architecture Reference Manual, 1st ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1997.
88. Furber, S. ARM System-on-Chip Architecture; Addison Wesley: Boston, MA, USA, 2020.
89. Gelsinger, P. Microprocessors for the new millennium: Challenges, opportunities, and new frontiers. In Proceedings of the 2001

IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC, San Francisco, CA, USA, 7 February 2001.
90. Asanovic, K.; Bodik, R.; Catanzaro, B.C.; Gebis, J.J.; Husbands, P.; Keutzer, K.; Patterson, D.A.; Plishker, W.L.; Shalf, J.; Williams,

S.W.; et al. The Landscape of Parallel Computing Research: A View from Berkeley; Electrical Engineering and Computer Sciences
University of California at Berkeley: Berkeley, CA, USA, 2006.

91. Dual-Core Processors Microprocessors Types and Specifications. 12 June 2006. Available online: https://www.informit.com/
articles/article.aspx?p=481859&seqNum=21 (accessed on 6 April 2021).

92. R. Ramanathan Intel® Multi-Core Processors Making the Move to Quad-Core and Beyond White Paper Intel Multi-Core
Processors. Available online: https://web.cse.ohio-state.edu/~{}panda.2/775/slides/intel_quad_core_06.pdf (accessed on 6
April 2021).

93. Hong, S.; Graves, L. AMD Announces Worldwide Availability of AMD Ryzen™ PRO 3000 Series Processors Designed to
Power the Modern Business PC. 2019. Available online: https://www.amd.com/en/press-releases/2019-09-30-amd-announces-
worldwide-availability-amd-ryzen-pro-3000-series-processors (accessed on 2 June 2021).

94. Havemann, R.; Hutchby, J. High-performance interconnects: An integration overview. Proc. IEEE 2001, 89, 586–601. [CrossRef]
95. Le Cun, Y.; Jackel, L.D.; Boser, B.; Denker, J.S.; Graf, H.P.; Guyon, I.; Henderson, D.; Howard, R.E.; Hubbard, W. Handwritten Digit

Recognition: Applications of Neural Network Chips and Automatic Learning. IEEE Commun. Mag. 1989, 27, 41–46. [CrossRef]
96. Holler, M.; Tam, S.; Castro, H.; Benson, R. An Electrically Trainable Artificial Neural Network (ETANN) with 10240 floating gate

synapses. In Proceedings of the International Joint Conference on Neural Networks, Washington, DC, USA, June 1989.

https://stacks.stanford.edu/file/druid:sb599zp1950/sb599zp1950.pdf
https://stacks.stanford.edu/file/druid:sb599zp1950/sb599zp1950.pdf
http://doi.org/10.1109/PROC.1985.13174
http://doi.org/10.1073/pnas.79.8.2554
http://doi.org/10.2307/3666074
http://doi.org/10.1145/2465.214917
https://www.thestreet.com/tech/news/cadence072120
https://www.synopsys.com/content/dam/synopsys/solutions/documents/gomac-synopsys-supertools-paper.pdf
https://www.synopsys.com/content/dam/synopsys/solutions/documents/gomac-synopsys-supertools-paper.pdf
http://people.ee.duke.edu/~{}jmorizio/ece261/LABMANUALS/mentor_toolsv7_windows.pdf
http://people.ee.duke.edu/~{}jmorizio/ece261/LABMANUALS/mentor_toolsv7_windows.pdf
https://www.intel.com/content/www/us/en/history/museum-transistors-to-transformations-brochure.html
https://www.intel.com/content/www/us/en/history/museum-transistors-to-transformations-brochure.html
http://doi.org/10.1147/rd.273.0237
http://doi.org/10.1145/1014194.800930
https://web.archive.org/web/20141006204732/http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68030
https://web.archive.org/web/20141006204732/http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68030
https://datasheetspdf.com/pdf-file/493187/Intel/80486DX/1
http://doi.org/10.1109/2.294853
https://ark.intel.com/content/www/us/en/ark/products/27529/intel-pentium-iii-processor-1-00-ghz-256k-cache-133-mhz-fsb.html
https://ark.intel.com/content/www/us/en/ark/products/27529/intel-pentium-iii-processor-1-00-ghz-256k-cache-133-mhz-fsb.html
https://www.informit.com/articles/article.aspx?p=481859&seqNum=21
https://www.informit.com/articles/article.aspx?p=481859&seqNum=21
https://web.cse.ohio-state.edu/~{}panda.2/775/slides/intel_quad_core_06.pdf
https://www.amd.com/en/press-releases/2019-09-30-amd-announces-worldwide-availability-amd-ryzen-pro-3000-series-processors
https://www.amd.com/en/press-releases/2019-09-30-amd-announces-worldwide-availability-amd-ryzen-pro-3000-series-processors
http://doi.org/10.1109/5.929646
http://doi.org/10.1109/35.41400

Micromachines 2021, 12, 665 21 of 22

97. Castro, H.A.; Tam, S.M.; Holler, M.A. Implementation and Performance of an Analog Nonvolatile Neural Network. Analog. Integr.
Circuits Signal Process. 1993, 4, 97–113. [CrossRef]

98. Ramacher, U.; Raab, W.; Hachmann, J.U.; Beichter, J.; Bruls, N.; Wesseling, M.; Sicheneder, E.; Glass, J.; Wurz, A.; Manner, R.
SYNAPSE-1: A High-Speed General Purpose Parallel Neurocomputer System. In Proceedings of the 9th International Parallel
Processing Symposium, Santa Barbara, CA, USA, 25–28 April 1995.

99. Sackinger, E.; Boser, B.E.; Bromley, J.; LeCun, Y.; Jackel, L.D. Application of the ANNA Neural Network Chip to High-Speed
Character Recognition. IEEE Trans. Neural Netw. 1992, 3, 498–505. [CrossRef] [PubMed]

100. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. Mach. Learn. 1995, 20, 273–297. [CrossRef]
101. Dang, H.; Liang, Y.; Wei, L.; Li, C.; Dang, S. Artificial Neural Network Design for Enabling Relay Selection by Supervised

Machine Learning. In Proceedings of the 2018 Eighth International Conference on Instrumentation & Measurement, Computer,
Communication and Control (IMCCC), Harbin, China, 19–21 July 2018.

102. Amirhossein, T.; Anthony, S. A Spiking Network that Learns to Extract Spike Signatures from Speech Signals. Neurocomput 2017,
240, 191–199.

103. Yann, C.J.B.; LeCun, Y.; Cortes, C. The MNIST Database of Handwritten Digits. Available online: http://yann.lecun.com/exdb/
mnist/ (accessed on 6 April 2021).

104. Krizhevsky, A.; Nair, V.; Hinton, G. The CIFAR-10 Dataset. Available online: https://www.cs.toronto.edu/~{}kriz/cifar.html
(accessed on 6 April 2021).

105. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009.

106. Deng, L.; Li, J.; Huang, J.T.; Yao, K.; Yu, D.; Seide, F.; Seltzer, M.; Zweig, G.; He, X.; Williams, J.; et al. Recent Advances in Deep
Learning for Speech Research at Microsoft. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 8604–8608.

107. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. 2015, 115, 211–252. [CrossRef]

108. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Proc. NIPS 2012,
1097–1105. [CrossRef]

109. BASU, S. A Cursory Look at Parallel Architectures and Biologically Inspired Computing. In Academic Press Series in Engineering,
Soft Computing and Intelligent Systems; Academic Press: Cambridge, MA, USA, 2000; pp. 185–216.

110. Johnson, O.; Omosehinmi, D. Comparative Analysis of Single-Core and Multi-Core Systems. Int. J. Comput. Sci. Inf. Technol. 2015,
7, 117–130. [CrossRef]

111. James, R. Intel AVX-512 Instructions. 2017. Available online: https://software.intel.com/content/www/cn/zh/develop/
articles/intel-avx-512-instructions.html (accessed on 3 April 2021).

112. Raskulinec, G.M.; Fiksman, E. SIMD Functions Via OpenMP. In High Performance Parallelism Pearls; Morgan Kaufmann: Burlington,
MA, USA, 2015.

113. Arm Neon Intrinsics Reference for ACLE Q3. Available online: https://developer.arm.com/architectures/system-architectures/
software-standards/acle (accessed on 3 April 2021).

114. Vasudevan, A.; Anderson, A.; Gregg, D. Parallel Multi Channel Convolution using General Matrix Multiplication. In Proceedings
of the 2017 IEEE 28th International Conference on Application-specific Systems Architectures and Processors (ASAP), Seattle,
WA, USA, 10–12 July 2017.

115. Chellapilla, K.; Puri, S.; Simard, P. High Performance Convolutional Neural Networks for Document Processing. In Proceedings
of the Tenth International Workshop on Frontiers in Handwriting Recognition, La Baule, France, 1 October 2006.

116. Intel Math Kernel Library. Available online: https://software.intel.com/en-us/mkl (accessed on 6 April 2021).
117. Vedaldi, A.; Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Darrell, T. Convolutional Architecture for Fast Feature

Embedding. In Proceedings of the ACM International Conference on Multimedia, MM’14, Orlando, FL, USA, 7 November 2014.
118. Intel Deep Learning Boost (Intel DL Boost). Available online: https://www.intel.com/content/www/us/en/artificial-

intelligence/deep-learning-boost.html (accessed on 7 April 2021).
119. Horowitz, M. Computing’s Energy Problem (and What We Can Do About It). In Proceedings of the 2014 IEEE International

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014.
120. Rodriguez, A.; Segal, E.; Meiri, E.; Fomenko, E.; Kim, Y.; Shen, H.; Ziv, B. Lower Numerical Precision Deep Learning Inference

and Training. Intel White Paper 2018, 3, 1–19.
121. bfloat16-Hardware Numerics Definition. 2018. Available online: https://software.intel.com/content/www/us/en/develop/

download/bfloat16-hardware-numerics-definition.html (accessed on 6 April 2021).
122. Developments in the Arm A-Profile Architecture: Armv8.6-A. Available online: https://community.arm.com/developer/ip-

products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a (accessed on 7 April 2021).
123. rocBLAS Documentation-Advanced Micro Devices. Available online: https://rocblas.readthedocs.io/en/master/index.html

(accessed on 7 April 2021).
124. The Intel®Xeon Phi™ Product Family Product Brief. Available online: https://www.intel.com/content/dam/www/public/us/

en/documents/product-briefs/high-performance-xeon-phi-coprocessor-brief.pdf (accessed on 6 April 2021).

http://doi.org/10.1007/BF01254862
http://doi.org/10.1109/72.129422
http://www.ncbi.nlm.nih.gov/pubmed/18276453
http://doi.org/10.1007/BF00994018
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~{}kriz/cifar.html
http://doi.org/10.1007/s11263-015-0816-y
http://doi.org/10.1145/3065386
http://doi.org/10.5121/ijcsit.2015.7610
https://software.intel.com/content/www/cn/zh/develop/articles/intel-avx-512-instructions.html
https://software.intel.com/content/www/cn/zh/develop/articles/intel-avx-512-instructions.html
https://developer.arm.com/architectures/system-architectures/software-standards/acle
https://developer.arm.com/architectures/system-architectures/software-standards/acle
https://software.intel.com/en-us/mkl
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://software.intel.com/content/www/us/en/develop/download/bfloat16-hardware-numerics-definition.html
https://software.intel.com/content/www/us/en/develop/download/bfloat16-hardware-numerics-definition.html
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
https://rocblas.readthedocs.io/en/master/index.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/high-performance-xeon-phi-coprocessor-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/high-performance-xeon-phi-coprocessor-brief.pdf

Micromachines 2021, 12, 665 22 of 22

125. Capra, M.; Bussolino, B.; Marchisio, A.; Shafique, M.; Masera, G.; Martina, M. An Updated Survey of Efficient Hardware
Architectures for Accelerating Deep Convolutional Neural Networks. Future Internet 2020, 12, 113. [CrossRef]

126. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. OverFeat: Integrated recognition, localization and detection
using convolutional networks. arXiv 2013, arXiv:1312.6229.

127. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-scale Image Recognition. arXiv 2014, arXiv:1409.1556.
128. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9.

129. Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013, arXiv:1312.4400.
130. Szeged, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings

of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016.
131. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-V4, inception-ResNet and the Impact of Residual Connections on

Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 1–3.
132. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vega, NV, USA, 26 June–1 July 2016; pp. 770–778.
133. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic

Differentiation in PyTorch. In Proceedings of the NIPS 2017 Workshop on Autodiff, Long Beach, CA, USA, 9 December 2017.
134. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: Tensorflow.org (accessed on 4 June 2021).
135. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cuDNN: Efficient Primitives for Deep

Learning. arXiv 2014, arXiv:1410.0759.
136. NVIDIA CUDA-X GPU-Accelerated Libraries. 2020. Available online: https://developer.nvidia.com/gpu-accelerated-libraries

(accessed on 6 April 2021).
137. Nvidia Tesla V100 GPU Architecture. 2017. Available online: https://images.nvidia.com/content/technologies/volta/pdf/4373

17-Volta-V100-DS-NV-US-WEB.pdf (accessed on 6 April 2021).
138. Nvidia A100 Tensor core GPU Architecture. 2020. Available online: https://www.nvidia.com/content/dam/en-zz/Solutions/

Data-Center/nvidia-ampere-architecture-whitepaper.pdf (accessed on 4 June 2021).
139. Aimar, A.; Mostafa, H.; Calabrese, E.; Rios-Navarro, A.; Tapiador-Morales, R.; Lungu, I.; Milde, M.; Corradi, F.; Linares-Barranco,

A.; Liu, S. NullHop: A Flexible Convolutional Neural NetworkAccelerator Based on Sparse Representations of Feature Maps.
IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 644–656. [CrossRef]

140. Gokhale, V.; Jin, J.; Dundar, A.; Martini, B.; Culurciello, E. A 240 G-ops/s mobile Coprocessor for Deep Neural Networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Columbus, OH, USA,
23–28 June 2014.

141. Sankaradas, M.; Jakkula, V.; Cadambi, S.; Chakradhar, S.; Durdanovic, I.; Cosatto, E.; Graf, H.P. A Massively Parallel Coprocessor
for Convolutional Neural Networks. In Proceedings of the 2009 20th IEEE International Conference on Application-specific
Systems, Architectures and Processors, Boston, MA, USA, 7–9 July 2009; pp. 53–60.

142. Du, Z.; Fasthuber, R.; Chen, T.; Ienne, P.; Li, L.; Luo, T.; Feng, X.; Chen, Y.; Temam, O. ShiDianNao: Shifting Vision Processing
Closer to the Sensor. In Proceedings of the 42nd Annual International Symposium on Computer Architecture, Portland, OR, USA,
13–17 June 2015; pp. 92–104.

143. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. DianNao: A Small-footprint High-throughput Accelerator for
Ubiquitous Machine-Learning. Proc. ASPLOS 2014, 4, 269–284.

144. Chen, Y.; Krishna, T.; Emer, J.; Sze, V. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE J. Solid-State Circuits 2017, 52, 127–138. [CrossRef]

145. Google I/O’17 California: Google. Available online: https://events.google.com/io2017/ (accessed on 7 April 2021).
146. Google Cloud Next’18. California: Google. Available online: https://cloud.withgoogle.com/next18/sf/ (accessed on 7 April

2021).
147. Chen, X.; Lin, X. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014, 2, 514–525. [CrossRef]
148. Shabbir, J.; Anwer, T. Artificial Intelligence and its Role in Near Future. arXiv 2018, arXiv:1804.01396.
149. Pavlidis, V.F.; Savidis, I.; Friedman, E.G. Three-Dimensional Integrated Circuit Design; Morgan Kaufmann: San Francisco, CA, USA,

2009.
150. Patterson, D.A. Microprocessors in 2020. Sci. Am. 1995, 273, 62–67.
151. Jouppi, N.P.; Yoon, D.H.; Kurian, G.; Li, S.; Patil, N.; Laudon, J.; Young, C.; Patterson, D. A domain-specific supercomputer for

training deep neural networks. Commun. ACM 2020, 63, 67–78. [CrossRef]
152. Biggio, B.; Fumera, G.; Roli, F. Security Evaluation of Pattern Classifiers under Attack. IEEE Trans. Knowl. Data Eng. 2013, 26,

984–996. [CrossRef]
153. Finlayson, S.G.; Bowers, J.D.; Ito, J.; Zittrain, J.L.; Beam, A.L.; Kohane, I.S. Adversarial Attacks on Medical Machine Learning.

Science 2019, 363, 1287–1289. [CrossRef] [PubMed]

http://doi.org/10.3390/fi12070113
Tensorflow.org
https://developer.nvidia.com/gpu-accelerated-libraries
https://images.nvidia.com/content/technologies/volta/pdf/437317-Volta-V100-DS-NV-US-WEB.pdf
https://images.nvidia.com/content/technologies/volta/pdf/437317-Volta-V100-DS-NV-US-WEB.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
http://doi.org/10.1109/TNNLS.2018.2852335
http://doi.org/10.1109/JSSC.2016.2616357
https://events.google.com/io2017/
https://cloud.withgoogle.com/next18/sf/
http://doi.org/10.1109/ACCESS.2014.2325029
http://doi.org/10.1145/3360307
http://doi.org/10.1109/TKDE.2013.57
http://doi.org/10.1126/science.aaw4399
http://www.ncbi.nlm.nih.gov/pubmed/30898923

	Introduction
	Origin and Evolution of AI
	Emergence of Microprocessors
	Confluence between Artificial Intelligence and Microprocessors
	Future Roadmap and Challenges
	Conclusions
	References

