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Abstract: The flexoelectric effect has a significant influence on the electro-mechanical coupling of
micro-nano devices. This paper studies the mechanical and electrical properties of functionally graded
flexo-piezoelectric beams under different electrical boundary conditions. The generalized variational
principle and Euler-Bernoulli beam theory are employed to deduce the governing equations and
corresponding electro-mechanical boundary conditions of the beam model. The deflection and
induced electric potential are given as analytical expressions for the functionally graded cantilever
beam. The numerical results show that the flexoelectric effect, piezoelectric effect, and gradient
distribution have considerable influences on the electro-mechanical performance of the functionally
graded beams. Moreover, the nonuniform piezoelectricity and polarization direction will play a
leading role in the induced electric potential at a large scale. The flexoelectric effect will dominate
the induced electric potential as the beam thickness decreases. This work provides helpful guidance
to resolve the application of flexoelectric and piezoelectric effects in functionally graded materials,
especially on micro-nano devices.

Keywords: flexoelectric effect; functionally graded beam; generalized variational principle; piezo-
electricity; induced electric potential

1. Introduction

With the development of micro-nano technology, smart materials have received
widespread attention at the nanoscale. For the micro-nano devices, the flexoelectric effect on
nano-piezoelectric beams must be considered in the study of electro-mechanical coupling.
Piezoelectric and flexoelectric effects are ubiquitous in a wide variety of materials, includ-
ing artificial and natural materials [1-4]. The conventional electro-mechanical coupling
between the electric polarization and the uniform strain is unique for noncentrosymmetric
crystals, such as piezoelectric materials [5]. However, the presence of the strain gradient or
nonuniform strain field can locally break the inversion symmetry and induce an electric
polarization even in crystalline centrosymmetric dielectrics. This spontaneous electric
polarization induced by the strain gradient is referred to as flexoelectricity, which is pro-
portional to both the flexoelectric coefficient and the magnitude of the strain gradient. The
flexoelectricity may lead to strong size-dependent properties at the nanoscale. Therefore, it
is necessary to consider the flexoelectric effect in analyzing the electro-mechanical coupling
of dielectrics at the nanoscale.

Recently, a series of studies to discuss the flexoelectricity of ferroelectric thin films,
polymers, liquid crystals, and living membranes have been reported. Majdoub et al. [6]
used molecular dynamics and linear piezoelectric theory to analyze the piezoelectric
nanobeam under the nonuniform strain condition. Applying a variational principle for di-
electrics by incorporating the flexoelectricity, electrostatic force, and surface effect, Hu and
Shen [7,8] developed the general governing equations of flexoelectric materials. Yan and
Jiang [9] investigated the electroelastic responses of the piezoelectric nanobeams with
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the flexoelectric effect, in which the surface effect has been taken into consideration.
Zhou et al. [10] presented an electro-mechanical method to analyze the flexoelectric beams
with three different electrical boundary conditions, in which the induced electric potential
has been discussed. Su et al. [11] studied the influence of the flexoelectric and piezo-
electric effects on electro-mechanical coupling responses of the bilayer piezo-flexoelectric
nanobeam based on the strain gradient elasticity. The results show that the flexoelectric and
strain gradient elastic effects dominate the electro-mechanical response at the nanoscale,
while the piezoelectric effect is the opposite. Recently, Su and Zhou [12] investigated the
nonlocal effect on the flexoelectric beams based on the generalized Hamilton’s variational
principle, in which the induced electric potential of the flexoelectric sensor is dependent on
the category of applied loads.

Up to now, some results about the flexoelectric effect on the static bending and vi-
bration behaviors of monolayer or multi-layer nanobeams have been obtained. However,
studies on the flexoelectric effect are very limited, especially in improving the flexoelectric
effect through structural design or the uneven distribution of materials. In view of the
limitations of forming a large nonuniform strain or strain gradient and the inconvenience
of the practical applications of irregular geometric shapes in ordinary dielectric materials,
introducing functionally graded materials (FGMs) and multi-layer structure materials to
improve the material properties is a very useful and wise method [13-16]. Regarding
functionally graded piezoelectric materials, many studies have been carried out [17,18].
With a continuum model self-consistently treating piezo-flexoelectricity, Abdollahi and
Arias [19] studied the interplay between piezoelectricity and flexoelectricity in bimorph
sensors and actuators via the smooth meshfree method. Their results showed that flex-
oelectricity might enhance or reduce the effective piezoelectric effect depending on the
device scale. Mbarki et al. [20] researched a combination of flexoelectricity and simple
functional gradient to acquire high-temperature electro-mechanical coupling in a thin film.
Chu et al. [21] investigated the flexoelectric effect on the bending and vibration responses
of functionally graded piezoelectric nanobeams based on a modified strain gradient the-
ory. Xiang et al. [22] studied the electro-elastic response on the bending behavior of a
functionally graded elastic beam with consideration of the flexoelectric effect. They only
explained the role of the flexoelectric effect in functionally graded beams. Chen et al. [23]
analyzed the effect of flexoelectricity on the free vibration of functionally graded porous
piezoelectric sandwich nanobeams reinforced by graphene platelets. They found that the
vibration behavior of the nanobeam would be effectively influenced by the flexoelectricity,
porosity, and graphene platelets. However, it is not clear how the coupling of flexoelec-
tric and piezoelectric effects acts on the electro-mechanical responses of FGM beams. In
functionally graded piezoelectric materials, the effective flexoelectric coefficient caused
by piezoelectricity is functionally identical to intrinsic flexoelectricity [24]. Thus, it is very
important and beneficial to analyze and discuss the coupling effect of piezoelectricity and
flexoelectricity in the FGM beams.

In this paper, the objective is to deal with the electro-mechanical responses of the
FGM piezoelectric beam considering the flexoelectric effect. Based on the linear piezo-
flexoelectric model, the equilibrium equations of FGM beams and corresponding general
mechanical boundary conditions are derived by the generalized variational method. The
influences of the coupling between flexo-piezoelectricity and the gradient parameter on
the deflection, induced electric potential, and stress distribution are presented graphically,
analyzed, and discussed.

2. Formulation of Flexoelectric Materials

Based on the piezoelectric linear theory, considering the coupling effect of the strain
gradient and the electric field, the electric Gibbs free energy density function U of the
flexo-piezoelectric material can be expressed as [7,10,25]

1 1
U= —anE ki + 5cijacijen — eijeEieje — MiEieji 1
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where gy and c;jy; are the second-order dielectric coefficient and the fourth-order elastic
coefficient, respectively. ¢;j is the third-order piezoelectric coefficient, and p;j is the
fourth-order flexoelectric coefficient. ¢;;, €, and E; are the strain tensor, the strain gradient
tensor and electric field, respectively.

Under the framework of linear deformation theory, from Equation (1), the constitutive
equations of the flexo-piezoelectric materials can be reduced to

ou
T = gy, — Cimieii ik @
u
= ey~ HHEl g
ou
D; = _ﬁ = ai]‘E]' + €jjkEjk + Hijki€ijk,1 )
i

where 0y, 0jjx and D; are the Cauchy stress tensor, the higher-order stress tensor and electric
displacement vector, respectively. In classical electrodynamics, D;, E; and polarization P;
have the relationships as follow

D; = &k + P; ©)

Pi = xiiEj + eijkejk + Mijki€jk, (6)

where );; denotes electric susceptibility, and ¢y is the electric permittivity of the vacuum.
Then, from Equations (2)—(4), we can obtain

1 1 1
U = 50ijeij + Seijicijk — 5 DiEi @)

Considering the work performed by external forces, the expression of the total en-
thalpy of flexo-piezoelectric materials [10,26]

H = jjf Udov — ﬁ tiu;ds — @S riv;ds + @ @¢ds (8)

where @ is the surface charge density, ¢ is the surface potential, ¢; is the surface mechanical
force, r; and v; are the higher-order tension and the corresponding normal derivative of
displacement on the surface, respectively.

3. Beam Models of Functionally Graded Materials

In the following, the functionally graded piezoelectric cantilever nanobeam has been
considered. The material changes continuously from one material to another along the
thickness direction. An FGM piezoelectric nanobeam with length L, width b and thickness
h is shown in Figure 1. BaTiO3 (BTO) is a perovskite piezoelectric ceramic, which has
outstanding electro-mechanical performance and large flexoelectric parameters. However,
BTO is too stiff to generate a large deformation or large stain gradient, which is very
important for the flexoelectric structures [1,3]. PVDF has very low stiffness and is easy
to deform, in which a large strain gradient would exist in flexoelectric structures [3].
Combining the advantages of BTO and PVDF, FGM piezoelectric structures could have
greater flexoelectric coefficients and considerable strain gradient. Hence, the nanobeam
is made from a mixture of two isotropic linear elastic constituents BaTiO3 and PVDF, and
the top and bottom surfaces of the beam are covered with electrodes. It is assumed that
the top surface (x3 = h/2) of the FGM nanobeam is PVDF-rich while the bottom surface
(x3 = —h/2) is BaTiOj -rich. The bottom surface electrode undergoes a change of electric
potential as a result of mechanical deformation or prescribes an external voltage, and the
top electrode is grounded.
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Figure 1. The geometry and coordinates of an FGM piezoelectric cantilever beam.

All material properties are assumed to satisfy the unified exponential law distribution

M(x3) = Mof (x3) ©)

where f(x3) is an exponential function of x3, which can represent the gradient type of
material property change. M expresses all material properties of FGM piezoelectric beam,
M) denotes the corresponding material property at the bottom surface x3 = —h /2. Hence,
we have the gradient type as follows [27]

2x3+h )

M(x3) = Moe* (2 (10)

M(3)

where & = In <Mo> is a gradient index, which can be determined by the graded proper-

ties in the physical beam. Through Equation (10), we can obtain the dielectric coefficient
a(x3), piezoelectric coefficient e(x3), flexoelectric coefficient y(x3), and elastic coefficient
c(x3) of the graded beam

" (2x3+h

c(x3) = crpe™' 2
2X3+h

e(x3) = epe™( ")

\ (11)
(x3) = anaesH)
a(xs) = apesCH)

For simplicity, the gradient indexes of a(x3), e(x3) and p(x3) are set as the same
constant &. According to the Euler-Bernoulli beam theory, the corresponding strain and
strain gradient of the graded beam can be expressed as

d*w
e = —(x3— ho)dix% (12)
d*w
== 13
€113 a2 (13)
d*w
= —(x3—hy)— 14
€111 (x3 —hp) P (14)

where w is the deflection of the beam in the x3 direction, /iy denotes the deviation between
the physical neutral surface and the geometric mid-surface. In this paper, the axial strain
gradient €17 1 is much smaller than the transverse strain gradient €17 3 in a slender beam, so
the gradient in the axial direction is not considered. Here it should be pointed out that the
physical neutral surface of the FGM nanobeam coincides with the geometric mid-surface in
homogeneous materials. However, the symmetry breaking of FGMs influences the position
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D3 = a(x3)

of the physical neutral surface significantly. The position of the physical neutral surface
can be determined using the following formula [28]

_ J4c(x3)x3dA
J4c(x3)dA

where A is the cross-section area of FGM cantilever nanobeam. The electric field is predom-
inant in the thickness direction, while the electric field in the length direction is negligible
in the slender beam. We substitute Equations (12) and (14) into Equations (2)—(4) to gain
the expressions of stress, higher-order stress, and electric displacement of graded beams

ho (15)

011 = c(x3)e11 — e(x3)E3 (16)
o113 = —p(x3)E3 (17)
D3 = a(x3)E3 +e(x3)e11 + p(x3)en13 (18)

The electric field E3 in the functionally graded beam can be expressed as the gradi-
ent of the internal electric potential ® along the thickness direction. Without free body
charge in the nanobeam, Gauss’s law of electrostatics is used to obtain the equation about
electric potential

82<I> o oD _ o €311 d2w |:( _ Dého) @ 06;113113:| dzw (19)

@__Eaix:s x?’ﬁ@dT%_ h )ass h oasz | dx?

In Figure 1, the electric potentials on the top and bottom surfaces of the nanobeam are

® g) =0
{ @EZ) — p(n) @

where ¢(x1) is an applying external voltage or the inducing electric potential as a result of
mechanical deformation. Solving Equation (19), we obtain

2

d
D(x1,x3) = r(x3)P(x1) + [nhr(x3) + mx3 + nx3} d—ng + C(x1) (21)
1
where n = 7}[0631;;”3“3, m= —%, r(xz) = e*$/ (e% - e_%> and C(x1) is a function of
x1. Therefore, the electric field can be obtained
o d>w
Es = 2r(x3)¢(x1) + [anr(x3) — 2mx3 — n]— (22)
h dxj
From Equations (16)—(18), we obtain
d>w  we(x x
o1 = —[c(x3)(x3 — ho) +e(x3) (anr(x3) — 2mxz — n)] e ( 3])14)( 1)r(xg,) (23)
1
ar(x X d>w
s = 1) T ) (amr () — 2y — ) T @
T
ar(x x d?
% + [a(x3) (anr(x3) —2mxz —n) —e(x3)(x3 — hy) — y(xg,)]@ (25)
1
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Hence, the electric Gibbs free energy density is obtained in terms of the deflection
w(x1) and the surface electric potential ¢(x1). Substituting Equations (12), (13), (22)—(25)
into Equation (7), we can obtain the electric Gibbs free energy density

2
u= %g(xa) (d%) T iy 21 dw 2a(3)r? () ECL)

dx? ho dx? 2h? (26)
where
g(x3) = [c(x3) —4me(x3) —4m*a(x3)]x3

—[(2hoc(x3) + 4mhoe(x3) + 2ne(x3) + 4mna(x3) + 4mp(x3)
—2ane(x3)r(x3) — 2amna(x3)r(x3)]xs + c(x3)h3 (27)
—2anhge(x3)r(x3) + 2nhge(x3) + anp(x3)r(x3) — np(x3)
—a?n?a(x3)r?(x3) + n2a(x3) + 2an?a(x3)r(x3)

i(x3) = ar(x3)le(x3) (x3 — ho) + p(x3) — (anr(x3) — 2mx3 —n)] (28)

In order to find the governing equation and the corresponding boundary conditions,
the Gibbs free energy density function of the graded beam is rewritten by the variation
method

fOL dUdx;dxs3
h 2\ 2 ) 2 2 (29)
=1 f_zg f&{g(x;;)é(‘ié”) +2i(x3)8 [‘P(;f])i}%’} — a2a(x3)r*(x3)0 [(” éfl)} }dxldxg
According to the generalized variational principle, we have éH = 0, i.e.,
L 4 2 b 2 L
SH = Jo [Yep i — q(x1)8w + (c,,ff‘i;%“ - Do+ wb) 5¢]dxy + (Yg,,jl;%“ + cpf4>)5$‘i 0 o)
& L _
_Yepd;%’éw‘ 0 = 0
%
Yop = b [, glxs)dxs (31)
-2
b orh
Cpf = ﬁ/ , i(x3)dxs (32)
-7
§
Q=a [ﬁ ll(x3)1’2(x3)dX3 (33)

where Y, is the effective bending rigidity of the FGM flexo-piezoelectric beam, which is
related to elastic coefficient, piezoelectric coefficient, dielectric coefficient, and flexoelectric
coefficient due to the gradient distribution of the materials. However, the flexoelectric
coefficient has no influence on the effective bending rigidity of the monolayer or multi-
layer nanobeams [10,11]. ¢, is defined as the flexo-piezoelectric coupling parameter of
the FGM flexo-piezoelectric beam. For piezoelectric beams (y(x3) = 0), the gradient
distribution of the piezoelectric coefficient could also generate the piezoelectric mimicry of
flexoelectricity [24].
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For actuator structures, the fixed external electric voltage is loaded on the surface
electrodes of the beams, which is called the CCF electrical condition boundary [10]. For
sensor structures, there exists an induced electric potential by the mechanical deformation
on the surface electrodes, which is called the OCI electrical condition boundary [10]. In the
CCF condition, ¢(x1) is a constant V and independent on the mechanical load. Due to the
arbitrariness of dw, we have

4
Yep‘éTTf{—q(ﬁ) =0,0<x; <L
w= L =0, =0 (34)

dw —0 Pw _ _
Yep a2 +Cpr0 =0, = 0,x1 =1L

Solving the equilibrium equation with corresponding boundary conditions, the deflec-
tion of the FGM actuator is

4 3 272
_ o (n_mb o alt) G,
Y7y, (24 6 4 2Y,, ! (35)
where the uniform lateral force g has been used for simplicity. Equation (35) clearly shows
that the flexo-piezoelectric coupling parameter and external voltage on the electrodes (e.g.,
supplied by a battery) have significant effects on the mechanical responses of FGM actua-
tors.

In the OCI condition, only distributed mechanical loads are applied on the surface
of the FGM beam. The induced electric potential will be generated due to the electro-
mechanical coupling, which is independent on x; and dependent on the mechanical load.
Due to the arbitrariness of dw and 5¢, we have

4
Yep‘;Til‘f—q(xQ =0,0<x; <L

L 2 b
w:gTWl:O,xlzo

&2 _ dBw _ _
YepT;g+Cpf¢—0, TXZ%J_O, x1—L

Under the open circuit condition, fOL @bdx; = 0 (no supply of charges to the elec-
trodes) in Equation (36) and thus

_ o dw

N bLQ dx1

(37)

X1:L

Substituting Equation (37) into the boundary condition of Equation (36) and solving
the equilibrium equation, we can obtain the deflection of FGM sensors as

4,3 272

x L L

w=1 1Mk N
Yep

cthz

P 2712

- 2L (38)
24 6 @ 4 ) 12(e2 12 + Yoy Q)

Substituting Equation (38) into Equation (37), the induced electric potential of the
FGM cantilever nanobeam can be obtained.

4. Numerical Results and Discussion

In this section, we perform simulations about the FGM nanobeam exhibiting the
uniform lateral force or external voltage on the surface electrodes. In the present nu-
merical example, BaTiO3 and PVDF are chosen. In order to keep the gradient index
« the same in Equation (11), the electrical properties of PVDF and BaTiOj3 are as fol-
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lows: ap = 1.248nC/(V-m), ep = —0.44C/m?, up = 10'C/m, ag = 12.48nC/(V-m),
ep = —4.4C/m?, and Up = 10~C/m. The elastic properties of PVDF and BaTiOj are as
follows: cp = 3.7GP and cp = 131GPa, respectively [29-31]. From the above parameters,
we can obtain the corresponding gradient index parameters, i.e., « = —2.30 and a4y = —3.57.
When the gradient index infinitely approaches zero, the FGM beam will become a homoge-
nous beam. In all numerical cases, the cross-sectional shape is kept the same by setting
L = 20h,and b = h. In the following numerical case, BTO-PVDF beams mean that the
bottom surface is BaTiOs-rich and the top surface is PVDF-rich, and PVDF-BTO beams
mean that the bottom surface is PVDF-rich and the top surface is BaTiO3-rich.

4.1. Closed Circuit with a Fixed External Electric Potential (CCF)

The normalized deflection w/h of the FGM nanobeam with four different distributions
of materials is plotted in Figure 2, in which only mechanical loading or electrical loading
has been applied. It is observed from Figure 2 that the deflections of BTO and PVDF beams
are the smallest and largest, respectively, and the deflection of BTO-PVDF beam is smaller
than that of PVDF-BTO beam:s. It can be explained that the different polarization directions
make the effective bending rigidity and flexo-piezoelectric coupling parameter different.
By comparing the results of Figure 2a,b, the responses of the deflection induced by applied
mechanical and electrical loading are similar.

7 - - - - ! 9 . . —
[ BTO—PVDF ‘ BTO_PVDF
|

| e BTO 8§ | e BTO
6 | e PVDF—BTO 1 e PYDF—BTO
| e PVDF | 7 | | se— PVDF

0 0.2 0.4 0.6 0.8 1

Figure 2. The normalized deflection w/h of FGM piezoelectric cantilever nanobeam subjected to (a)
mechanical loading g = 0.01nN /nm, Vj = 0 and (b) electrical loading Vo = —1V,q = 0.

Figure 3 illustrates the internal stress distribution at the fixed end with mechanical
loading or electrical loading for four different distributions of materials. Figure 3 shows that
the stress distribution of the uniform beam is linear, and the maximum stress is on the top
and bottom surfaces. However, the stress distribution of the FGM cantilever nanobeams
varies nonlinearly along the thickness, dependent on the gradient. In the mechanical
loading case, there exists the same stress distribution in BTO and PVDF beams. However,
in the electrical loading case, the stress on the surface in the BTO beam is larger than that
in the PVDF beam since the elastic stiffness of the BTO beam is greater. It is observed from
Figure 3 that the largest compressive stress in the BTO-PVDF beam and the largest tensile
stress in the PVDE-BTO beam occur in the interior of the functionally graded beam, which
is in agreement with the previous results [22].
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Figure 3. The stress distribution ¢y of the FGM piezoelectric cantilever nanobeam subjected to (a)
mechanical loading g = 0.01nN /nm, V = 0 and (b) electrical loading Vy = —1V,q = 0.

4.2. Open Circuit with Surface Electrodes and an Induced Electric Potential by Mechanical
Deformation (OCI)

Figure 4 shows the normalized deflection and stress distribution of the FGM beam
with the induced electric potential under the OCI condition. In this case, the induced
electric potential is generated by the mechanical deformation due to the flexoelectric effect.
The deflection is smaller, and the shape of the deflection curve is different from the results
in Figure 2a. Apparently, the converse flexoelectricity induces a uniform electric field in
the beam, which in turn induces a uniform bending moment along the beam acting in
the direction against the mechanical load. As a result, the deflection is reduced by the
flexoelectric effect. From Figure 4b, we can also observe that the stress distribution, in this
case, is smaller than that in Figure 3.

3.5 T 0.5

| s BTO—PVDF |

| s BTO R
| m— PVYDF—BTO |
| e BVDF | 031

I— BTO—PVDF
BTO

0.2}

0.1

xfh
(=]

-0.1

021

-0.3

.- s 05 L L "
0 0.2 0.4 0.6 0.8 1 -300 -200 -100 0 100 200 300

X, /L UH(MPa)

Figure 4. (a) The normalized deflection w/h and (b) stress distribution oq1 of FGM sensors subjected
to the mechanical loading g = 0.01nN/nm.

The induced electric potential due to the flexoelectric effect, which has a significant
scaling effect, is very important for sensors and energy harvesters. Figure 5 is presented to
investigate the variation of the induced electric potential with respect to the flexoelectric
coefficient and beam thickness. Since bending a homogeneous piezoelectric beam cannot
give a flexoelectriclike response, the induced electric potential of BTO and PVDF beams is
not given in order to investigate the piezoelectric gradient. The piezoelectric coefficient
asymmetrically distributed across the beam thickness will generate an induced electric
potential subjected to bending deformation. With fixed cross-sectional shape and L/h,
the maximum induced electric potential is independent of the flexoelectric coefficient
or the beam thickness for the same material distribution, which are similar to that of
homogeneous flexo-piezoelectric nanobeams [10,11]. However, for the large flexoelectric
coefficient, the maximum induced electric potential occurs due to the large beam thickness.
From Figure 5, it is observed that the maximum induced electric potential of the PVDE-
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BTO graded beam is greater than that of the BTO-PVDF graded beam. It can be easily
explained that the sign of the piezoelectric coefficient or the polarization direction of
the FGM beam has a very significant influence on the induced electric potential [11,24].
The piezoelectricity would change significantly under space inversion, but the elastic,
flexoelectric, and dielectric properties are insensitive to space inversion. Hence, the PVDF-
BTO and BTO-PVDF graded beams have the same elastic, flexoelectric, and dielectric
distributions but the opposite polarization direction. Without the flexoelectric effect or with
a large thickness, the PVDF-BTO and BTO-PVDF graded beams have positive or negative
induced electric potential, respectively, as shown in Figure 5. The results in Figure 5 also
illustrate that the effective flexoelectric effect caused by nonuniform piezoelectricity is
functionally identical to intrinsic flexoelectricity. Hence, we can gain an optimal electrical
performance of sensors or energy harvesters by changing the polarization distribution and
thickness of the beams. Figure 5b also displays that the flexoelectricity has a significant
effect at a small scale and that the piezoelectricity plays an important role at a larger scale.
The present conclusions can be used to obtain the optimal electrical output for designing
functionally graded structures.

— - 0.16 - —— r —_—
| e BTO—PVDF(h=100nm) A
| BTO—PVDF{h=200nm) 0.4 f A
| ====PVDF —BTO(r=100nm)

|E==——FVDFB {200,

BTO—PVDF(ug=1"10°C/m)

BTO—PVDF(u=2"10°C/m)

2
X

PVDF—BTO(u,=1*107Cim) | |

o

PVDF—BTO(,=2"10"7Cim) | |

=
o
@

o
=]
4

o
=1
[

Induced electric potential @/V

Induced electric potential @V
o
(=]
o

o

02 0.4 06 08 1
pgl(Gem™) <10 h(nm)

0 500 1000 1500 2000 2500 3000

Figure 5. The variation of the induced electric potential of FGM sensors subjected to the mechanical
loading g = 0.01nN/nm vs. (a) the flexoelectric coefficient and (b) the beam thickness.

5. Discussion

The electro-mechanical analysis of an FGM piezoelectric beam with flexoelectricity is
investigated in the present paper. Based on the electric Gibbs free energy and the linear
piezoelectric theory, the generalized variational principle is applied to derive the governing
equation and the corresponding boundary conditions under the CCF and OCI conditions.
Some new coupling parameters are proposed to describe the interplay between piezo-
electricity and flexoelectricity. The analytical expressions of the deflection and induced
electric potential are given for the static bending problem. The numerical results reveal
that the deflection, stress distribution, and induced electric potential are dependent on
the flexoelectric effect and gradient distribution. Nonuniform piezoelectricity along the
thickness will generate remarkable effective flexoelectricity, which is very important for
large-scale structures. Moreover, the flexoelectric effect can significantly enhance the elec-
trical performance of FGM sensors at the nanoscale. In general, the coupling effect of FGM
nanobeams will be different from that of homogeneous beams, and reasonable gradient
distribution will enhance the electro-mechanical coupling performance. The present result
could be helpful in understanding the distribution design of composite’materials.
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