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Abstract: The fluid flow over a rotating disk is critically important due to its application in a broad
spectrum of industries and engineering and scientific fields. In this article, the traditional swirling
flow of Von Karman is optimized for Maxwell fluid over a porous spinning disc with a consistent
suction/injection effect. Buongiorno’s model, which incorporates the effect of both thermophoresis
and Brownian motion, describes the Maxwell nanofluid nature. The dimensionless system of ordinary
differential equations (ODEs) has been diminished from the system of modeled equations through
a proper transformation framework. Which is numerically computed with the bvp4c method and
for validity purposes, the results are compared with the RK4 technique. The effect of mathematical
abstractions on velocity, energy, concentration, and magnetic power is sketched and debated. It is
perceived that the mass transmission significantly rises with the thermophoresis parameter, while
the velocities in angular and radial directions are reducing with enlarging of the viscosity parameter.
Further, the influences of thermal radiation Rd and Brownian motion parameters are particularly
more valuable to enhance fluid temperature. The fluid velocity is reduced by the action of suction
effects. The suction effect grips the fluid particles towards the pores of the disk, which causes the
momentum boundary layer reduction.

Keywords: bvp4c; RK4 technique; brownian motion; porous rotating disk; maxwell nanofluid;
thermally radiative fluid; von karman transformation

1. Introduction

The researchers have been interested in Maxwell nanofluid flow over a porous spin-
ning disc because of its many uses in engineering and innovation. Non-Newtonian fluids
are important in a variety of manufactured liquids, including plastics, polymers, pulps,
toothpaste and fossil fluids. To simulate the analysis of these liquids, a variety of models
have been suggested. Shear stress and shear rate are linked in non-Newtonian liquids
because of their nonlinear existence. The momentum equation in these fluids involves
dynamic nonlinear terms, making it difficult to solve. A variety of mathematical models
exist in the literature to simulate the performance of these fluids.

In the present era, the role of nanotechnology to fulfill the increasing demand for
energy and face energy challenges is remarkable. The usage of nanoparticles in ordinary
base fluid (water, kerosene oil, etc.) effectively enhances the heat transfer and improves
their thermal properties. The applications of nanoparticles in certain fields of engineering
and industry are in the cooling systems of electronic devices and in cancer therapy, heat
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exchangers, transformer cooling, nuclear reactors, and space cooling systems. Due to the
ability of oil wetting and dispersing, they are also used for cleaning purposes, in power
generation, microfabrication, hyperthermia, and metallurgical purposes.

2. Literature Review

The rotating disk phenomena are widely used in centrifugal filtration, turbomachines,
the braking system of vehicles, jet motors, sewing machines, turbine systems, heat ex-
changers and computer disk drives, etc. Von Karman [1] for the first time introduced
similarity transformation. To solve Navier-Stokes equations, he studied fluid flow over
an infinite rotating disk. Cochran [2] employed Von Karman’s similarity transformation
to incompressible fluid over a rotating disk and examined the asymptotic solution. Wag-
ner [3] investigated the mechanism of heat transfer over the rotating disk, by considering
Von Karman’s velocity distribution, and analyzed convection in the non-turbulent flow.
Turkyimazogl [4] looked at fluid movement over a spinning disc that was stretching under
the influence of a static electric field. Liang et al. [5] reported a comparative study between
semi-analytical model and experimental data to yield the best settlement. Millsaps and
Pohlhausen [6] used Von Karman’s similarity approach and analyzed heat distribution with
the consequences of entropy generation over revolving disk. The three-dimensional (3D)
magnetohydrodynamics (MHD) stagnation flow of ferrofluid, the numerical solution was
revealed by Mustafa et al. [7]. Mustafa et al. [8], by taking MHD nanofluid over rotating
surface with the effects of partial slips, observed that the boundary layer thickness and
momentum transport are reduced due to slip effects. Rashidi et al. [9] have used a spinning
disc to perform a viscous dissipation review for MHD nanofluid.

The people of the modern world are facing many challenges due to the increasing
demand for energy by the latest technologies. Firstly Choi [10] presented the nanofluids ter-
minology. The Brownian motion and thermophoresis mechanisms bring about a significant
role in improving the thermal properties of base fluid presented by Buongiorno [11]. Turky-
ilmazolglu [12] analytically studied the energy and momentum equations of nanofluid flow,
to deduce heat and flow transport. Pourmehran [13] considered Cu and Al2O3 nanoparti-
cles to study heat and flow transfer in the microchannel. Hatami et al. [14] reported the heat
transfer in nanofluid with the phenomena of natural convection. The Oldroyd-B fluid with
nanoparticles over stretching sheet surface was reported by Nadeem et al. [15]. Aziz and
Afify [16] have used the technique of the Lie group, to study non-Newtonian nanofluids.
Yang et al. [17] studied the convective heat with Buongiorno Model’s for nanofluid in the
concentric annulus.

The study of a Newtonian fluid, due to its wide applicability in different fields of
science and engineering, attracted the attention of scientists and researchers during the
last few decades. Its major role is in geophysics, polymer solution, paper production,
cosmetic processes, exotic lubricants, paints, suspensions, colloidal solutions, nuclear and
chemical industries, pharmaceuticals, oil reservoirs, bioengineering, etc. [18]. Xiao et al. [19]
attempted a fractal model for the capillary flow through a torturous capillary with the
non-smooth surface in porous media. Attia [20] evaluated the Reiner-Rivlin numerical
simulations for thermal convection over a porous spinning disc qualitatively. Griffiths [21]
tested the Newtonian fluid Carreau viscosity model and high shear stresses on spinning
discs. The numerical analysis of Reiner-Rivlin fluid flow for heat transfer and slip flow
over a spinning disc is treated by Mustafa and Tabassum [22]. The micropolar fluid for
thermophoretic diffusion generated by the rotation of the disk was examined by Doh and
Muthtamilselvan [23].

Darcy’s law is a mathematical equation that explains how fluid flows through a
porous medium. Henry Darcy developed the law based on the effects of studies on the
flow of water across sand beds, laying the groundwork for hydrogeology, a branch of earth
sciences [24]. Fourier’s law in heat conduction, Ohm’s law in electrical networks, and
Fick’s law in diffusion theory are all examples of this law. Morris Muskat [25] improved
Darcy’s equation for a single-phase flow by incorporating viscosity into Darcy’s single
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(fluid) phase equation. It is easy to see that viscous fluids have a harder time passing
through a porous medium than less viscous fluids. Rasool et al. [26–28] numerically
simulated the Darcy-Forchheimer effect on MHD nanoliquid flow between stretching
non-linear sheets. Rasool et al. [29] scrutinized the consequences of thermal radiation,
chemical reaction and Dufour-Soret on incompressible steady Darcy-Forchheimer flow
of nanoliquid. Shafiq et al. [30] studied nanofluid flow under the influence of convective
boundary conditions and thermal slip over a spinning frame. They found that the axial and
transverse velocity fields all drop significantly due to the Forchheimer number’s strong
retardation. Skin friction is intensified by the Forchheimer number and porosity ratios,
while skin friction is diminished by all slip parameters.

Viscoelastic fluids are a subclass of Newtonian fluid having memory effects. The
intensity of energy discharged by these fluids is mainly accountable for recovery after the
stress is removed. The Maxwell flow regime is the most basic viscoelastic fluid model,
expressing memory effects by fluid relaxation time [31]. The attitude of the current model is
very close to that of other geomaterials and polymers models. The aim of the present work
is to provide a mathematical model for unsteady boundary layer flow of non-Newtonian
Maxwell nanofluid with the heat transmission over a porous spinning disc. The present
work has many industrial and engineering applications, which increases its worth. Using a
resemblance method, the system of ODEs is limited to a structure of PDEs. A boundary
value solver (bvp4c) technique is used to draw a numerical solution to the problem while
RK4 method has been applied for validity.

3. Formulation of the Problem

Consider an unsteady hybrid nanoliquid flow over a stretching porous spinning disc.
The magnetic force B0 is introduced to the disc vertically. The disc rotates and stretches
at different speeds (u, v) = (cr, cΩ), where c and w are the spinning and extending rates,
respectively. The disk temperature is represented by τw. The formulation of the problems is
conducted in (r, ϕ, z) cylindrical coordinates, where u, v, w is velocity component increasing
in (r, ϕ, z) direction. At z− the axis, the motion of the disk is assumed to be axisymmetric.
The thermal radiation is significant in modeling the energy equation. The viscosity of a
fluid is taken to be temperature-dependent µ(τ) = µ0e−ζ(τ−τ0). The concentration and
temperature are represented by (Cw, τw) and (C∞, τ∞) represent the concentration and
temperature above the disk surface.

3.1. Governing Equations

Under the presuppositions stated above, the flow equations are as observes [31]:

∇.V = 0, (1)

ρ f (V.∇)V = ∇p +∇.S + j× B, (2)

(V.∇)τ = α∇2τ + τ∗
(

DB∇C.∇τ +
Dτ

τ∞
∇τ.∇τ

)
+∇.qrad, (3)

(V.∇)C = DB∇2C +
Dτ

τ∞
∇2τ, (4)

∇.B = 0, (5)

ρ
∂B
∂t

= ρ∇+ (V × B) +
ρ

σµ2
∇2V. (6)

where DB, DT , ρ f , V and α are the coefficients of Brownian motion, thermophoretic diffu-
sion, fluid density, velocity, and thermal and diffusivity respectively. Equations (1)–(6) are
simplified because of the boundary layer approximation concept:

∂u
∂r

+
u
r
+

∂w
∂z

= 0, (7)
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∂u
∂t

+ u
∂u
∂r

+ w
∂u
∂z
− v2

r
=

 1
ρ

(
µ(τ) ∂u

∂z

)
− λ1(u2 ∂2u

∂r2 + w ∂2u
∂z2 + 2uw ∂2u

∂r∂z −
2uv

r
∂v
∂r −

2vw
r

∂v
∂z +

uv2

r2 + v2

r2
∂u
∂r )−

σB2
0

ρ

(
u + wλ1

∂u
∂z

) , (8)

∂v
∂t

+ u
∂v
∂r

+ w
∂v
∂z
− uv

r
=

 1
ρ

(
µ(τ) ∂v

∂z

)
− λ1(u2 ∂2v

∂r2 + w2 ∂2v
∂z2 + 2uw ∂2v

∂r∂z +
2uv

r
∂u
∂r + 2vw

r
∂u
∂z + 2u2v

r2 − v2

r2
∂v
∂r )−

σB2
0

ρ

(
v + wλ1

∂v
∂z

) , (9)

∂τ

∂t
+ u

∂τ

∂r
+ w

∂τ

∂z
=

k
ρcp

(
∂2τ

∂z2

)
+ τ∗(DB

∂τ

∂z
∂C
∂z

+
Dτ

τ∞

(
∂τ

∂z
)2
)
− 1

ρcp

∂qr

∂z
, (10)

∂C
∂t

+ u
∂C
∂r

+ w
∂C
∂z

= DB

(
∂2C
∂z2

)
+

Dτ

τ∞

(
∂2τ

∂z2

)
, (11)

∂Br

∂t
=

[
−w

∂Br

∂z
− Br

∂w
∂z

+ u
∂Bz

∂z
+ Bz

∂u
∂z

+
1

σµ2

(
∂2Br

∂r2 +
∂2Br

∂z2 +
1
r

∂Br

∂r
− Br

r2

)]
, (12)

∂Bz

∂t
=

[
w

∂Br

∂r
+ Br

∂w
∂r

+
1
r

wBr − u
∂Bz

∂r
− Bz

∂u
∂r
− 1

r
uBz +

1
σµ2

(
∂2Bz

∂r2 +
∂2Bz

∂z2 +
1
r

∂Bz

∂r

)]
. (13)

The temperature difference within a flow is assumed to be small, therefore higher-
order in Taylor series and ignored at τ∞, by using Rosseland approximation, the simple
form of radiation heat flux is as follow [31]:

qr =
−4σ∗∂τ4

3k∗∂z
= −16σ∗τ3

3k∗
∂τ

∂z
, (14)

using Equation (14) in (10), we get

∂τ

∂t
+ u

∂τ

∂r
+ w

∂τ

∂z
=

k
ρcp

(
∂2τ

∂z2

)
+ τ∗

(
DB

∂τ

∂z
∂C
∂z

+
Dτ

τ∞
(

∂τ

∂z
)2
)
− 16σ∗τ3

3k∗
∂τ

∂z
. (15)

The boundary conditions are:

u = cr, v = Ωr, w = W, C = Cw, T = Tw, Br = 1, Bz = 1 atz = 0
u→ 0, v→ 0, w→ 0, C → C∞, T → T∞, Br → 0, Bz → 0 as Z → ∞.

(16)

3.2. Similarity Transformation

Considering the following transformation, to reduce the system of PDEs to the system
of ODEs:

u = cr
1−αt F(η), ν = Ωr

1−αt G(η), w =
√

cv
1−αt H(η), η =

√
c
v z, Br =

crM0
1−αt M′(η),

Bz =
−M0(2ν f c)

1
2

1−αt N(η), T = (T∞) + Θ(η)(TW − T∞)C = (C∞) + φ(η)(CW − C∞).

 (17)

The following system of ODEs is obtained by using Equation (17) in Equations (7)–(13)
and (15) and (16):

F′′ = F′Θ′ +
eδΘ

δ

{
S
(

F′η
2

+ F
)
+ F2 + HF′ − G2

}
+ β1

eδΘ

δ

{
HF′ + 2FF′H − 2HGG′

}
−M

eδΘ

δ

(
F + β1HF′

)
, (18)

G′′ =
δG′Θ′ + eδΘ

{
S
(

G′−η
2 + G

)
+ 2FG + HG′

}
+ β1eδΘ{2FHG′ + 2FHG}+ MeδΘ(G + β1HG′)

1 + β1H2eδΘ , (19)

Θ′′ =
−4RdΘ2Θ′2(Θ− 1)3 − 6Θ′2Θ(Qw − 1)2 − 3Θ′2(Qw − 1)− Pr

(
− S

2 (Θ
′η)− HΘ′ + NbΘφ′ + NtΘ′3

)
(

1 + 4
3

)
Rd + 4

3 RdΘ3(Qw − 1)3 + 3Θ2(Qw − 1)2 + 3Θ(Θ− 1)
, (20)

φ′′ = Sc
(

Aφ′η + Hφ′
)
− Nt

Nb
Θ′′ , (21)
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M′′′ = Bt
[
−HM′′ + M′H′ + FN′ + NF′ + S

(
M′′ η

2
+ M′

)]
, (22)

M′′ = −Bt
[

2HM′ + 2NF− S
2
(Nη + N)

]
. (23)

the transforms conditions are:

F(0) = 1, G(0) = ω, H = Ws, Θ(0) = 1, f (0) = 1, M′(0) = 0, N(0) = 1,
F(∞) = 0, G(∞) = 0, H(0) = 0, Θ(∞) = 0, f (∞) = 0, M′(∞) = 0, N(∞) = 0.

(24)

where Pr = ν/α is the Prandtl number, Sc = v/DB is the Schmidt number, β1 = λ1c the
Deborah number, while suction/injection parameter, Brownian motion, variable viscosity,
thermophoresis parameter, magnetic parameter, temperature ratio, and thermal radiation
are defined as [31]:

Ws =
w√
cν

, Nb =
τ∗DB(Cw − C∞)

v
, δ = ζ(τw − τ∞), Nt =

τ∗Dτ(τw − τ∞)

τ∞v
, M =

σB2
0

cp
, Rd =

4σ∗T3
∞

kk∗
. (25)

The skin friction C fx, local Sherwood Shr and Nusselt number Nur are mathematically
can be written as [32,33]:

C f =

√
τ2

zr+τ2
zϕ

ρ(Ωr)2 , (26)

Shr = −
r

(Cw − C∞)

(
∂τ

∂C

)∣∣∣∣z=0, (27)

Nur =
r

(τw − τ∞)

[
1 +

16σ∗τ3

3kk∗

](
∂τ

∂z

)∣∣∣∣z=0. (28)

The skin friction, Sherwood and Nusselt numbers have a non-dimensional structure as:

C f Rer
1/2 =

√
f ′′ 2(0) + g′2(0), (29)

Re−
1
2

Shr = −φ(0), (30)

Re−
1
2

Nur = −(1 +
4
3

Rd{1 + (Θw − 1)Θ(0)}3)Θ′(0). (31)

Here Re = ru
ν is the local Reynold number.

4. Solution Procedures

The higher-order model equation is brought down to first order by choosing variables:

χ1 = H, χ2 = F, χ3 = F′, χ4 = G, χ5 = G′, χ6 = θ, χ7 = θ′,
χ8 = φ, χ9 = φ′, χ10 = M, χ11 = M′, χ13 = N, χ14 = N′.

}
(32)

χ′1 = −2χ2, χ′1 = χ3,
χ′3 = χ7χ3 +

eδθ

δ

{
S( ηχ3

2 + χ2) + χ2
2 + χ1χ2

2 − χ2
4
}
+ β1

eδθ

δ {χ1χ3 + 2χ1χ2χ3 − 2χ1χ4χ5}
M0

eδθ

δ (χ2 + β1χ1χ3), χ′4 = χ5,

χ′5 =
δχ5χ7+eδθ

{
S( χ5−η

2 )+2χ2χ4+χ1χ5

}
+β1{2χ1χ2χ5−2χ1χ4χ2}+M0eδθ(χ4+β1χ1χ5)

1+β1eδθχ2
1

,

χ′6 = χ7, χ′7 =
4
3 Rdχ2

7(θw−1)
{

3χ2
6(θw−1)2+6χ6(θw−1)−3

}
−Pr{Nbχ7χ9+Ntχ2

7−Aχ7χ10−χ1χ7}
1− 4

3 Rd− 4
3 Rdχ6(θw−1){(θw−1)χ2

6−3χ6(θw−1)+3} ,

χ′8 = χ9,
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χ′9 = Nt
Nb

(
4
3 Rdχ2

7(θw−1)
{

3χ2
6(θw−1)2+6χ6(θw−1)−3

}
−Pr{Nbχ7χ9+Ntχ2

7−Aχ7χ10−χ1χ7}
1− 4

3 Rd− 4
3 Rdχ6(θw−1){(θw−1)χ2

6−3χ6(θw−1)+3}

)
Sc(Aχ9χ10 + χ91χ9),

χ′10 = χ11, χ′11 = Bt[−2χ11χ2 − χ1χ11 + χ2χ14 + χ13χ2 + S( ηχ12
2 + χ11)],

χ′12 = χ13, χ′13 = Bt[2χ11χ1 + 2χ13χ2 +
S
2 (ηχ14 + χ13)]

(33)

The boundary conditions are:

χ1(0) = 1, χ2(0) = 0, χ4(0) = 1, χ6(0) = 1, χ8(0) = 1, χ11(0) = 0, χ13(0) = 1,
χ2(∞) = 0, χ4(∞) = 0, χ6(∞) = 0, χ8(∞) = 0, χ11(∞) = 1, χ13(∞) = 0.

(34)

5. Results and Discussion

The discussion section is devoted to understanding better the graphical and physical
description. The system of non-linear Equations (18)–(23) along with their boundary
conditions, Equation (24), are solved through numerical method bvp4c. The configuration
of the problem is described in Figure 1. The velocities, energy profile, concentration
distribution φ(η), magnetic strength in the radial direction M(η), and azimuthal magnetic
strength N(η) are explored graphically through different physical constraints Figures 2–10.
While keeping Pr = 6.7, ω = 1.0, δ = 0.5, β = 0.1, M = 1.1, Nb = 0.5, Nt = 0.7, Qw = 1.2,
Sc = 2.0, and Rd = 0.5.

Figure 2a–c depicts the behavior velocities profiles against the variation of Deborah
number β. All three velocity shows decreasing behavior for incremented of β. Deborah
number is the measure of the content evaluation period to content recreational time, so
having optimum stress relaxation or eliminating observation time increases the value of β.
It reflects the fluid’s solid-like reaction. The hydrodynamic boundary layer thins out, and
the velocity experiences more resistance.
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The implications of the suction factor (Ws < 0) on the velocities profile and heat
spectrum on the disc surface are depicted in Figure 3a–c. It seems to be that as the suction
velocity rises, the velocity decreases. Because the suction velocity draws the fluid particles
towards the pores in the disk, which causes the momentum boundary layer reduction. The
enhancement of suction velocity also decreases the fluid temperature.

Figure 4a–d are drawn to depict the effects of injection velocity parameter (Ws > 0)
on the radial, azimuthal, tangential velocity profile and temperature distribution. It can be
seen that the enhancing of injection velocity increases the velocity and fluid temperature.

The radial, azimuthal, tangential velocity profile and temperature distribution vari-
ation are illustrated in Figure 5a–d. Figure 5a depicts the dominant behavior of radial
velocity with ω. Physically, fluid particles are moved in a radial direction owing to cen-
trifugal force with the enhancement of parameters ω. The increasing value of ω shows that
the rotation parameter becomes greater than extending. The radial velocity exceeds the
disc stretching velocity too close to the disc stretching surface. It does, however, gradually
fade away from the disc. It is concluded that the impact of centrifugal force is limited and
dominant in the vicinity of the disk’s surface. Besides, angular velocity G(η) near the disk
flourished shown in Figure 5b. The axial velocity increasing against the strengthening of ω
is illustrated in Figure 5c. Figure 5d demonstrates the decreases of temperature θ(η) with
ω. Physically, a faster spinning disc reduces the width of the thermal boundary, which play
a significant role in the cooling of the system.

Figure 6a–d are rough sketches that show the effects of the viscosity factor on the
velocity and temperature spectrum on the disk’s surface. The viscosity parameter causes
radial velocity, tangential velocity, and temperature profile to increase, while azimuthal
velocity reduces.

Figure 7a,b indicates how the heat transfer changes when the Prandtl number Pr and
the thermal radiation factor change. The thermal dispersion of a strong Prandtl fluid is
low, while the thermal diffusivity of a low Prandtl fluid is high. Figure 7b is drawn to
explore the influence of radiation parameters Rd on the thermal mechanism of fluid. With
a higher value of the radiation parameter, an increasing trend in heat is analyzed. Because,
with enhancing of thermal radiation the fluid absorbs more heat, and as a result increment
occurs in boundary layer thickness and fluid temperature. Figure 7c is sketched to illustrate
temperature θ(η) variation versus temperature ratio Qw. While Figure 7d indicates the
consequence of molecular diffusion on the thermal performance of a Maxwell nanofluid.
The Brownian motion produces random movement between fluid particles, which generate
more heat, and as a result, the fluid temperature increases.

Figure 8a,b accordingly represents the action of the concentration field as a function
of the thermophoresis term and Brownian. It can be shown that with Nt, the nanofluid
concentration field raises while with Nb, the concentration profile drops. The suction
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parameter (Ws) < 0 and Schmidt number Sc effect are illustrated in Figures 8c and 8d
respectively. The concentration field reduces with an increase of both suction velocity and
Schmidt number. The consequences of different parameters (Bt, Ws) on the axial and radial
magnetic strength profiles are illustrated through Figure 9a–d respectively. It can observe
that both parameters Batchlor number Bt and injection parameter Ws positively effect the
magnetic strength profile along axial and radial direction.

Figure 10a,b express the nature of heat −θ′(0) and mass transfer −φ′(0) against
radiation parameter Rd and Brownian motion parameter Nb, respectively. Because of the
improving effect of radiation, the fluid temperature also rises, which enhances the heat
transmission rate. Table 1 displays the numerical outcomes for skin friction and compared
it with the published literature. Table 2 illustrates the comparison of bvp4c and RK4
techniques for the numerical outcomes. The numerical outputs for Sherwood number Shr
and Nusselt number Nur are plotted in Table 3.

Table 1. The numerical outcomes for skin friction F′(0).

ω Mustafa et al. [7] Ahmed et al. [31] Present Paper

0 −1.1737 −1.1379 −1.1380
1 −0.9483 −0.9485 −0.9487
2 −0.3262 −0.3264 −0.3266
5 3.1937 3.11937 3.11939
10 12.7209 12.7209 12.7811
20 40.9057 40.9057 40.9058

Table 2. Comparison between Runge Kutta order four and bvp4c method.

η RK4 bvp4c Absolute Error

1.0 1.000000 1.000000 8.146310×10−13

1.2 1.199831 1.199831 3.387821 ×10−9

1.4 0.988459 0.988459 2.845561 ×10−9

1.6 0.879189 0.879189 2.813281 ×10−9

1.8 0.539393 0.539393 3.287961 ×10−9

Table 3. The comparison of RK4 and Bvp4c for Sherwood Shr and Nusselt number Nur, while
keeping ω = 1.0, δ = 0.5, β = 0.1, M = 1.1, Nb = 0.5, Nt = 0.7, Qw = 1.2 and Rd = 0.5.

Shr Nur

Pr Bvp4c RK4 Sc Bvp4c RK4

3.0 0.7718284 0.7718285 1.0 1.457986 1.457995
4.0 0.6999885 0.6999885 1.5 1.531211 1.531220
5.0 0.6290089 0.6290088 2.0 1.596949 1.596949
6.0 0.5632372 0.5632370 2.5 1.685639 1.685639

6. Conclusions

In the present mathematical model, the Maxwell nanoliquid flow over a porous
spinning disk with suction/injection effects has been examined. The flow is studied in the
context of magnetization and radiation. The numerical results are found through bvp4c,
while for comparison purposes, the computation is carried out via the RK4 technique. From
the above studies the following conclusions have been drawn:

• The centrifugal force is more effective and dominant near the disk surface, so causes
the maximum velocity in the neighborhood of the surface of the disk.

• The fluid velocity reduces by the action of suction effects. Because the suction effect
gripping the fluid particles towards the pores of the disk, which causes the momentum
boundary layer reduction.
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• The axial, radial and tangential velocities are boosts with the increases of injection parameter.
• The enhancement in rotation parameter also boosts the azimuthal and radial flows.
• The thermal energy profile enhances by the consequence of Brownian motion parame-

ter Nb. The Brownian motion produces random movement between fluid particles,
which generate more heat, as a result, the fluid temperature increases.

• The fluid temperature decline with Prandtl number Pr, while incline with thermal
radiation parameter, Rd.

• The nanofluid concentration field enhances with Nt, while Nb causes the reduction of
concentration profile.
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