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Abstract: A fast mixing is critical for subsequent practical development of microfluidic devices,
which are often used for assays in the detection of reagents and samples. The present work sets up
computational fluid dynamics simulations to explore the flow characteristic and mixing mechanism
of fluids in cross-shaped mixers within the laminar regime. First, the effects of increasing an operating
parameter on local mixing quality along the microchannels are investigated. It is found that sufficient
diffusion cannot occur even though the concentration gradient is large at a high Reynolds number.
Meanwhile, a method for calculating local mixing efficiency is also characterized. The mixing
efficiency varies exponentially with the flow distance. Second, in order to optimize the cross-shaped
mixer, the effects of design parameters, namely aspect ratio, mixing angle and blockage, on mixing
quality are captured and the visualization of velocity and concentration distribution are demonstrated.
The results show that the aspect ratio and the blockage play an important role in accelerating the
mixing process. They can improve the mixing efficiency by increasing the mass transfer area and
enhancing the chaotic advection, respectively. In contrast, the inflow angle that affects dispersion
length is not an effective parameter. Besides, the surface roughness, which makes the disturbance of
fluid flow by roughness more obvious, is considered. Three types of rough elements bring benefits
for enhancing mixing quality due to the convection induced by the lateral velocity.

Keywords: computational fluid dynamics; cross-micromixer; numerical diffusion; mixing efficiency;
surface roughness

1. Introduction

In recent years, the lab on a chip (LOC) and micro total analysis system (µTAS)
technologies have drawn considerable attention in the detection fields of biology [1], chem-
istry [2] and medicine [3] due to their unique advantages such as fast analysis speed, less
sample consumption, safe operating environment and high throughput [4–6]. Compared
with conventional macro-scale reactors, the performances of these micro-scale devices are
severely restricted by the chemical reaction efficiency, which reduces the assay accuracy.
It is known that the mixing of reagents should be done quickly before obvious chemical
reaction progress occurs. However, the flow in the microchannel remains laminar and
the mass transport process depends mainly on molecular diffusion [7]. Therefore, it is
difficult to obtain a uniformly mixed microfluid [8]. Usually, the mixing quality can be
improved by increasing the interfacial area for mass transport and by minimizing the
diffusion distance [9].

According to the different mixing strategies, micromixers are divided into two cate-
gories: active mixers and passive mixers [5]. The former require external energy sources
in the form of pressure [10], electric [11,12], acoustic [13], magnetic [14], etc. to create a
disturbance inside fluids for enhancing mixing quality. Active mixers generally achieve
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homogeneous mixing of two or more liquids in a short distance. However, they are less ap-
plied in LOC devices because of their drawbacks of high energy consumption and structure
complexity [6]. In contrast, the passive mixers only require modification in channel ge-
ometries and optimal input parameters to attain better mixing rather than external sources
of energy. A high mixing index can be achieved by merely introducing obstacles [15],
convergence–divergence patterns [16], curves [17], staggered herringbone structures [18],
etc. in the flow paths. For passive mixers, the chaotic convection folds, breaks and stretches
the fluids continuously, increasing the mass transfer greatly [19]. To date, passive mixers
have been recognized as the most attractive devices. La et al. [20] designed a serpentine
passive micromixer that uses the mixing of standard serum and albumin detection reagents
to achieve the biochemical detection of albumin levels in samples. Yang et al. [21] reported
a passive micromixer with 3D structure. Based on immunofluorescence technology, they
employed the antigen–antibody reaction of lung cancer cells to realize the detection and
diagnosis of early lung cancer. Lok et al. [22] designed a micromixer with herringbone
structures to perform luminol–hydrogen peroxide chemiluminescence detection, and the
results showed that the luminescence intensity has a linear relationship with Co2+ ion
concentration or hydrogen peroxide concentration.

Among passive mixers, T-shaped or cross-shaped microchannels are broadly inves-
tigated and are the easiest techniques [23]. Before optimizing these micromixers, it is
necessary to understand the flow behavior and mixing mechanism. However, the ex-
perimental method is not flexible when the structure of the microchannel needs to be
adjusted. Recently, computational fluid dynamics (CFD) has been proven to be a powerful
tool for microfluidic design [24]. Detailed looks into local flow fields and transport of
various species can be easily visualized with help of CFD analysis. Hence, more and more
researchers have focused on flowing and mixing behaviors within micromixers using CFD.
Engler et al. [25] reported that the flows in simple T-shaped mixer are characterized by
different flow regimes: so-called “stratified (strictly laminar)”, “vortex” and “engulfment”
flows. Usually, a good mixing quality can be obtained in the engulfment regime. Soleymani
et al. [26] built a three-dimensional (3D) T-shaped mixer to study the influences of operating
and design parameters on liquid flow and mixing quality qualitatively. Numerical results
showed that the appearance of a vortex was essential to improve mixing performance.
Mariotti et al. [27] presented a comparison between experiments and simulations to explore
the steady and unsteady regimes in a T-shaped micromixer. The characteristics of the
complex 3D vortex structures existing in different regimes were identified in experimental
and numerical visualizations. Ault et al. [28] studied the mixing flows in a T-shaped
mixer with staggered, offset inlets. They noted that the vortex T-mixer flow exhibited
stability characteristics that were tightly coupled to the appearance and evolution of vortex
breakdown regions. Wu et al. [29] added vortex-inducing obstacles in the inlet channels of
a T-shaped micromixer to improve the mixing quality. In consequence, the performance
of the mixer was gradually enhanced with the increase in Reynolds number. Mouheb
et al. [30] modeled T-shaped and cross-shaped mixers to explore fluid flow patterns.

Aside from the above research, the influence of surface roughness on microfluid flow
cannot be ignored, as the ratio of surface area to volume increases relatively as feature size
decreases. Xiao et al. [31,32] studied fluid transport through fibrous porous media with a
focus on the effect of surface roughness of capillaries. Dharaiya et al. [33] reported a simu-
lation of flow through straight microchannels with two-dimensional roughness elements.
They found that the pressure drops and heat transfer performance in rough channels were
enhanced compared with smooth channels. Hu et al. [34] modified rectangular prisms on
inner microchannel walls and proved the great effects of roughness element parameters
and channel height on velocity distribution and pressure drop.

However, the increasing application of LOC devices requires a deeper understanding
of basic transport mechanisms, including fluid flow and mixing behavior inside the mi-
crochannels, which is unsatisfactory in the present experimental and numerical studies.
The aforementioned simulations were mostly limited to the study of detecting the influ-
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ences of vortex development and structure optimization in 3D T-shaped or cross-shaped
mixers on micromixing within vortex or engulfment regimes and rarely considered the
mixing process in a strictly laminar regime. Meanwhile, the effects of surface roughness
on mixing have been ignored. Thus, it is necessary to develop numerical methods such as
CFD models to solve the above problems.

2. Objectives, Model Structure and Numerical Methodology

2.1. Objectives

The objective of this work was to explore the mixing mechanism in a cross-shaped
mixer for liquid phase application in a stratified regime in which the Reynolds number
ranges from 0.1 to 50. Numerical simulations were carried out to investigate the effects
of different parameters, including the Reynolds number, aspect ratio, inflow angle and
blockage, on flow and mixing performance. Moreover, the effect of surface roughness on
mixing was explored as well. There were four main steps in the numerical simulation
calculation process, as shown in Figure 1. First, the cross-shaped mixers were built within
CFD software or imported from other CAD software. Second, the physical boundary
conditions were mainly set at the inlet, outlet and other walls in the preprocessing step.
Third, the mesh of the computational domain was generated, and the solution could be
calculated in the solution step. Finally, the data of flow field and concentration were
extracted from simulation results for further analysis. After completing the simulation of
one parameter, the model structure was adjusted and the above process was restarted for
the next parameter. This systematic study in microchannels can be extensively used for the
design and optimization of micromixers.
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Figure 1. CFD simulation method for a cross-shaped micromixer.

2.2. Model Structure

The geometry of the three-dimensional (3D) mixer used in the experiment and numer-
ical simulation in this work is shown in Figure 2, together with the orthogonal rake system.
Inlets 2 and 3 have the same rectangular cross-section, with W1 = W3 = 75 µm. The W2 of
inlet 1 was set to 150 µm to ensure that different liquids enter mixing channel with equal
volume. Their lengths, i.e., L1 = L2 = 1000 µm, are sufficient to allow a fully developed
flow. A W4 = 300 µm wide by L3 = 10,000 µm long mixing channel exists at the confluence
of the three inlet channels. The depth H of the mixer is 60 µm.
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Figure 2. The geometrical structure of the cross-shaped micromixer.

2.3. Simulation Method and Boundary Conditions

The mixing process of the numerical model was characterized with COMSOL 5.4. For
simplifying the flow in microchannels, the compressibility of fluid is usually ignored, and
the liquid phase is set to be incompressible. The governing continuity, Navier–Stokes and
species convection–diffusion equations, which are used to solve the flow fields and the
concentration distributions, are presented as follows:

∇ ·
→
U = 0, (1)

ρ

(→
U · ∇

)→
U +∇P− µ∇2

→
U = 0, (2)(→

U · ∇C
)
= D∇2C, (3)

where
→
U, ρ and P stand for the velocity vector, the density of fluid and the pressure,

respectively; µ, C and D are the dynamic viscosity, the species concentration and the
molecular diffusion coefficient, respectively. The numerical calculations were carried out in
two steps: First, Equations (1) and (2) were used to obtain the results of the velocity field,
which was substituted into Equation (3). Then, the concentration distribution was solved.

The Reynolds number reflects the ratio of inertial force to viscous force, which is
correlated with mixing quality. It can be expressed by the following formula:

Re =
ρUDh
µ

, (4)

where Dh is the hydraulic diameter. Here, Re and Dh were calculated at the outlet channel.
At the microchannel, the viscous effect is dominant due to the small Re. Therefore, the
perfect mixing based on turbulence is difficult to achieve in a micromixer. To provide
micromixing at the microscale, two mixing mechanisms, namely molecular diffusion and
chaotic convection, are applied to passive mixers.

To understand the influence mechanism of different parameters, water and ethanol
were injected from three inlets for mixing, with water injected from inlets 2 and 3 and
ethanol injected from inlet 1. Their physical properties determined at a constant tempera-
ture of 293 K are listed in Table 1 [6]. For boundary conditions, the molar concentration
values equaled 1 at inlet 1 and equaled 0 at inlets 2 and 3. A uniform velocity profile was
selected as inlet boundary in the computational domain and the zero static pressure was
applied at the exit.

Table 1. Main physical parameters of the two fluids for mixing.

Fluid Density (kg m−3) Viscosity (kg m−3 s−1) Diffusivity (m2 s−1)

Water 9.998 × 102 0.9 × 10−3 1.2 × 10−9

Ethanol 7.890 × 102 1.2 × 10−3 1.2 × 10−9



Micromachines 2021, 12, 462 5 of 20

2.4. Mixing Performance Characterization Method

In order to quantitatively analyze the diffusion rate of species and the extent of mixing
at a certain plane, two essential paraments were adopted, namely the dispersion length [35]
and the mixing index [7]. As shown in Figure 3, the definition of dispersion length is
the distance from the contact point of two liquids to the place where the mass fraction of
downstream central sample solution is less than 1. Obviously, a high diffusion rate can
result in a short dispersion length; otherwise, it will be relatively long.
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The mixing index was adopted to characterize mixing quality at any cross-sections
perpendicular to x-axis; this index is defined as follows:

M.I = 1− σm

σm,max
, (5)

where σm represent the standard deviation of the alcohol molar concentration and σm,max
is the maximum standard deviation of all data ranges. The σm can be calculated as follows:

σm =

√
1
m ∑m

j=1

(
Cj −C

)
, (6)

where Cj, C and m are the mass fraction at selected point j, the mean value of the mass
fraction and the number of sample distribution on the transverse plane, respectively.
The maximum standard deviation corresponds to a completely unmixed fluid, while the
minimum value corresponds to a fully mixed fluid. Hence, the completely mixed fluids are
assigned M.I = 1, while completely unmixed fluids are assigned M.I = 0.

3. Results and Discussion

3.1. Grid Independent and Data Verification

A mesh refinement analysis was applied to optimize the number of grid nodes,
which ensures that the results are independent of the mesh. The unstructured tetrahedral
elements shown in Figure 4a were generated with the mesh generator. Four different mesh
systems, namely coarser mesh, coarse mesh, normal mesh and fine mesh, were tested with
the velocity and concentration calculated at x = 9950 µm, as shown in Figure 4b,c. The
standard deviations of four mesh systems (SD) in Figure 4a are 0.0300, 0.0308, 0.0309 and
0.0.0312 mol/m3, respectively. When beyond the normal mesh, the influence of increasing
the grid number on the accuracy of the results is negligible. A similar conclusion can also
be drawn from the results presented in Figure 4c. Therefore, the normal mesh was selected
for further calculations.
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The experimental platform is shown in Figure 5. The micromixer was made of
polydimethylsiloxane (PDMS) by the soft lithography method. A closed channel structure
was formed by bonding the PDMS micromixer with a glass sheet. Ethanol and blue ink
were chosen as the working fluids. The surface roughness of the microchannel was not
considered in the experimental process. As seen in Figure 6a, the increase in flow velocity
limited the progress of diffusion. Figure 6b presents the comparison between experimental
and simulated values. For each case, the mixing indices obtained from simulations were
basically in good agreement with the measured mixing indices. It was demonstrated that
the above-mentioned numerical models can be used to predict the flow behavior and to
understand the mixing mechanism for the following studies.
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3.2. The Effect of Operating Parameter on Mixing

The Effects of Increasing Re on Local Mixing Quality along Microchannel

The developments of species diffusion at three locations along the channel were
recorded when the Reynolds number was varied from 0.1 to 50. At x = 75 µm, the liquids
have just come into contact, so molecular diffusion has not occurred sufficiently yet. All
data curves basically coincide at x = 75 µm, as shown in Figure 7a. As the distance increases
continuously, the diffusion under different Re values changes significantly. Figure 7b plots
the results at x = 5075 µm. The data profile becomes a straight line with small fluctuations
around 0.5 mol·m−3 primarily at Re = 0.1. However, it turns into a flat parabola at
Re = 0.5, meaning that the mixing quality has been reduced. Beyond Re = 8, there is a
little species exchange occurring between the two components. The effects of increasing
Re on diffusion seem to be negligible. Similar trends can be observed in Figure 7c. The
diffusion phenomenon only develops further after the distance exceeds 7075 µm. Figure 7d
represents the variation in the mixing indices as a function of microchannel length. As
a whole, by increasing the Re, the mixing quality becomes poorer. At very low Re, i.e.,
Re = 0.1, the mixing index initially rises rapidly along the x-axis direction, and its value
reaches 0.9 at a distance of about 4000 µm. Afterward, the mixing efficiency grows slowly.
The two components achieve a uniform mixing at the outlet. Figure 8a shows the stable
streamline distribution showing that the chaotic advection is not aroused, so the mixing
principle at this time depends on molecular diffusion. In another case, namely Re = 0.5, the
lower mixing index than that of Re = 0.1 can be associated with the decrease in residence
time. An interesting feature in this figure is that the mostly unchanged mixing indices are
observed within the same flow path when Re≥ 8, which is consistent with the development
of diffusion discussed in earlier work. The streamlines at these stages do not overlap or
become disordered (Figure 8b,c), indicating that the mixing mechanism has not changed.
In addition, the 3D vortices near the cross junction induced by the inertial effects do not
occur, which is inconsistent with the conclusion of Ault et al. [36]. This can be attributed to
the fact that at a very low aspect ratio (0.2), the flow inside the micromixer remains laminar
due to the high wall friction of the fluid [26].
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Moreover, the local mixing efficiency along the microchannel was characterized. As
seen in Figure 7d, the M.I and the distance x maintain a proportional relationship. The
least-squares method was used to fit the mixing efficiency of each section:

M.I(x) = 1− exp(−κ · x), (7)

where κ stands for mixing impact coefficient.
It can be seen that the M.I varies exponentially with the flow distance. The develop-

ment of mixing is affected by the mixing impact factor κ that is inversely proportional to
the flow velocity. The κ can be expressed by Equation (8):

κ =
δ

U
, (8)

where δ is the mixing coefficient along the microchannel.
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Substituting Equation (8) into Equation (7), the formula for the local mixing efficiency
along the microchannel can be obtained:

M.I(x) = 1− exp(− δ
U
· x). (9)

Figure 9 shows the fitting results under different Re values. The gradient of all
curves gradually decreases along the x-direction. This is because the chemical potential
generated by the concentration gradient is the fundamental reason for the movement of
molecules from a high-concentration fluid to a low-concentration fluid. In the inlet area, the
concentration gradient remains a maximum value, so the mixing efficiency grows quickly.
As mixing progresses, the concentration difference becomes smaller, and the driving force
of the chemical potential also becomes smaller, resulting in a slower mixing rate in the
later stage. However, although the concentration gradient is large at relatively high Re
(Figure 7d), poor mixing quality occurs due to the less mixing time. The fluids’ average
resident times in the microchannel corresponding to different Re values are listed in Table 2.
At the very low Reynold number of Re = 0.1 where it takes 10 s for liquids to flow through
the mixer, the two components can achieve uniform mixing, showing that there is a small
gap between fluid flow rate and component diffusion rate. When Re varies from 8 to 50, the
residence time is not significantly reduced. However, the diffusion rate is much lower than
the fluid flow rate. Therefore, the liquids flow out of the channel while the diffusion has
not fully developed, which greatly restricts the improvement of the mixing quality. This
explains why the fitting curves in Figure 9c–f are similar to each other after Re exceeds 8.
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Table 2. The residence time of liquid in mixer under different Re values.

Re 0.1 0.5 8 15 30 50

The resident time (s) 10 2 0.125 0.067 0.033 0.02
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3.3. The Effects of Design Parameters on Mixing

3.3.1. The Effect of Aspect Ratio on Mixing

This section details the investigation of the effect of microchannel aspect ratio ε,
defined as H/W, on mixing efficiency at a fixed Reynolds number of Re = 8. For this
purpose, five mixing channel widths, namely 300, 150, 100, 75 and 60 µm, with different ε
values (0.2, 0.5, 1, 2 and 5), were constructed. All cases ensured that the hydraulic diameter
was 100 µm. The concentration fields under different ε values are shown in Figure 10. As
seen from the numerical results, the mixer with ε = 0.2 performs worst in all five cases.
The increase in aspect ratio is beneficial for improving mixing quality in the cross-shaped
micromixer. Figure 11a displays the mixing indices for each structure. As flagged in this
figure, an optimum εwhere its corresponding maximum mixing index reaches 0.9 is gained
at ε = 1. However, simply increasing ε does not always improve the mixing quality. The
mixing efficiency increases first, then decreases and finally increases with the increment in
ε. At a low aspect ratio, e.g., ε = 0.2, the mass transfer area between two components is
so small that it hinders the full development of diffusion. Thus, the mixing index is very
low under the condition of molecular diffusion dominating the mixing process. Before
obtaining the optimal aspect ratio (0.2 ≤ ε ≤ 1), the improvement in mixing quality is
mainly due to the increment in the contact area and the reduction in diffusion distance
along the y-axis.
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According to the theoretical considerations, the achievable gain in the mixing index
should still maintain an upward trend after ε = 1. However, the opposite happened. To
understand this behavior, the relationship between mass transfer cross-section position
and velocity field distribution was assessed. The variations in molar concentration at
x = 3000 µm under various ε values are shown in Figure 11b. It can be seen that the
maximum and minimum values of curves corresponding to the relatively high aspect ratio
have been improved, showing that their performances are much better than that of ε = 0.2,
which is consistent with the previous analysis. More importantly, the positions of the
contact interface located in the rising and falling stages of curves are considered. Figure 12
finely depicts the velocity field of microfluid in the direction perpendicular to the flow
velocity. As the aspect ratio gradually increases from 0.2 to 5, the velocity distribution
gradually changes from a flat distribution along the y-axis to a flat distribution along the
z-axis. This makes the mass transfer surface close to the high-speed area at relatively high
ε = 2, thereby shortening the resident time in the mixer. However, the contact area at ε = 5
is further increased, so the mixing index begins to improve again, as shown in Figure 11a.
Table 3 lists the flow velocity at the initial mass transfer area position. These results confirm
the above influence process.
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Table 3. The flow velocity at the initial mass transfer area position when ε = 1, 2 and 5.

ε 1 2 5

y/W 0.51 0.39 0.39

V(m/s) 0.099 0.115 0.115

3.3.2. The Effect of Inflow Angle on Mixing

Mixers with inflow angles α ranging from 30 to 150◦ were built to investigate the effect
of α on the mixing performance when Re = 0.1 and 50. All physical parameters except α
remain the same as before during the simulation. The concentration fields under different
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α values are shown in Figure 13. The results show that the effect of inflow angles on mixing
quality is weaker than that of Re.
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Dispersion length was recorded to reflect diffusion capacity at Re = 0.1 and 50, as
shown in Figure 14. At the very low Reynolds number of Re = 0.1, the variation in inflow
angles has no significant effect on mixing. The dispersion length is supposed to be about
260 µm when α is less than 90◦. This can be attributed to the fact that the flow in the mixing
channel remains steady and the convection caused by fluids with low velocity in inlets
2 and 3 is not fully aroused, as shown in Figure 15a–c. Meanwhile, the corresponding
results at Re = 50 show a different conclusion. The strong impact caused by the high flow
velocity is enhanced with the increase in inflow angle, as seen in Figure 16a–c. Therefore,
the dispersion length sharply decreases along the x-axis. The y-axis values continue to
increase regardless of whether the Reynolds number is 0.1 or 50 when α > 90◦. Figure 15d,e
and Figure 16d,e give the velocity vector distributions of two liquids at Re = 0.1 and 50,
respectively. For the large inflow angles, i.e., α = 120 or 150◦, where the fluids in the inlets 2
and 3 flow along the x-axis in the negative direction, the cross-chip junction area produces
greater resistance than other cases. Considering the evidence shown in Figure 13, there
may be two reasons leading to the increment in dispersion length. On the one hand, the
lateral diffusion distance becomes longer due to the large amount of liquid entering the
junction, which cannot be available when α ≤ 90◦. On the other hand, the velocity vector
sum indicates that the inflow angle is negatively associated with the velocity component
along the y-axis; therefore, a larger inflow angle induces weaker convection.
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Moreover, the effects of inlet angle on the pressure drop and energy consumption
were explored. The required pumping power Φ [37] to operate mixers can be calculated as
follows:

Φ = Q · ∆P, (10)

where Q is the flow rate and ∆P is the pressure drop.
Table 4 lists the results of ∆P and Φ at Re = 0.1 and 50. The increase in the inflow angle

does not cause a sharp increase in ∆P, which also means that Φ does not change sharply.
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Table 4. The pressure drops and the pumping power consumption with different inflow angles.

Re α (◦) Location ∆P (kPa) Φ (µW)

0.1

30
Inlet 1 0.039 3.51 × 10−4

Inlets 2 and 3 0.041 1.85 × 10−4

60
Inlet 1 0.040 3.60 × 10−4

Inlets 2 and 3 0.040 1.80 × 10−4

90
Inlet 1 0.040 3.60 × 10−4

Inlets 2 and 3 0.041 1.85 × 10−4

120
Inlet 1 0.038 3.42 × 10−4

Inlets 2 and 3 0.039 1.76 × 10−4

150
Inlet 1 0.040 3.60 × 10−4

Inlets 2 and 3 0.041 1.85 × 10−4

50

30
Inlet 1 20.1 90.45

Inlets 2 and 3 20.3 45.68

60
Inlet 1 20.0 90.00

Inlets 2 and 3 20.1 45.23

90
Inlet 1 20.3 91.35

Inlets 2 and 3 20.6 46.35

120
Inlet 1 19.9 89.55

Inlets 2 and 3 20.0 45.00

150
Inlet 1 20.3 91.35

Inlets 2 and 3 20.3 45.68

3.3.3. The Effect of Blockage on Mixing

Placing obstacles in the microchannel is one of the effective methods for improving
mixing quality. The acceleration of fluid flowing through the obstacle in a restricted envi-
ronment depends on the blockage degree created by the presence of the obstacle [38]. The
flow in a confined microchannel cannot be expanded as if it is unconfined. The accelerated
flow leads to an augmented Reynolds number in some regions and the generation of chaotic
advection, which affects mixing progress. This section describes the results obtained when
cylinder and square obstacles, which have often been applied [39–41], were used to explore
the blocking effect on mixing. Figure 17 shows the distribution of two obstacles in the
mixing channel.
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The blockage degree is characterized by the ratio of the projected area Ab of the
obstacle in the width direction of the microchannel to the cross-section area of channel A.
Thus, the blockage ratio Ω can be written as follows:

Ω =
Ab
A

. (11)

By continuity, the flow velocities U1 and U2 on both sides of the square obstacle are
calculated by the following formula:

U1 = U2 = U · A
(A−Ab)

= U · 1
1−Ω

. (12)

It can be seen that high flow velocity can be achieved by a large blockage ratio.
Figure 18 shows the contours of transverse velocity and concentration distribution

results for different Ω values in the range of 0.2 to 0.7 at Re = 0.1 and 50. As can be seen in
this figure, there is a large increase in the distribution of transverse velocity in the mixing
channel with the growth of obstruction dimension. This means that the fluids in the middle
region move faster toward other fluids, and thus the mixing is enhanced. It can clearly be
seen that the performances of mixers with cylinder and square obstacles gradually improve
as the Ω increases. The mixing indices at 400 µm downstream of the obstacle were recorded,
as shown in Figure 19. At the low Reynolds number of Re = 0.1, the mixing indices of
the two cases increase along the x-direction with big gradients. For the performance of
the mixer with a square obstacle, the mixing index reaches 0.58 at = 0.2 and exceeds 0.9
at Ω = 0.7, with an increase of 0.32 between them. However, a relatively poor mixing
quality is discovered at Re = 50, where the maximum value drops to 0.78 at Ω = 0.7 due
to the short mixing time. A similar development tendency can also be seen in the mixer
with the cylinder obstacle. Notably, the cylinder obstacle performs worse than the square
obstacle both when Re = 0.1 and when Re = 50. This phenomenon can be ascribed to the
fact the liquids consisting of two components are continuously squeezed when bypassing
the square obstacle. However, the liquids are gradually squeezed when bypassing the
circular obstacle. Therefore, the former has a shorter lateral diffusion distance than the
latter. In addition, the vortices that form behind the square obstacle also promote the
mixing process, as shown in Figure 20. Even though a large blocking ratio improves the
mixing quality effectively, it also has an obvious disadvantage in flow resistance, which
increases the energy consumption [36].
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The effects of the blockage ratio on the fluid flow state were also characterized.
Figure 21 shows the flow rates in the x-direction behind the square obstacle as a func-
tion of Re when Ω = 0.1 and 0.7. As illustrated in Figure 21a, the values of velocity are
greater than 0 regardless at both high-Re and low-Re conditions, indicating that the vortex
caused by the obstacle has difficulty forming when Ω = 0.1. However, a region with a
flow rate less than 0 appears when Re > 5, as shown in Figure 21b. This is because a
large blockage ratio can form a stronger jet to promote the generation of vortices, which
accelerates the flows and causes them to become unsteady.
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3.4. The Effect of Microchannel Surface Roughness on Mixing

This section describes the investigation of the effect of microchannel surface roughness
on mixing. Generally, it is very difficult to simulate the actual roughness structure due to
the complexity of the rough wall surface. Generally, standard shape structures are used
for approximate simulation in actual research [33,42–44]. In this study, 2D models with
rectangular, triangular and elliptical rough elements were built, as shown in Figure 22. The
distance was kept constant at 100 µm, while the height ranged from 2 to 20 µm. Numerical
simulation at a wide Re range (0.1 ≤ Re ≤ 50) was conducted to analyze their effects on
mixing. A dimensionless number n, defined as the ratio of the height of the rough element
to the width of the microchannel, was used to express the relationship between roughness
height and mixing channel width. In order to assess the sensitivity of the solution to the
number of computational grids, three mesh systems, namely fine mesh, extra fine mesh
and extremely fine mesh, were studied using a mixer with a smooth wall. Figure 23 shows
the distribution of mass under different mesh systems at Re = 50. Finally, the extra fine
mesh was selected for further calculation.
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Figure 24 shows the performances of mixers with different rough elements. A similar
declining trend in mixing efficiency is seen in each of the three cases. Figure 24a demon-
strates the mixing index curves of rectangle roughness element under different Re values
at n = 1/150, 1/60, 1/30, 1/20 and 1/15. Notably, the differences among the data points at
Re = 0.1 are only minor. This finding appears not only in Figure 24b but also in Figure 24c,
indicating that both the height and the shape of the roughness element have little effect on
mixing at very low Re. However, with the increase in Re, the influence of surface roughness
on the mixing is more obvious. The increase in roughness element height is beneficial in
improving mixing. For example, the mixing index in a microchannel with a smooth wall is
0.31 at Re = 5, while this value at n = 1/15 is increased by 0.056, 0.052 and 0.034 respectively
when rectangular, triangular and elliptical rough elements exist. These increases remain
basically unchanged with the development of Re. This also shows that the influence of
triangular rough elements on the mixing quality is greater than those of rectangular rough
elements and elliptical rough elements. Figure 25 shows the velocity streamline diagram in
the near-wall area at Re = 50. Vortex areas are formed on both sides of roughness elements,
which enhances the impact of the fluids on both sides on the fluids in the middle region.
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The presence of roughness affects the flow in the area near the wall more when compared
with the flow in a smooth microchannel.
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4. Conclusions

In this study, the performance of a cross-mixer in a strictly laminar regime was
assessed to study the flow characteristics and mixing mechanism. A CFD model validated
by experimental data was established to explore the influence of Re, aspect ratio, mixing
angle, blockage and surface roughness on mixing. The main conclusions of this paper are
as follows:

• In the laminar flow regime, molecular diffusion dominates the mixing mechanism.
Therefore, the mixing time plays a pivotal role in improving mixing quality. For a low
Re, a high mixing index was observed due to the sufficient mixing time. The mixing
quality decreased at first and then remained basically unchanged as Re gradually
increased to 50. On the whole, the local mixing efficiency along the microchannel
showed an exponential development regulation.

• The aspect ratio affects the mixing process by influencing mass transfer area and
velocity distribution. The best mixing quality was obtained when the value of the
aspect ratio equaled 1. A small aspect ratio caused a poor mixing quality because of
the small mass transfer area. For large aspect ratios, although the mass transfer area
increased, its position in high velocity region also decreased the mixing efficiency.

• The inlet angle affects the mixing quality by influencing dispersion length. The
dispersion length gradually increased when the inflow angle was greater than 90◦ at
Re = 0.1. On the contrary, the dispersion length first decreased and then increased
as the inflow angle increased at Re = 50. The optimal inflow angle in a cross-shaped
microchannel is about 90◦.

• The blocking effect caused by obstacles in a mixing channel enhances the mixing
quality. The mixing efficiency was found to increase with the increase in the blocking
rate. Moreover, the performance of a mixer with a square obstacle was found to be
better than that of a mixer with a cylinder obstacle.

• The presence of surface roughness inside a microchannel promotes the mixing progress.
The increase in the height of the roughness element was found to promote the mixing
quality. The influence of triangular rough elements on the mixing quality was found
to be greater than that of rectangular or elliptical rough elements.
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In future work, designing a more efficient planar passive mixer with a short mixing
length based on the cross-shaped microchannel is the next stage of research. Meanwhile,
some biochemical applications such as heavy metal detection will also be considered.
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