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Abstract: A new type of wireless passive, high sensitivity, high temperature sensor was designed
to meet the real-time temperature test in the harsh aero-engine environment. The sensor consists
of a complementary split ring resonator and a substrate integrated circular waveguide (CSRR-
SICW) structure and is based on high temperature resistant Si3N4 ceramic as the substrate material.
Temperature is measured by real-time monitoring of the resonant frequency of the sensor. In
addition, the ambient temperature affects the dielectric constant of the dielectric substrate, and the
resonant frequency of the sensor is determined by the dielectric constant, so the function relationship
between temperature and resonant frequency can be established. The experimental results show
that the resonant frequency of the sensor decreases from 11.3392 GHz to 11.0648 GHz in the range
of 50–1000 ◦C. The sensitivity is 123 kHz/◦C and 417 kHz/◦C at 50–450 ◦C and 450–1000 ◦C,
respectively, and the average test sensitivity is 289 kHz/◦C. Compared with previously reported high
temperature sensors, the average test sensitivity is approximately doubled, and the test sensitivity at
450–1000 ◦C is approximately three times higher. Therefore, the proposed high sensitivity sensor has
promising prospects for high temperature measurement.

Keywords: CSRR-SICW; Si3N4 ceramics; high temperature sensor; high sensitivity; wireless

1. Introduction

The aero-engine is the heart of an aircraft [1]. In the process of aero-engine develop-
ment, temperature is an important parameter for performance analysis, design verification
and improvement, and flow heat transfer analysis [2]. The aero-engine is characterized by
high temperature, high pressure, high speed, complex internal flow, complex structure,
small space, etc., so temperature measurement under such working conditions has always
been a hot issue in aviation test and test technology, and also one of the difficulties in
aero-engine test technology [3]. In view of the complex environment inside the aero-engine,
researchers have tried temperature measurement technology based on various principles.

Thin film thermocouple, radiation temperature sensing, and temperature indicator
paint are the main temperature measurement methods used in aero-engines at present [4–8].
The thin film thermocouple designed in literature [4] basically eliminates the influence of
embedded thermocouple on the measured temperature field. However, the thin film ther-
mocouple is not suitable for large-scale installation due to a lead line problem, especially
for the temperature measurement of high-temperature rotating parts of engines (such as
turbine blades). In the literature [5,6], the temperature measuring crystal has characteristics
of small size and no lead line, but it can only test the highest temperature in the transfor-
mation process, and cannot be applied to real-time temperature monitoring. [7,8] designed
the thermopaint temperature measuring method, which is a non-interference tempera-
ture measurement method. As a functional paint whose color changes with temperature,
thermopaint has the advantages of not destroying the target structure, not affecting the
target temperature field, and intuitionistic results. While the measurement characteristics
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of thermopaint offer convenience, they also bring corresponding limitations. The tempera-
ture value needs to be read by color comparison, so the subjective error is large, and the
irreversible thermopaint cannot be used repeatedly, but can only measure the maximum
temperature of the target, which is difficult to meet the requirements of real-time and
accurate temperature measurement.

Wireless passive sensing technology has incomparable advantages in obtaining tem-
perature parameters in harsh environments, which has attracted the attention of researchers.
Wireless passive temperature measurement technology mainly includes four kinds: sur-
face acoustic wave (SAW), sensitive capacitance and inductance (LC) resonant mutual
inductance coupling technology, optical fiber technology, and microwave backscattering
technology [9,10]. The SAW sensor offers the advantages of simple structure, small volume,
and long transmission distance, but is limited by substrate material instability at high
temperatures, making it is easy for the test signal to be interfered by the environment [11].
The LC resonant sensor adopts near-field coupling technology, which has great advantages
for short distance signal transmission, but its operating frequency is low, so it cannot be
attached to the metal surface [12,13]. In addition to the advantages of wide temperature
measuring range, high sensitivity, and good electromagnetic insulation, the optical fiber
temperature sensor is mainly characterized by a temperature measuring probe with an
optical fiber. As a small probe needs to be placed under high temperature and high speed
gas flow for contact measurement, a large number of experiments are needed for verifi-
cation and assessment. The microwave scattering temperature sensor has high working
frequency, small structure size, and high quality factor (Q), which has little influence on
its interference in the background metal environment, and can realize data reading and
energy transmission in long distances under harsh environments [14–16].

The substrate integrated waveguide (SIW) is a new kind of waveguide structure that
can be integrated into a dielectric substrate. Its propagation characteristics are similar to
those of rectangular metal waveguides, so the microwave millimeter-wave components
and subsystems composed of them have the advantages of high Q value, low radiation
loss, strong anti-interference, etc. [9]. As a new type of structural ceramic material, Si3N4
ceramics has the advantages of higher strength, better high temperature resistance, small
thermal expansion coefficient, not easy to generate thermal stress, high temperature creep
resistance, and other advantages, showing great application potential in high temperature
structural materials such as engines [17].

In this paper, a new type of wireless passive high temperature sensor based on CSRR-
SICW and high temperature resistant Si3N4 ceramics is designed. The microwave scattering
technology is used to realize the remote signal monitoring, which solves the problem of
the traditional wired sensor transmission line being damaged under high temperatures. A
new type of high temperature resistant structural ceramic (Si3N4 ceramics) was used as
the substrate material of the sensor to realize temperature measurement in the range of
25–1000 ◦C. The complementary split ring resonator and the substrate integrated circular
waveguide (CSRR-SICW) structure were used to improve the sensitivity of the sensor and
expand the application of the traditional sensor in a polymetallic environment.

2. Working Principle and Structure Analysis

The measurement principle of wireless passive high temperature parameters based
on microwave scattering technology is shown in Figure 1. The system is composed of two
parts: an inquiry antenna and a high temperature sensor. The inquiry antenna sends out a
sweep signal including the resonant frequency f 0 of the resonant cavity to the temperature
sensor which is integrated with the slot antenna and the resonant cavity, the sensor through
the slot antenna structure to the incoming signal coupling into the cavity. Among them,
only the signal of frequency component f 0 can oscillate inside the sensor and be attenuated
gradually, while the other frequency signals are reflected back to the inquiry antenna.
When the ambient temperature changes, the dielectric constant of the resonant cavity
material changes accordingly, which affects the resonant frequency of the resonant cavity.
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The resonant frequency of the sensor under different ambient temperatures can be obtained
by measuring the return loss of the reflected signal of the sensor received by the inquiry
antenna, namely the S(1,1) parameter, and the temperature of the measured environment
can be calculated according to the variation of the resonant frequency of the sensor.
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Figure 1. Operating principle of the temperature sensing system.

As shown in Figure 2a,b, the temperature sensor consists of an SICW resonator and
a CSRR structure. The SICW resonator consists of four parts: medium substrate, upper
and lower metal surface, and side wall metal cylinder. The medium material of the
sensor is high temperature resistant Si3N4 ceramics. The upper and lower surfaces of the
dielectric substrate are covered with a metal platinum paste, and the metal cylindrical
through holes in the side walls are connected with the upper and lower metal surfaces. By
achieving a metallization aperture, a dielectric substrate can realize the structure of the
waveguide, resulting in an electromagnetic field distribution that is nearly the same as that
of a conventional waveguide. The upper metal surface etched the CSRR structure. The
main function of the CSRR structure is that it can generate a centralized electromagnetic
field to improve sensor sensitivity and realize wireless signal transmission.
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Figure 2. (a) Sketch diagram of the front sensor (b) Sketch diagram of the side sensor (c) Equivalent
circuit diagram of the sensor (d) Simplified equivalent circuit diagram of the sensor.

Where D is the diameter of the metal cylindrical hole on the side wall, b is the distance
between the two adjacent cylindrical hole centers, R0 is the radius of the sensor, Reff is the
distance between the metal cylindrical hole on the side wall and the sensor center, and
H is the thickness of the sensor, namely the distance between the upper and lower metal
surfaces. R1 is the external radius of the external resonant ring of the CSRR structure, s1 is
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the gap width of the external resonant ring, R2 is the external radius of the internal resonant
ring of the CSRR structure, s2 is the gap width of the internal resonant ring, and t is the
opening width of the resonant ring of the CSRR structure.

The resonant frequency of the SCIW structure is [11]:

f0 =
c
√

µε

P11

2πRe f f
(1)

Re f f = R0 − 1.08
D2

b
+ 0.1

D2

R0
(2)

where f 0 is resonant frequency, c is the speed of light, P11 is the first zero of a first-order
Bessel function(P11 = 2.4048), ε for the dielectric constant of dielectric material, µ for the
magnetic permeability of medium material. When the size of the sidewall metal cylinder is
D < 0.1λg, b < 4D and D < 0.2Reff, the sidewall metal cylinder can be regarded as an ideal
electromagnetic wall, and the electromagnetic wave leakage from it can be ignored. To a
certain extent, the electromagnetic interference of the external metal environment to the
sensor signal can be reduced. When the size of the sensor is fixed, the resonant frequency
is determined by the dielectric constant of the dielectric material. The dielectric constant of
the sensor material will increase with the temperature increasing accordingly, leading to the
decrease of the resonant frequency of the sensor, so as to realize the temperature measurement.

The equivalent circuit of the designed sensor is analyzed, as shown in Figure 2c.
The metal cylinder on the side wall of the substrate integrated waveguide structure can
be equivalent to a parallel inductor (Lr), and the upper and lower metal plates can be
equivalent to a capacitor (Cr). CSRR structure can be equivalent to the parallel connection
of two inductors (Ls) and their inter-ring coupling capacitors (Cs), wherein Ls1 and Ls2 are
equivalent circuits of the inner and outer resonant rings, respectively, and the metal walls
on both sides of the inner and outer resonant rings are equivalent to Cs1 and Cs2 in turn.
Among them, the equivalent inductance of CSRR structure and the equivalent capacitance
of the upper and lower metal surfaces of SICW structure play a dominant role, so other
parts of the equivalent circuit can ignore its influence. Then the resonant frequency of the
sensor is:

f0 =
1

2π
√

Ls1+Ls2
Ls1Ls2

(Cs1 + Cs2 + Cr)
(3)

Cr =
εS

4πkd
(4)

where ε is the dielectric constant of the medium between the plates, S is the opposite area
of the capacitor plate, d is the distance between the plates, k is the static force constant
(k = 8.987551 × 109 N·m2/C2).

When CSRR structure is determined, Ls and Cs are determined. Cr is determined by
the medium material between the upper and lower metal sheets. The dielectric constant of
Si3N4 ceramics increases with the increase of temperature. According to Equation (4), the
equivalent capacitance Cr increases, and the resonant frequency of the sensor decreases
accordingly. The simplified equivalent circuit of the sensor is shown in Figure 2d. The
sensor can be simplified and equivalent to the parallel connection of inductor and capacitor,
and the resonant frequency can be simplified to Equation (5).

f0 =
1

2π
√

LC
(5)

3. Simulation and Optimization

In order to improve the transmission efficiency of the sensor and reduce the loss, HFSS
software was used to model and simulate the sensor and the inquiry antenna, respectively.
The performance of the sensor was judged by the return loss in the response curve, and the
optimal size parameters were obtained.
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The resonant frequency of the sensor set in this paper is f 0 = 11.5 GHz. The high-
temperature resistant ceramic (Si3N4 ceramics) is used as the sensitive material of the
sensor. At room temperature, the dielectric constant is 3.6 and the relative permeability
is 0.98. The standard rectangular waveguide is used as the excitation source of the CSRR-
SICW sensor. The size of the rectangular waveguide is 20.78 mm × 9.24 mm × 46 mm.
Under the condition of satisfying the leak-proof size of the metal cylinder on the side
wall, combined with formulas (1) and (2), the dimensional parameters of the sensor are
preliminarily calculated as: Reff = 5.5 mm, R0 = 7 mm, D = 0.5 mm, H= 1.1 mm. The number
of metal cylinders on the side wall was 36. In order to improve the performance of the
substrate integrated waveguide sensor, the external resonant ring radius R1, the external
resonant ring gap width s1, the internal resonant ring radius R2, and the internal resonant
ring gap width s2 of the CSRR structure were simulated and analyzed, respectively. The
simulation results of parameter optimization are shown in Figure 3.
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Figure 3. Simulation of complementary split ring resonator (CSRR) Parameter Optimization: (a) Ra-
dius of CSRR external resonant ring R1, (b) Gap width of CSRR external resonant ring s1, (c) Radius
of CSRR internal resonant ring R2, (d) Gap width of CSRR internal resonant ring s2.

According to the simulation results, the radius of the CSRR external resonant ring R1,
the width of the gap of the external resonant ring s1 and the radius of the internal resonant
ring R2 all affect the resonant frequency of the sensor. When R1 increases, the resonant
frequency decreases accordingly. This is because the equivalent capacitance increases with
the increase of R1, leading to the decrease of the resonant frequency of the CSRR structure.
When R1 remains unchanged, when the metal walls on both sides of the external resonant
ring become larger, the distance between the two plates of the equivalent capacitor becomes
larger, and the equivalent capacitance decreases accordingly. The resonant frequency of the
improved CSRR structure increases. According to the simulation results, when the distance
between the plates reaches a certain distance, the influence on the equivalent capacitance
gradually decreases. Similarly, the influence of the inner circle radius and the gap of
the internal resonant ring on the resonant frequency of CSRR structure can be obtained.
The resonant frequency of the CSRR structure of the sensor is mainly determined by the
radius and the gap of the external resonant ring and the radius of the internal resonant
ring; however, the gap of the internal resonant ring mainly plays a role in strengthening.
Therefore, the precise regulation of the resonant frequency can be realized by flexibly
adjusting the size parameters of the CSRR structure. The structural size of the sensor is
shown in Table 1. In order to obtain the quality factor of the sensor, HFSS software was
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used to model and simulate the designed sensor in the eigen-mode. According to the
simulation results, the quality factor of the designed sensor was 1215.93.

Table 1. Dimensional parameters of the optimized sensor (unit: mm).

Reff R0 D b R1 s1 R2 s2 H

5 7 0.5 2 3.5 0.6 2.5 0.2 1.1

The schematic diagram of the designed coplanar waveguide (CPW) antenna is shown
in Figure 4. Respectively, W and L are the width and length of the inquiry antenna, W1 and
L1 are the width and length of the radiation patch, W2 and L2 are microstrip transmission
line width and length, m and n are the spacing widths between the receiving floor, the
radiation patch, and the transmission line, respectively. The dimensions of the coplanar
waveguide antenna are shown in Table 2.
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Figure 4. Structure diagram of the inquiry antenna.

Table 2. Structure dimensions of the CPW antenna (unit: mm).

W L W1 L1 W2 L2 n m H0

14 100 4.7 6.1 1 90 0.5 1.5 1

The previously simulated CSRR-SICW high temperature sensor is placed under the
CPW antenna to receive and send signals. The model and simplified equivalent circuit
diagram is shown in Figure 5. The resonant frequency of the sensor at room temperature
is 11.5 GHz. The distribution of electric field and magnetic field of the sensor is shown in
Figure 6, indicating that the strongest electromagnetic field is mainly distributed around
the CSRR structure.
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4. High Temperature Experimental Test
4.1. Preparation of Sensor

The substrate material of the sensor is Si3N4 ceramics. First, the purchased ceramic
pieces are cut into discs with a diameter of 14 mm. By using laser drilling technology,
the cut circular substrate is placed under the laser drilling machine for drilling, and
the diameter of the through hole is 0.5 mm, and the sidewall cylindrical through-hole
array of SICW structure is realized. Because the platinum pulp can withstand a high
temperature environment of 1800 ◦C and the material properties are relatively stable in
the high temperature environment, we use the platinum pulp as the surface metal and
through hole filling material of the sensor. We then put the prepared substrate into the
micro-hole filling machine and injected the platinum pulp, so that the upper and lower
surfaces can be connected, and placed in an environment of 100 ◦C drying for 30 min.
After that, the dust on the upper and lower surfaces of the substrate was wiped with 99%
anhydrous alcohol and dust-free paper, and the surfaces of the SICW and the slot antenna
were brushed by screen printing technology, respectively, with printing thickness of 20 µm.
Finally, the sensor was placed in a muffle furnace for sintering; the sintering curve is shown
in Figure 7b. High temperature sintering can remove organic solvents from the paste, so
that a dense platinum film can be formed on the Si3N4 ceramics substrate. The final high
temperature sensor and inquiry antenna are shown in Figure 7c.
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4.2. High Temperature Test of the Sensor

In order to verify the temperature sensing performance of the sensor, the high tem-
perature test platform built is shown in Figure 8. Temperature testing mainly includes
computers, network analyzer (Keysight P5008A, Keysight Technologies, Santa Rosa, CA,
USA), coaxial transmission lines, CPW antennas, sensors, and a high temperature muf-
fle furnace.

In the test process, the sensor and inquiry antenna were placed in the muffle furnace,
and the mullite was used to prevent the cold end of the inquiry antenna from being
damaged by the high temperature environment in the furnace. The cold end of the inquiry
antenna is connected with the network analyzer through the coaxial transmission line,
which is used to transmit electromagnetic signals to the sensor and receive reflected signals
from the sensor. The network analyzer is connected to the display to display and save the
test data.

At room temperature, the test results of the sensor are slightly different from the
simulation resonant frequency, as shown in Figure 9a. This result may be caused by errors
in the sensor machining process, or the sensor is in an ideal environment during simulation.
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The temperature test in this paper starts from 50 ◦C, and then the temperature rise test is
carried out step by step, and the data is recorded every 50 ◦C. To ensure repeatability of the
sensor, the maximum temperature was raised to 1000 ◦C. The measured resonant frequency
of the high temperature sensor decreases with the increase of temperature, and the curve
of change is shown in Figure 9b. In the figure, S(1,1) is the self-reflection coefficient of
the inquiry antenna, frequency is the trough point represents the resonant frequency of
the sensor. The resonant frequency of the sensor is 11.3392 GHz at 50 ◦C, 11.2904 GHz at
450 ◦C, and 11.0648 GHz at 1000 ◦C. By extracting the resonant frequency of the trough
point from the curve directly tested, the change curve of the resonant frequency of the high
temperature sensor at 50–1000 ◦C is finally obtained. The resonant frequency decreases
with the increase in temperature, which is consistent with the theory.
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The temperature test was repeated three times, and the test results were shown
in Figure 9c. According to the results, the designed sensor could better reproduce the
experimental results. After preliminary analysis and processing of the data, the quaternion
polynomial fitting curve is shown as a green line in Figure 9d.The fitting curve is expressed
in Equation (6). However, the quaternion polynomial is only suitable for small range of
calculation, not speculative. After further processing of the test data, the test results show
that the resonant frequency has different change rates with the increase of temperature in
the temperature range of 50–450 ◦C and 450–1000 ◦C. Linear fitting was conducted for the
data; the fitting curves were shown as the red line and blue line in Figure 9d, respectively,
and their expressions are shown in Equation (7).

y = 11.34− 2.44x + 8.233x2 − 1.78x3 + 9.018x4 (6)

y =

{
11.344− 1.188x, 0 < x ≤ 450

11.4761− 4.0993x, 450 < x ≤ 1000
(7)

According to analysis of the test data, the resonant frequency of the sensor changes
linearly at different temperatures. The sensitivity of the resonant frequency of the sensor is
123 kHz/◦C at 50–450 ◦C, and 417 kHz/◦C at 450–1000 ◦C. The average test sensitivity of
the sensor is 289 kHz/◦C. According to the literature [17], ion displacement polarization
is the main factor affecting the variation of dielectric constant with temperature. The
polarization of the Si3N4 dipole moment decreases with the increase of temperature, which
results in the increase of the dielectric constant of Si3N4 ceramics. According to Equation
(2), the resonant frequency is affected not only by the dielectric constant of the dielectric
material, but also by the metal cylinder on the side wall. The thermal expansion coefficient
of the Si3N4 ceramics increases with the increase of temperature, which results in the
increase of the relative position of the metal column on the side wall. This explains why
the sensor is more sensitive at 450–1000 ◦C.

Table 3 shows a comparison between the sensor designed in this paper and the sensor
previously reported. The sensor designed in this paper has the following advantages:

1. The temperature range is large enough to test relatively high temperatures;
2. The sensor has high sensitivity. In the temperature test, it was found to have a

large frequency change, and the resonant frequency signal is stronger and easier to
be captured;

3. The smaller size of the sensor makes it easier to mount inside the engine, such as on
the metal blade surface.

Table 3. Parameters comparison of different types of temperature sensors.

Sensor Type Sensor Size Operating Frequency Measuring Range Sensitivity

CSRR-SICW sensor R = 7 mm, h = 1 mm Around 11.34 GHz 25–1000 ◦C 289 kHz/◦C
SIW sensor [10] 35 mm × 35 mm × 1 mm Around 2.27 GHz 25–1200 ◦C 197 kHz/◦C

Micro-strip patch sensor [18] 44.58 mm × 68 mm × 1 mm Around 2.2 GHz 25–700 ◦C 104.7 kHz/◦C
LC sensor [19] 150 mm × 21 mm Around 55 MHz 25–1200 ◦C 0.009 dB/◦C

SAW sensor [11] - Around 226.3 MHz 25–600 ◦C -

5. Conclusions

In this paper, a wireless passive high temperature sensor based on Si3N4 ceramics is
proposed. The sensor consists of an improved CSRR and SICW structure, and its equiv-
alent circuit is analyzed. The dimensional parameters of the sensor were optimized and
determined by theoretical calculation and HFSS software simulation. The high temperature
test results show that the resonant frequency of the high temperature sensor decreases from
11.3392 GHz to 11.0648 GHz in the range of 50–1000 ◦C. When the temperature is 50–450 ◦C
and 450–1000 ◦C, the sensitivity of the sensor is 123 kHz/◦C and 417 kHz/◦C, respectively,
and the average test sensitivity is 289 kHz/◦C. Through analysis, the sensor designed in
this paper was found to be small in size, easy to be installed on metal blade surfaces, and
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had higher sensitivity at 450 ◦C or above. The experimental results verify the rationality
of the design and feasibility of the CSRR-SICW wireless passive high temperature sensor
based on Si3N4 ceramics, and show its application potential in the harsh environment of
ultra-high temperatures.
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