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Abstract: A flexible Ti/Cr/Ti multilayer strain gauge have been successfully developed based on
polyimide substrate. The pure Ti metal strain gauge have shown the hysteresis phenomenon at the
relationship between resistance and strain during tensile test. The experimental results of multilayer
strain gauge show that adding Cr interlayer can improve the recovery and stability of the sensing
electrode. When the interlayer Cr thickness was increased from 0 to 70 nm, the resistance decreased
from 27 to 8.8 kΩ. The gauge factor (GF) value also decreased from 4.24 to 2.31 with the increase
in the thickness of Cr interlayer from 30 to 70 nm, and the hysteresis phenomenon disappeared
gradually. The multilayer Ti/Cr/Ti film has feasible application for strain sensor.

Keywords: Ti/Cr/Ti multilayer; strain gauge; polyimide; evaporation

1. Introduction

Flexible electronic components (such as strain gauges and tactile sensors) are very
important in industrial applications [1,2]. However, the fabrication of complex single-layer
and multi-layer structures on polyimide (PI) substrate or the thickness dimensions of film
may change its mechanical properties, and related products have been widely used in
automatic sensing [3]. Therefore, it is very important to study the mechanical properties of
flexible sensing film. In particular, the reliability of products can be longer bending life.
Ductile (Pt and Au) films are often used in flexible electronics due to their high conduc-
tivity [4,5]. A metallic bilayer film system with a brittle interlayer (Cr and Ti) between a
ductile metal film and a polymer substrate is used. Cordill et al. proposed a model that
permits the calculation of interface adhesion energy using only the geometry (height and
width) of the forming buckles [6,7]. Therefore, we tried to use the combination of Ti and Cr
to explore the strain characteristics under tension on the flexible polyimide. Strain gauge is
a technique to measure microstrain, which includes complex use of resistance with strain
direction. The main working principle of strain gauge is that change in resistance occurs
when some materials are under stress [8,9]. Materials usually have different resistance
values and can be accurately measured using the Wheatstone bridge circuit [10] at the
location where the strain gauge is connected.

Recently, Canavese et al. [11] presented flexible and easy conformable piezo-resistive
material composed of Nickel and variable polymer bases with optimized micro-casting and
hot embossing techniques and achieved up to nine orders of electrical resistance change
when subjected to a mechanical pressure, providing a suitable tactile sensing ability on
robot surface. Silver nanomaterials (AgNMs) have also been reported in the flexible strain
sensor [12]. It has not only excellent electrical conductivity but also flexibility because of
nanoscale size effects. Polycrystalline silicon film was developed on a flexible polyimide
substrate using aluminum-induced crystallization process for biomedical pressure and
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temperature sensing applications [13]. Vaz et al. reported on the development of piezore-
sistive TixCuy thin films, deposited on polymeric substrates (PET) [14]. Based on literature
study, works on Ti/Cr/Ti multilayers on polyimide substrate are a few. This fact motivates
the current work, which discusses the electrical, mechanical, and force sensing properties
of the Ti/Cr/Ti structure. This sandwich structure is similar to the tri-layer films, which
are previously studied for mechanical properties [15]. Moreover, the Cr layer has lower
resistivity and high adhesion with Ti. Therefore, in this study, Ti/Cr/Ti multilayer films
were deposited via E-gun evaporation system to determine the influence of the Cr interlayer
on the properties of Ti films. The Ti/Cr/Ti structure has a potential as a sensing electrode in
strain gauge applications.

2. Materials and Methods

This strain gauge sensor adopts metal as the sensor material, and it uses lift-off pat-
terning process with photomask. Ti/Cr/Ti multilayer films were deposited on a polyimide
substrate (HN Kapton) using a Ti metal target (purity: 99.99%) and Cr metal targets (purity:
99.99%) in an evaporation system. The process dimension of the polyimide substrate is
10 × 10 cm2. Titanium and chromium metals are placed in two molybdenum crucibles
with a capacity of 10 cc, and cross-rotation is used as coating position. The voltage of the
electron gun is 6000 V, the current is about 0.04 A, the distance between the evaporation
source and the test piece is about 60 cm, and the rotation speed of the stage is 10 rpm.
Initially, the evaporating chamber was evacuated to a base pressure of 5 × 10−6 Torr with
cryo-pump and working pressure of about 5 × 10−5 torr. The upper and lower metal (Ti)
and intermediate metal (Cr) layer were deposited with the same growth rate of 0.1 nm/s.
The thickness of Cr and Ti are Ti/Cr/Ti = 60/30/60, 50/50/50, 40/70/40, and the total
metal thickness is about 150 nm. Finally, a layer of SiO2 protective layer is attached to
the electrode by plasma-assisted chemical vapor deposition (PECVD) system to prevent
scratching or external pollution. The process flow is shown in Figure 1.

Micromachines 2021, 12, x FOR PEER REVIEW 2 of 9 
 

 

polyimide substrate using aluminum-induced crystallization process for biomedical pres-
sure and temperature sensing applications [13]. Vaz et al. reported on the development of 
piezoresistive TixCuy thin films, deposited on polymeric substrates (PET) [14]. Based on 
literature study, works on Ti/Cr/Ti multilayers on polyimide substrate are a few. This fact 
motivates the current work, which discusses the electrical, mechanical, and force sensing 
properties of the Ti/Cr/Ti structure. This sandwich structure is similar to the tri-layer 
films, which are previously studied for mechanical properties [15]. Moreover, the Cr layer 
has lower resistivity and high adhesion with Ti. Therefore, in this study, Ti/Cr/Ti multi-
layer films were deposited via E-gun evaporation system to determine the influence of the 
Cr interlayer on the properties of Ti films. The Ti/Cr/Ti structure has a potential as a sens-
ing electrode in strain gauge applications. 

2. Materials and Methods 
This strain gauge sensor adopts metal as the sensor material, and it uses lift-off pat-

terning process with photomask. Ti/Cr/Ti multilayer films were deposited on a polyimide 
substrate (HN Kapton) using a Ti metal target (purity: 99.99%) and Cr metal targets (pu-
rity: 99.99%) in an evaporation system. The process dimension of the polyimide substrate 
is 10 × 10 cm2. Titanium and chromium metals are placed in two molybdenum crucibles 
with a capacity of 10 cc, and cross-rotation is used as coating position. The voltage of the 
electron gun is 6000 V, the current is about 0.04 A, the distance between the evaporation 
source and the test piece is about 60 cm, and the rotation speed of the stage is 10 rpm. 
Initially, the evaporating chamber was evacuated to a base pressure of 5 × 10−6 Torr with 
cryo-pump and working pressure of about 5 × 10−5 torr. The upper and lower metal (Ti) 
and intermediate metal (Cr) layer were deposited with the same growth rate of 0.1 nm/s. 
The thickness of Cr and Ti are Ti/Cr/Ti = 60/30/60, 50/50/50, 40/70/40, and the total metal 
thickness is about 150 nm. Finally, a layer of SiO2 protective layer is attached to the elec-
trode by plasma-assisted chemical vapor deposition (PECVD) system to prevent scratch-
ing or external pollution. The process flow is shown in Figure 1. 

 
Figure 1. Lift-off process for strain gauge. 

The structures of Ti/Cr/Ti multilayer films were measured by scanning electron mi-
croscopy (SEM, Hitachi SU8000, Tokyo, Japan). Using multi-function power meter (The 
model is KEITHLEY 2400), the resistance signal value was captured, and then using the 
computer software (NI LabVIEW), the measurement results were analyzed and displayed. 
Servo-controlled vertical automatic testing machine (model JSV-H1000), which uses the 
tension gauge function where its maximum load test can reach 1 kN, along with the soft-
ware SOP-EG1, can define the test speed, test range, holding time, interval time, and re-
peatability test. 

Sputtered TiCoating PR in PI

Exposure

Remove PRPlating protective layer Sputtered Cr

Development 

Sputtered Ti

Mask

PR- Photoresist PI- Polyimide

Figure 1. Lift-off process for strain gauge.

The structures of Ti/Cr/Ti multilayer films were measured by scanning electron
microscopy (SEM, Hitachi SU8000, Tokyo, Japan). Using multi-function power meter
(The model is KEITHLEY 2400), the resistance signal value was captured, and then using the
computer software (NI LabVIEW), the measurement results were analyzed and displayed.
Servo-controlled vertical automatic testing machine (model JSV-H1000), which uses the
tension gauge function where its maximum load test can reach 1 kN, along with the
software SOP-EG1, can define the test speed, test range, holding time, interval time, and
repeatability test.
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3. Results and Discussion

A miniature strain gauge was created to have a high gauge factor using the Ti/Cr/Ti
multilayer films, as shown in Figure 2a. The dimensions of the strain gauge are shown in
Figure 2a, the number of loops is 9, the gauge length is 3 mm, and w is the track width,
which is 100 µm. The size of a single strain gauge is 13 × 3.5 mm2. Figure 2b shows the
flexibility test of the strain gauge with the hand. For direct measurement, strain gauge was
employed on acrylic beam as shown in Figure 2c. Standard measures were carried out to
fix the strain gauge sensor to acrylic beam surface. The standard epoxy was then applied
to the acrylic beam surface and sensor and allowed to dry for some time.
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Figure 2. (a) Image of a fabricated strain gauge sensor with an area of 13 × 3.5 mm2. (b) The flexibility
test of the strain gauge with the hand. (c) The strain gauge sensor employed on acrylic beam.

The designed strain gauge sensor is an I-shaped structure, and the material used is
acrylic. Its thickness is 1 mm, designed middle width is 5 mm, and total length is 45 mm. In
this study, ANSYS software was used for simulation analysis and the optimization design
of tensile test piece graphics as shown in Figure 3. In the ANSYS software, the material
parameter is selected as Poisson’s ratio, which is 0.32, and used a uniaxial force of 45 N for
the tensile test. When both sides are fixed and force is applied on one side in the horizontal
direction, the strain value at the middle part of the object was measured to be 0.001252. The
I-shaped structure of tensile design is used as the base plate for sticking the strain gauge.

The constant cross-section of the strain gauge microsensor of Ti Cr composite metal
was photographed by SEM with energy of 5 kV. The structure of the strain gauge microsen-
sor of Ti Cr composite metal is a sandwich structure. The metal used in the first layer and
the third layer is titanium with thickness of 47.6 and 47.5 nm, respectively. The metal used
in the intermediate layer is chromium with thickness of 46.5 nm. The thickness of Ti/Cr/Ti
= 50/50/50 nm can be seen in Figure 4a,b, which shows that there are only two major
peaks of titanium and chromium in EDs material analysis of titanium chromium composite
strain gauge microsensor.
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The relationship between resistance and strain during tensile test of different compos-
ite films are shown in Figure 5. All the strain gauge sensors have undergone five different
tensile tests with a thickness of 150 nm and the range of strain is from 0 to 0.0034 as shown.
In the pure titanium strain gauge, it can be observed that when the tensile specimen is
subjected to positive strain in Figure 5a, its resistance value is slowly raised, while on
the other hand, when the strain is unloading, its resistance value is slowly returned to
the original value, but the rising trend is significantly different from the recovery trend.
Thus, it is concluded that the rising trend and recovery trend are nonlinear, and there is
an obvious hysteresis loop phenomenon. Figure 5b shows that the total thickness of the
strain gauge microsensor of titanium chromium composite metal (60/30/60 nm) is about
150 nm. When the tensile specimen is subjected to positive strain, its resistance value is
slowly raised, whereas when strain is unloading, its resistance value is slowly returned
to the original value, and the rising trend is similar to the recovery trend, but there are
still some microhysteresis loops. Figure 5c shows that the resistance-strain curve of Ti
Cr composite metal (50/50/50 nm) is close to a straight line, and the phenomenon of
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hysteresis loop gradually disappears after the test of strain gauge sensor. When it comes to
the Ti–Cr–Ti composite metal (40/70/40 nm), the overlapping resistance-strain straight
line can be obtained. It is clear from the Figure 5d that strain gauge sensor showed good
resistance-strain properties when the thickness of Cr is increased.
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films: (a) pure Ti, (b) Ti/Cr/Ti, (60/30/60), (c) Ti/Cr/Ti (50/50/50), and (d) Ti/Cr/Ti (40/70/40).

To determine the sensitivity of these strain gauges, the relative change in resistance
(∆R/R) was measured as a function of mechanical strain (ε) in Figure 6. The sensitivity was
defined using the so-called gauge factor (GF), which was expressed using the following
formula:

GF =

(
∆R
R

)
/ε, (1)

where R refers to the initial resistance, ε refers to the mechanical strain of the sensor, and
∆R refers to the amount of change in resistance after the sensor is stretched. After five times
forward strain, average of strain gauge sensor is used, the strain factor can be obtained
according to the regression curve result calculated from Equation (1) in Figure 6a–d. From
the result in Figure 6a, it can be observed that the average regression curve of pure titanium
strain gauge is nonlinear, but it is a parabola figure of quadratic program. According to the
principle of strain gauge measurement, the differential resistance value must be linear to
meet the demand of strain gauge. Therefore, pure titanium is not suitable for strain gauge.
Figure 6b shows that the regression curve of strain gauge sensor of Ti/Cr/Ti (60/30/60)
composite metal is linear, and its GF value ranges from 4.14 to 4.48. The average value of
GF is 4.24. Figure 6c,d shows the average regression curve of different Ti/Cr/Ti composite
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metals, which also shows a linear change. The average GF of Ti/Cr/Ti (50/50/50) and
Ti/Cr/Ti (40/70/40) are 3.38 and 2.31, respectively.
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The measurement result of the periodic resistance change of the strain gauge is shown
in Figure 7. The resistance value after the maximum strain is about 27.62 kΩ, and the
resistance value after recovery is about 27.05 kΩ as shown in Figure 7a. Although the pure
titanium resistance can return to its original value, there is no linear rule for the change of
resistance with time. In the Figure 7b, Ti/Cr/Ti (60-30-60 nm) means that the thickness of Ti
and Cr are 60 and 30 nm, respectively. However, when the strain gauge sensor of Ti/Cr/Ti
composite metal is tested for seven times, it can be observed that the maximum resistance
value of the tensile specimen under positive strain is almost the same, and the resistance
value after unloading strain also returned to the original value. Therefore, the strain gauge
sensor of Ti/Cr/Ti composite metal has good recovery, as shown in Figure 7b–d.

The stability of strain gauge sensors of pure Ti (150) and Ti/Cr/Ti (60/30/60) was
tested. In Figure 8a,b, when the tensile specimens were subjected to positive strain to the
maximum strain and then unloaded strain to no strain, it was stagnant for 100 s. It was
observed that the stability of multilayer strain gauge sensor was better than that of pure
titanium strain gauge sensor.
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It is reported that Ti/Cr interface has good adhesion and can be deposited by vacuum
evaporation. According to the literature study, the resistivity of Cr is 1.3 × 10−7 Ω m and
that of Ti is 4.3 × 10−7 Ω m. Cr has a lower resistivity than Ti. In this study, the resistance
of pure titanium is about 27 kΩ. When the interlayer Cr thickness was increased from 0 to
70 nm, the resistance decreased from 27 to 8.8 kΩ, as shown in Table 1. Therefore, as the
thickness of Cr increases, the resistance trend decreased obviously. On the other hand, the
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increase in Cr thickness also caused the decrease in GF value. Li et al. studied that the 30 nm
Au thin films typically have the resistance of 110 Ω with a gauge factor of 2.6 [16]. In this
study, the average GF of Ti/Cr/Ti (50/50/50) is 3.38, which is higher than the gold film.

Table 1. Resistance and gauge factor (GF) in various sensing material.

Metal Material Thickness (nm) Resistance (ohm) Gauge Factor (GF)

Pure Ti 150 27,050 -
Ti/Cr/Ti 60-30-60 12,610 4.24
Ti/Cr/Ti 50-50-50 9801 3.38
Ti/Cr/Ti 40-70-40 8811 2.31

4. Conclusions

In this study, we have successfully developed a flexible multi-layer metal strain gauge
based on polyimide substrate. The experimental results of pure titanium single-layer strain
gauge show that the change of resistance value is nonlinear compared with the result
of initial resistance value and strain, so it cannot be used as a strain gauge. We used the
sandwich electrode structure of titanium chromium titanium, fixed its total thickness, and
changed the thickness of chromium to find the best parameters. The results show that the
recovery test and stability of the electrode are improved after adding Cr. The GF value
decreased from 4.24 to 2.31 with the increase in the thickness of Cr interlayer from 30 to
70 nm, and the hysteresis phenomenon also disappeared gradually. It is concluded that it
has good strain gauge application with the increase in Cr content.
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