CPW-Fed Flexible Ultra-Wideband Antenna for IoT Applications
Abstract
1. Introduction
2. Antenna Design and Analysis
3. Fabrication of the Antenna
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mustaqim, M.; Khawaja, B.A.; Chattha, H.T.; Shafique, K.; Zafar, M.J.; Jamil, M. Ultra-Wideband Antenna for Wearable Internet of Things Devices and Wireless Body Area Network Applications. Int. J. Numer. Model. Electron. Netw. Devices Fields 2019, 32. [Google Scholar] [CrossRef]
- Kirtania, S.G.; Riheen, M.A.; Kim, S.U.; Sekhar, K.; Wisniewska, A.; Sekhar, P.K. Inkjet Printing on a New Flexible Ceramic Substrate for Internet of Things (IoT) Applications. Micromachines 2020, 11, 841. [Google Scholar] [CrossRef]
- Saha, T.K.; Knaus, T.N.; Khosla, A.; Sekhar, P.K. A CPW-Fed Flexible UWB Antenna for IoT Applications. Microsyst. Technol. 2018. [Google Scholar] [CrossRef]
- Hasan, M.M.; Faruque, M.R.I.; Islam, M.T. Thin-Layer Dielectric and Left-Handed Metamaterial Stacked Compact Triband Antenna for 2 GHz to 4 GHz Wireless Networks. J. Electron. Mater. 2019, 48, 3979–3990. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rahman, M.; Faruque, M.R.I.; Islam, M.T. Bandwidth Enhanced Metamaterial Embedded Inverse L-Slotted Antenna for WiFi/WLAN/WiMAX Wireless Communication. Mater. Res. Express 2019, 6, 085805. [Google Scholar] [CrossRef]
- Hasan, M.M.; Faruque, M.R.I.; Islam, M.T. Dual Band Metamaterial Antenna For LTE/Bluetooth/WiMAX System. Sci. Rep. 2018, 8, 1240. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rahman, M.; Faruque, M.R.I.; Islam, M.T.; Khandaker, M.U. Electrically Compact SRR-Loaded Metamaterial Inspired Quad Band Antenna for Bluetooth/WiFi/WLAN/WiMAX System. Electronics 2019, 8, 790. [Google Scholar] [CrossRef]
- Mahfuz Tamim, A.; Mehedi Hasan, M.; Rashed Iqbal Faruque, M.; Tariqul Islam, M.; Nebhen, J. Polarization-Independent Symmetrical Digital Metasurface Absorber. Results Phys. 2021, 103985. [Google Scholar] [CrossRef]
- Hirt, W. Ultra-Wideband Radio Technology: Overview and Future Research. Comput. Commun. 2003, 26, 46–52. [Google Scholar] [CrossRef]
- Ramos, A.; Lazaro, A.; Girbau, D.; Villarino, R. Introduction to RFID and Chipless RFID. In RFID and Wireless Sensors Using Ultra-Wideband Technology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–18. ISBN 978-1-78548-098-0. [Google Scholar]
- Alam, M.J.; Faruque, M.R.I.; Hasan, M.M.; Islam, M.T. Split Quadrilateral Miniaturised Multiband Microstrip Patch Antenna Design for Modern Communication System. IET Microw. Antennas Propag. 2017, 11, 1317–1323. [Google Scholar] [CrossRef]
- Anveshkumar, N.; Gandhi, A.S. Lumped Equivalent Models of Narrowband Antennas and Isolation Enhancement in a Three Antennas System. Radioengineering 2018, 27, 646–653. [Google Scholar] [CrossRef]
- Davoli, L.; Belli, L.; Cilfone, A.; Ferrari, G. From Micro to Macro IoT: Challenges and Solutions in the Integration of IEEE 802.15.4/802.11 and Sub-GHz Technologies. IEEE Internet Things J. 2018, 5, 784–793. [Google Scholar] [CrossRef]
- Gao, G.-P.; Hu, B.; Wang, S.-F.; Yang, C. Wearable Circular Ring Slot Antenna with EBG Structure for Wireless Body Area Network. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 434–437. [Google Scholar] [CrossRef]
- Kang, C.-H.; Wu, S.-J.; Tarng, J.-H. A Novel Folded UWB Antenna for Wireless Body Area Network. IEEE Trans. Antennas Propag. 2012, 60, 1139–1142. [Google Scholar] [CrossRef]
- Islam, M.; Islam, M.; Samsuzzaman, M.; Faruque, M.; Misran, N. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications. Sensors 2015, 15, 11601–11627. [Google Scholar] [CrossRef] [PubMed]
- Dumoulin, A.; John, M.; Ammann, M.J.; McEvoy, P. Optimized Monopole and Dipole Antennas for UWB Asset Tag Location Systems. IEEE Trans. Antennas Propag. 2012, 60, 2896–2904. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, L.; Chen, Q.; Yang, W.; Qu, H. Flexible UWB Antenna Fabricated on Polyimide Substrate by Surface Modification and in Situ Self-Metallization Technique. Microelectron. Eng. 2019, 206, 12–16. [Google Scholar] [CrossRef]
- Fang, R.; Song, R.; Zhao, X.; Wang, Z.; Qian, W.; He, D. Compact and Low-Profile UWB Antenna Based on Graphene-Assembled Films for Wearable Applications. Sensors 2020, 20, 2552. [Google Scholar] [CrossRef]
- Di Natale, A.; Di Giampaolo, E. A Reconfigurable all-Textile Wearable UWB Antenna. Prog. Electromagn. Res. C 2020, 103, 31–43. [Google Scholar] [CrossRef]
- Veeraselvam, A.; Mohammed, G.N.A.; Savarimuthu, K.; Marimuthu, M.; Balasubramanian, B. Polarization Diversity Enabled Flexible Directional UWB Monopole Antenna for WBAN Communications. Int. J. RF Microw. Comput. Aided Eng. 2020, 30. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Yang, Z.; Qu, X.; Zong, W. A Coplanar Waveguide-fed Flexible Antenna for Ultra-wideband Applications. Int. J. RF Microw. Comput. Aided Eng. 2020, 30. [Google Scholar] [CrossRef]
- El Gharbi, M.; Martinez-Estrada, M.; Fernández-García, R.; Ahyoud, S.; Gil, I. A Novel Ultra-Wide Band Wearable Antenna under Different Bending Conditions for Electronic-Textile Applications. J. Text. Inst. 2020, 1–7. [Google Scholar] [CrossRef]
- Hasan, M.R.; Riheen, M.A.; Sekhar, P.; Karacolak, T. Compact CPW-fed Circular Patch Flexible Antenna for Super-wideband Applications. IET Microw. Antennas Propag. 2020, 14, 1069–1073. [Google Scholar] [CrossRef]
- Lakrit, S.; Das, S.; Ghosh, S.; Madhav, B.T.P. Compact UWB Flexible Elliptical CPW-fed Antenna with Triple Notch Bands for Wireless Communications. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22201. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Ye, Q. A CPW-Fed Circular Wide-Slot UWB Antenna with Wide Tunable and Flexible Reconfigurable Dual Notch Bands. Sci. World J. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Chen, S.J.; Kaufmann, T.; Shepherd, R.; Chivers, B.; Weng, B.; Vassallo, A.; Minett, A.; Fumeaux, C. A Compact, Highly Efficient and Flexible Polymer Ultra-Wideband Antenna. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1207–1210. [Google Scholar] [CrossRef]
- Khaleel, H.R.; Al-Rizzo, H.M.; Rucker, D.G.; Mohan, S. A Compact Polyimide-Based UWB Antenna for Flexible Electronics. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 564–567. [Google Scholar] [CrossRef]
- Hosseini Varkiani, S.M.; Afsahi, M. Compact and Ultra-Wideband CPW-Fed Square Slot Antenna for Wearable Applications. AEU Int. J. Electron. Commun. 2019, 106, 108–115. [Google Scholar] [CrossRef]
- Wang, F.; Arslan, T. A Wearable Ultra-Wideband Monopole Antenna with Flexible Artificial Magnetic Conductor. In Proceedings of the 2016 Loughborough Antennas & Propagation Conference (LAPC) IEEE Loughborough, Leicestershire, UK, 14–15 November 2016; pp. 1–5. [Google Scholar]
- Liu, W.-C.; Kao, P.-C. CPW-Fed Triangular Monopole Antenna for Ultra-Wideband Operation. Microw. Opt. Technol. Lett. 2005, 47, 580–582. [Google Scholar] [CrossRef]
- Das, S.; Islam, H.; Bose, T.; Gupta, N. Ultra Wideband CPW-Fed Circularly Polarized Microstrip Antenna for Wearable Applications. Wirel. Pers. Commun. 2019, 108, 87–106. [Google Scholar] [CrossRef]
- Elmobarak, H.A.; Rahim, S.K.A.; Castel, X.; Himdi, M. Flexible Conductive Fabric/E-glass Fibre Composite Ultra-Wideband Antenna for Future Wireless Networks. IET Microw. Antennas Propag. 2019, 13, 455–459. [Google Scholar] [CrossRef]
- Jalil, M.E.; Rahim, M.K.A.; Samsuri, N.A.; Dewan, R.; Kamardin, K. Flexible Ultra-Wideband Antenna Incorporated with Metamaterial Structures: Multiple Notches for Chipless RFID Application. Appl. Phys. A 2017, 123, 48. [Google Scholar] [CrossRef]
- Hakimi, S.; Rahim, S.K.A.; Abedian, M.; Noghabaei, S.M.; Khalily, M. CPW-Fed Transparent Antenna for Extended Ultrawideband Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1251–1254. [Google Scholar] [CrossRef]
- Nie, L.Y.; Lin, X.Q.; Yang, Z.Q.; Zhang, J.; Wang, B. Structure-Shared Planar UWB MIMO Antenna with High Isolation for Mobile Platform. IEEE Trans. Antennas Propag. 2019, 67, 2735–2738. [Google Scholar] [CrossRef]
- Hsu, H.S.; Chang, K. Ultra-Thin CPW-Fed Rectangular Slot Antenna for UWB Applications. In Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, 9–14 July 2006; pp. 2587–2590. [Google Scholar]
- Kumar, V.; Gupta, B. On-Body Measurements of SS-UWB Patch Antenna for WBAN Applications. AEU Int. J. Electron. Commun. 2016, 70, 668–675. [Google Scholar] [CrossRef]
- Riheen, M.A.; Saha, T.K.; Sekhar, P.K. Inkjet Printing on PET Substrate. J. Electrochem. Soc. 2019, 166, B3036–B3039. [Google Scholar] [CrossRef]
- Singhal, S.; Singh, A.K. CPW-fed Hexagonal Sierpinski Super Wideband Fractal Antenna. IET Microw. Antennas Propag. 2016, 10, 1701–1707. [Google Scholar] [CrossRef]
- Jianxin, L.; Chiau, C.C.; Xiaodong, C.; Parini, C.G. Study of a Printed Circular Disc Monopole Antenna for UWB Systems. IEEE Trans. Antennas Propag. 2005, 53, 3500–3504. [Google Scholar] [CrossRef]
- De Cos Gómez, M.E.; Fernández Álvarez, H.; Puerto Valcarce, B.; García González, C.; Olenick, J.; Las-Heras Andrés, F. Zirconia-Based Ultra-Thin Compact Flexible CPW-Fed Slot Antenna for IoT. Sensors 2019, 19, 3134. [Google Scholar] [CrossRef]
- Dahele, J.S.; Mitchell, R.J.; Luk, K.M.; Lee, K.F. Effect of Curvature on Characteristics of Rectangular Patch Antenna. Electron. Lett. 1987, 23, 748. [Google Scholar] [CrossRef]
- Rizwan, M.; Sydänheimo, L.; Ukkonen, L. Impact of Bending on the Performance of Circularly Polarized Wearable Antenna. In Proceedings of the Progress in Electromagnetics Research Symposium, Prague, Check Republic, 6–11 July 2015; pp. 732–737. [Google Scholar]
- Ooi, P.C.; Selvan, K.T. THE Effect of Ground Plane on the Performance of a Square Loop CPW-FED Printed Antenna. Prog. Electromagn. Res. Lett. 2010, 19, 103–111. [Google Scholar] [CrossRef]
- Katehi, P.; Alexopoulos, N. On the Effect of Substrate Thickness and Permittivity on Printed Circuit Dipole Properties. IEEE Trans. Antennas Propag. 1983, 31, 34–39. [Google Scholar] [CrossRef]
- Kirtania, S.G.; Elger, A.W.; Hasan, M.R.; Wisniewska, A.; Sekhar, K.; Karacolak, T.; Sekhar, P.K. Flexible Antennas: A Review. Micromachines 2020, 11, 847. [Google Scholar] [CrossRef] [PubMed]
Reference | Flexibility | Size (mm2) | Operating Range (GHz) | FBW % | Peak Gain (dB) | Material | |
---|---|---|---|---|---|---|---|
Rabiul et al. [24] | 3.2 | ✓ | 34 × 25 | 1.66–16.1 | 188.5 | 4.91 | PET Paper |
Lakrit et al. [25] | 2.08 | ✓ | 45 × 35 | 1.20–13.0 | 166.2 | 5.40 | Teflon |
Li et al. [26] | 2.65 | ✓ | 32 × 24 | 2.70–12.0 | - | 3.80 | - |
Chen et al. [27] | 3.00 | ✓ | 23 × 20.2 | 3.00–20.0 | - | 4.40 | Tape |
Khaleel et al. [28] | 3.40 | ✓ | 47 × 33 | 2.20–14.3 | - | 4.95 | Kapton polyimide |
Zhang et al. [22] | 3.50 | ✓ | 38 × 30.4 | 2.85–19.4 | - | 4.15 | Kapton polyimide |
Varkiani and Afsahi [29] | 1.65 | ✓ | 23.5 × 22 | 3.20–16.3 | 135.0 | - | Cotton layer |
Wang and Arslan [30] | 3.20 | ✓ | 26 × 35.5 | 3.10–10.6 | - | - | Polyester |
Liu and Kao [31] | 4.40 | ✕ | 24 × 31 | 3.05–12.9 | - | 4.70 | FR4 |
Das et al. [32] | 3.20 | ✕ | 75 × 63 | 3.10–10.6 | 111.4 | 3.50 | Rogers RO4232 |
Elmobarak et al. [33] | 2.70 | ✓ | 40 × 40.5 | 3.30–12.0 | - | 4.90 | Composite laminate |
Jalil et al. [34] | 1.35 | ✓ | 30 × 40 | 3.00–12.0 | - | - | Fleece |
Hakimi et al. [35] | 3.24 | ✓ | 45 × 30 | 3.15–30.0 | 164 | 4.80 | PET |
Nie et al. [36] | 3.66 | ✕ | 110 × 120 | 3.00–10.00 | - | 6.00 | Rogers RO4350B |
Shih-Hsun Hsu and Kai Cheng. [37] | 2.90 | ✓ | 70 × 70 | 3.00–11.0 | - | 5.50 | Rogers 3850 |
Kumar and Gupta [38] | 3.48 | ✓ | 25 × 45 | 3.00–11.0 | - | 4.75 | RO4350b |
Parameters | Dimensions (mm) |
---|---|
47 | |
25 | |
19.84 | |
8.94 | |
21.79 | |
1.52 | |
8.1 | |
11.44 | |
0.2 | |
9.06 | |
0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirtania, S.G.; Younes, B.A.; Hossain, A.R.; Karacolak, T.; Sekhar, P.K. CPW-Fed Flexible Ultra-Wideband Antenna for IoT Applications. Micromachines 2021, 12, 453. https://doi.org/10.3390/mi12040453
Kirtania SG, Younes BA, Hossain AR, Karacolak T, Sekhar PK. CPW-Fed Flexible Ultra-Wideband Antenna for IoT Applications. Micromachines. 2021; 12(4):453. https://doi.org/10.3390/mi12040453
Chicago/Turabian StyleKirtania, Sharadindu Gopal, Bachir Adham Younes, Abdul Rakib Hossain, Tutku Karacolak, and Praveen Kumar Sekhar. 2021. "CPW-Fed Flexible Ultra-Wideband Antenna for IoT Applications" Micromachines 12, no. 4: 453. https://doi.org/10.3390/mi12040453
APA StyleKirtania, S. G., Younes, B. A., Hossain, A. R., Karacolak, T., & Sekhar, P. K. (2021). CPW-Fed Flexible Ultra-Wideband Antenna for IoT Applications. Micromachines, 12(4), 453. https://doi.org/10.3390/mi12040453