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Abstract: Two-dimensional (2D) MoS2 have attracted tremendous attention due to their potential
applications in future flexible high-frequency electronics. Bilayer MoS2 exhibits the advantages of
carrier mobility when compared with monolayer mobility, thus making the former more suitable for
use in future flexible high-frequency electronics. However, there are fewer systematical studies of
chemical vapor deposition (CVD) bilayer MoS2 radiofrequency (RF) transistors on flexible polyimide
substrates. In this work, CVD bilayer MoS2 RF transistors on flexible substrates with different gate
lengths and gigahertz flexible frequency mixers were constructed and systematically studied. The
extrinsic cutoff frequency (f T) and maximum oscillation frequency (f max) increased with reducing
gate lengths. From transistors with a gate length of 0.3 µm, we demonstrated an extrinsic f T of 4 GHz
and f max of 10 GHz. Furthermore, statistical analysis of 14 flexible MoS2 RF transistors is presented in
this work. The study of a flexible mixer demonstrates the dependence of conversion gain versus gate
voltage, LO power and input signal frequency. These results present the potential of CVD bilayer
MoS2 for future flexible high-frequency electronics.

Keywords: bilayer MoS2; CVD; high-frequency transistors; flexible electronics

1. Introduction

Owing to their ultimate thin thickness, superior mechanical flexibility and highly
tunable electronic performance, two-dimensional materials for flexible applications have
attracted tremendous attention [1–5]. Flexible transistors and devices based on 2D materials
with high-speed are easy integrated with mature silicon CMOS manufacturing systems and
can extend future flexible electronic systems even further with remote wireless capabilities.
Recently, numerous devices and circuits using graphene, black phosphorous (BP) and
molybdenum disulfide (MoS2) were demonstrated for radio-frequency flexible electron-
ics [6–13]. Graphene, which has an extraordinary carrier mobility of over 10,000 cm2/Vs
and a high saturation velocity, has caused many researchers to realize high-performance
flexible RF electronics with this extraordinary material. However, the current saturation
of graphene transistors is poor due to the lack of bandgap of graphene [1,14]. Therefore,
as a result, most graphene RF transistors may have a relatively lower f max, which limits
power gain at high frequency. On the other hand, BP has a sizeable bandgap and mod-
erate carrier mobility (1000 cm2/Vs), which makes it suitable for both low-power and
high-speed flexible devices [13,15,16]. However, its poor reliability and lack of large-area
high-quality growth capabilities are still the key technological barriers in BP high-frequency
electronics [17].
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Unlike graphene and BP, two-dimensional MoS2 with long-term air stability has a
sizable bandgap, relative moderate carrier mobility and saturation velocity, and large-area
growth capability. As an atomically thin semiconductor, 2D MoS2 have demonstrated great
potential for use in high-frequency electronics, next-generation logic circuits and flexible
electronics [9,18–22]. In 2014, radio-frequency transistors fabricated using exfoliated MoS2
demonstrated an extrinsic f T of 2.1 GHz and f max of 8 GHz on rigid Si/SiO2 substrates [22].
In the same year, exfoliated few-layer MoS2 RF transistors with self-aligned gates on rigid
quartz and flexible polyimide substrates were reported [9]. The frequency responses of the
self-aligned transistors on rigid quartz substrate showed an extrinsic f T of 10.2 GHz and
f max of 14.5 GHz; a gigahertz inverter and amplifier were also demonstrated. Additionally,
the frequency response of the self-aligned transistors on flexible PI substrate shown an
extrinsic f T and f max of 4.7 and 5.4 GHz, respectively. Recently, Zhang et al. presented
an flexible rectenna based on MoS2 high-frequency diodes with a cutoff frequency of
10 GHz [18]. Although these works have demonstrated the potential of high-frequency
MoS2 devices, exfoliated MoS2 lack precise control of flake size and thickness, which
hamper large-scale commercial manufacturing and applications [23,24].

Chemical vapor deposition (CVD) is a low-cost and important method to produce
large-area, high-quality MoS2 film. High-quality uniform CVD monolayer MoS2 film larger
than two inches has been growth by different groups [4,23–25]. In 2015, RF transistors
based on CVD monolayer MoS2 with an extrinsic f T of 2.8 GHz and f max of 3.6 GHz
were reported, and simple circuit demos, such as the megahertz MoS2 frequency mixer
and common-source amplifier, were also demonstrated [26]. As has been done with
exfoliated MoS2, optimized gate configuration was applied to CVD MoS2 transistors to
achieve higher cut-off frequencies [27]. With optimized embedded gate structure, CVD
monolayer MoS2 transistors with improved extrinsic f T of 3.3 GHz and f max of 9.8 GHz
were fabricated. Although the RF performance of CVD MoS2 transistors was advanced
with optimized device configuration, neither f T nor f max can reach the level of exfoliated
MoS2 transistors, which severely limits their high-frequency applications. Bilayer MoS2
usually has higher carrier mobility and higher density of states, which in turn will result
in superior performance over electronic devices based on monolayers [28–30]. In 2018,
CVD bilayer MoS2 RF transistors with extrinsic f T of 7.2 GHz and f max of 23 GHz were
demonstrated. For flexible high frequency transistors, extrinsic f T and f max of 2.7 and
2.1 GHz were obtained based on CVD monolayer MoS2 [11], and the extrinsic f T and
f max of 4 and 9 GHz were obtained based on CVD bilayer MoS2 [31]. Although flexible
MoS2 RF transistors based on CVD bilayer MoS2 have been demonstrated, there still
many problems that need to be investigated. The reported flexible CVD bilayer MoS2 RF
transistors only have one gate length. Its scaling behavior is still unexplored. Additionally,
statistical analysis of MoS2 flexible RF transistors with different gate lengths needs more
research, which is important to understand the uniformity of MoS2 RF transistors and
helpful to acquire deep insight into the limited factor of large-scale high performance MoS2
RF transistors [32].

In this work, a systematic study of CVD bilayer MoS2 RF transistors on flexible
substrates is presented. First, high-quality chemical vapor deposited bilayer MoS2 were
grown on molten glass and transferred onto a Si3N4/PI substrate. The fabrication process
of flexible high-frequency MoS2 transistors was presented. An extrinsic field-effect mobility
of 5 cm2/Vs and a high Ion/Ioff ratio of 108 were demonstrated with flexible bilayer MoS2
transistors. High-frequency measurements up to 10 GHz and statistical analysis were
carried out for 14 MoS2 RF transistors with gate lengths of 0.3 µm, 0.6 µm, and 1 µm. Cut-
off frequency and maximum oscillation frequency increased as the gate length was scaled
down. Extrinsic f T of 4 GHz and f max of 10 GHz were achieved for the 0.3 µm transistors.
Additionally, the transistors with larger gate length had better high-frequency performance
uniformity. Finally, conversion gain of gigahertz MoS2 frequency mixer versus gate voltage,
frequency and input power were systematically investigated.
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2. Materials and Methods
2.1. Material Growth and Characterization

The bilayer MoS2 films were grown on molten glass substrates using sulfur powders
and MoO3 powders as reaction precursors in a two-zone furnace. Then, an alumina
crucible with 1.4 g sulfur powder and a quartz crucible with 2 mg MoO3 precursor and
glass substrates were placed at the center of first and second heating zones, respectively.
The distance between the MoO3 precursor and glass substrates was about 2 mm. The
temperatures of the first and second zones were ramped to 230 ◦C and 830 ◦C, respectively.
During the ramping and growth process, a 40 sccm Ar flow was introduced as the carrier
gas, and the pressure within the quartz tube was controlled to 1 atm pressure. After a
growth duration of 10 min, the furnace was turned off, and the system began to cool
down. Figure 1a shows a typical optical microscopy of the bilayer; MoS2 with a triangular
shape shows a highly uniform color contrast in the bilayer region, indicating homogenous
thickness. The thickness and quality of the CVD bilayer MoS2 were then characterized by
an atomic force microscope (AFM), Raman spectroscopy and photoluminescence analyses.
Figure 1b shows the AFM image of the edge of the bilayer MoS2, and the corresponding
height profile presents a thickness of 1.34 nm [33]. As shown in Figure 1c, after being
transferred onto SiO2/Si substrates, the bilayer MoS2 shows typical Raman spectra with an
E1

2g peak of 385.7 cm−1 and A1g peak of 408.3 cm−1. The delta value between the E1
2g and

A1g peaks is 22.6 cm−1, which is consistent with previous reports of bilayer MoS2 [34–36].
The typical photoluminescence (PL) spectrum of the bilayer MoS2 is shown in Figure 1d,
where the peaks at around 665 and 618 nm correspond to the A1 and B1 direct excitonic
transitions at 1.86 and 2.01 eV, respectively [31,37]. What’s more, as shown in Figure S1,
further elemental analysis of the CVD-grown MoS2 was studied by X-ray photoelectron
spectroscopy (XPS). More details about material characterizations of CVD-grown MoS2
can be found in our previous works [31].

Figure 1. (a) Optical micrograph of chemical vapor deposition (CVD) bilayer MoS2 on molten glass.
(b) Atomic force microscopy image of bilayer MoS2 on SiO2/Si substrates after transfer. Raman (c)
and photoluminescence (PL) spectra (d) of high-quality CVD bilayer MoS2.

2.2. Device Fabrication

Figure 2 shows the fabrication process flows and device schematic of the bilayer MoS2
RF devices on flexible polyimide substrates. Prior to fabrication, the commercially available
PI substrates (Dupont Kapton 500HN) were cleaned in acetone, isopropyl alcohol (IPA)
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and deionized water. To reduce the surface roughness, 100 nm of Si3N4 were deposited
by plasma-enhanced CVD (PECVD). Then, bilayer MoS2 films were transferred onto poly-
imide substrates via the polymethyl methacrylate (PMMA)-assisted transfer method [23,25].
Different from conventional acidic or alkaline solutions as etchant, deionized water was
utilized here for the hydrophobicity/hydrophilicity property of the as-grown MoS2/glass
stack. As shown in Figure 3a, the high-quality triangle shape of bilayer MoS2 was well pre-
served, which is important for the fabrication of high-performance MoS2 transistors. After
the transfer process, bilayer MoS2 films were patterned with an electron beam lithography
(EBL) step and etched using O2/Ar plasma. Source and drain contact electrodes were
formed by electron beam evaporation (EBE) with 20/60-nm Ni/Au metal stacks. To form a
uniform top-gate dielectric, 2-nm Al was grown by EBE as a seed layer before the atomic
layer deposition of HfO2. Finally, the two-fingers top-gate electrode of 20/60-nm Ni/Au
was defined by EBL and deposited by EBE. The high-frequency bilayer MoS2 transistors
on flexible PI substrates after fabrication are shown in Figure 3b,c. In this work, the MoS2
RF transistors are designed with different gate lengths of 0.3 µm, 0.6 µm, and 1 µm and
the same gate width of 2 × 15 µm. Figure 3d shows an optical microscope of a device
with a gate length of 1 µm, exhibiting the precise alignment of the gate structure to the
source/drain area. From the theory of high-frequency electronics, both gate to drain/source
capacitance Cgd/Cgs and series resistance are critical factors in high-performance RF tran-
sistors. In this device design, there is no overlap between gate and source/drain electrodes
to avoid excess Cgd and Cgs. Additionally, the gate to source/drain access lengths Lgs and
Lgd are minimized to decrease the series resistance.

Figure 2. (a) Process flows and (b) schematic cross-section of the fabricated flexible bilayer MoS2

RF transistors.

Figure 3. (a) The transferred bilayer MoS2 on polyimide substrates. (b) Optical images of the
fabricated flexible MoS2 RF transistors. (c,d) Optical images of the flexible MoS2 RF transistor with
ground-signal-ground (GSG) structure showing excellent alignment.
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3. Results and Discussion
3.1. DC Characterization

Figure 4a,b shows the measured transfer and output characteristics of CVD bilayer
MoS2 transistors on polyimide substrates. A high Ion/Ioff ratio of 108 is achieved, making
these devices ideal for ultra-low power applications. The extrinsic low-field effect mobility
of 5 cm2/Vs is extracted. Here, we note that the extracted mobility value is underestimated
as there is a non-negligible contact resistance contribution to the total device resistance. The
intrinsic mobility of our bilayer MoS2 on rigid substrates is calculated to be 36 cm2/Vs [31].
The degradation of mobility can be attributed to the increased surface roughness and
poor thermal conductivity of organic flexible substrates. The output characteristics of
bilayer MoS2 transistors on polyimide shows applicable current saturation. An on-current
density of 30 µA/µm was demonstrated with the Lg = 1 µm device. For comparison, we
also fabricated flexible monolayer MoS2 transistors on polyimide substrates. An extrinsic
carrier mobility of 0.2 cm2/Vs and an on-current density of 1.2 µA/µm were obtained
with the same gate length, showing the superiority of CVD bilayer MoS2 for flexible
electronic applications.

Figure 4. (a) Transfer characteristics at Vds = 50 mV and 1 V. Ion/Ioff ratio are about 108, making these
devices ideal for ultra-low power applications. (b) Output characteristics of flexible CVD bilayer
MoS2 transistors at various Vg.

3.2. RF Characterization

Cutoff frequency f T and maximum oscillation frequency f max are commonly used
to characterize the high-frequency performance of RF transistors. f T corresponds to the
frequency where the short-circuit current gain becomes unity. From the small signal
equivalent circuit of the transistor, f T can be described using

fT =
gm

2π
∗ 1
(Cgs + Cgd)[1 + gds(Rs + Rd)] + Cgdgm(Rs + Rd)

(1)

where Cgs is the gate to source capacitance, Cgd is the gate to drain capacitance, gm is
the transconductance, gds is the output conductance, and Rs and Rd are the source and
drain series resistances, respectively. f max correspond to the frequency where the unilateral
power gain becomes unity. f max can be described using

fmax =
fT

2
√

gds(Rs + Rd) + 2π fTCgRg

(2)

where Rg is the gate resistance, which can be reduced through the increase of gate metal
area and thickness. To evaluate the high-frequency performance of the CVD bilayer
MoS2 transistors, standard on-chip S-parameter measurements up to 10 GHz were
performed. Figure 5a,b show the as-measured extrinsic small-signal current gain (|h21|)
and Mason’s unilateral power gain (U) as a function of frequency for the CVD bilayer
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MoS2 transistors. An extrinsic f T of 4 GHz and f max of 10 GHz were achieved where, as
shown in Table 1, the f max is the highest extrinsic maximum oscillation frequency among
flexible MoS2 RF transistors [9,11], demonstrating the potential of bilayer MoS2 for large-
scale, high-performance RF applications. What’s more, f max is also comparable to MoS2
transistors on rigid substrates with the same gate length [31]. This can be attributed to
the decreased high-frequency parasitic effect in insulating polyimide substrates, although
the roughness and poor thermal conductivity of polyimide substrates degrade the DC
transport performance of the MoS2 transistors [12].

Figure 5. (a) Small-signal current gain |h21| versus frequency of flexible MoS2 transistors with gate
lengths of 0.3 µm, 0.6 µm, and 1 µm. (b) The corresponding unilateral power gain versus frequency.

Table 1. Comparison of flexible high-frequency transistors based on 2D MoS2.

MoS2 Substrate Lg (nm) f T,extrinsic
(GHz)

f max,extrinsic
(GHz) References

Exfoliated PI 68 4.7 5.4 [9]
CVD PI 500 2.7 2.1 [11]
CVD PI 300 4 9 [31]
CVD PI 300 4 10 This Work

Figure 6, displaying the devices’ data, gives some insight into the statistical analysis
and scalability of CVD bilayer MoS2 RF transistors on flexible PI substrates. The extrinsic
f T and f max of 14 MoS2 devices with different gate lengths are plotted in Figure 6a,b,
respectively. Both f T and f max increase as the gate length decreases. Additionally, through
gate length scaling down, it is possible to further improve the f T and f max. Variations of f T
and f max within devices of the same gate length can be observed, especially for transistors
with a gate length of 0.3 µm. Here, we attribute these variations to the varied alignment
of gate and source/drain electrodes in the EBL process of short gate length transistors.
Since flexible organic substrates are not conductive and easily result in deformation, not all
devices in this work could realize the perfect alignment of gate and source/drain electrodes,
as shown in Figure 3d. Short gate length RF transistors are more prone to uniformity
problems. Therefore, the contact resistance, substrate roughness and fabrication process are
still critical limitations of flexible bilayer MoS2 RF transistors. It should be pointed out that
MoS2 transistors with 1T phase electrodes exhibiting contact resistance of 200–300 Ω·µm
have been demonstrated [38]. MoS2 polymorphs with diverse electrical properties and
their applications in high-frequency nanoelectronics are fascinating [18,38–43] and require
further investigation.
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Figure 6. Extrinsic f T and f max of 14 flexible MoS2 RF transistors. (a) Extrinsic f T as a function of gate
length. (b) Extrinsic f max as a function of gate length.

Although flexible MoS2 mixers have been demonstrated in previous work [11,31],
the frequency response and gate bias voltage dependence of flexible MoS2 mixers have
not been reported. In this work, active mixers based on flexible bilayer MoS2 transistors
were demonstrated and systematically researched. Mixer measurements were carried out
at room temperature with an RF input frequency of 1.5 GHz and local oscillation (LO)
frequency of 1.4 GHz. Figure 7a shows the measured IF output signal (0.1 MHz) using a
signal analyzer. The conversion gain versus the input frequency is plotted in Figure 7b.
When the input signal powers and f IF of 100 MHz are the same, conversion gain decreases
as frequency increase from 0.8 to 1.9 GHz. Figure 7c shows the conversion gain versus
LO power. A conversion gain of −52.3 dB could be achieved with f RF of 1.5 GHz. For
the flexible active MoS2 mixer, as shown in Figure 7d, gate bias voltage is important to
achieve the maximum conversion gain. This is because DC transconductance, the same
as cutoff frequency and maximum oscillation frequency, has a strong dependence on gate
bias voltage.

Figure 7. Gigahertz flexible MoS2 mixer. (a) Output frequency spectrum of the flexible MoS2 mixer.
(b) Conversion gain of MoS2 mixer versus input frequency. (c) Conversion gain of MoS2 mixer versus
local oscillation (LO) power. (d) Conversion gain of MoS2 mixer versus gate voltage.
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4. Conclusions

In this work, we constructed high-frequency transistors and gigahertz mixers on
flexible polyimide substrates based on CVD bilayer MoS2, and their high-frequency per-
formance was systematically assessed. Record extrinsic f max as high as 10 GHz have been
demonstrated with 0.3 µm devices. The scaling behavior of MoS2 RF transistors on flexible
polyimide substrates was studied, and the extrinsic f T and f max were increased as gate
length decreased, showing the potential for further improvement through decreasing the
gate lengths. Statistical analysis of 14 flexible MoS2 RF transistors with different gate length
showed RF performance variation in short gate length MoS2 transistors. We systematically
studied the dependence of flexible MoS2 mixer conversion gain on gate bias voltage, f RF
and LO power, addressing the importance of Vtg, LO power and f RF on high-performance
flexible MoS2 mixers. Our results advance the achieved maximum oscillation frequency
of flexible CVD MoS2 transistors and represent a step towards high-performance flexible
MoS2 wireless communications systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mi12040451/s1, Figure S1: (a) The XPS spectra of the Mo 3d state, (b) S 2s state.
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