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Abstract: Appropriate use of helmets as industrial personal protective gear is a long-standing
challenge. The dilemma for any user wearing a helmet is thermal discomfort versus the chances of
head injuries while not wearing it. Applying helmet microclimate psychrometry, we propose a logistic
regression- (LR) based machine learning (ML) algorithm coupled with low-cost and readily available
MEMS sensors to determine if a helmet was worn (W) or not worn (NW) by a human user. Experiment
runs involving human subject (S) and mannequin experiment control (C) groups were conducted
across no mask (NM) and mask (M) conditions. Only ambient-microclimate humidity difference
(AMHD) was a feasible parameter for helmet wearing determination with 71 to 85% goodness of fit,
72 to 76% efficacy, and distinction from control group. Ambient-microclimate humidity difference’s
rate of change (AMHDROC) had high correlation to helmet wearing and removal initiations and
was quantitatively better in all measures. However, its feasibility was doubtful for continuous use
beyond 1 min due to plateauing AMHD response. Experiments with control groups and temperature
measurement showed invariant response to helmet worn or not worn with goodness of fit and efficacy
consolidation to 50%. Results showed the algorithm can make helmet-wearing determinations with
combination of analysis and use of data that was individually authentic and non-identifiable. This
is an improvement as compared to state of the art skin-contact mechanisms and image analytics
methods in enabling safety enhancements through data-driven worker safety ownership.

Keywords: helmet; appropriate use; microclimate; machine learning; logistic regression

1. Introduction

Appropriate use of the helmet as safety protection against workplace related injuries
and deaths has long been a complex problem riddled with trite and questionable solutions.
Here, the term appropriate use distinguishes itself from the naïve compliance safety ap-
proach in having workers to wear helmet at all times. Wearing helmet at all times causes
thermal discomfort with heat and humidity building up on the user’s head [1], affecting
the user’s mental state and physical performance in the process. This is more exacerbated
in tropical countries like Singapore and its South East Asian neighbours, where experi-
enced temperature can be over 30 degrees Celsius with humidity ranging from 60 to 90%
RH. Research thus far [1–7] have focused on various cooling strategies and studies that
measured users’ thermal comfort and their work performance.

Anecdotal factors in workplace safety and health (WSH) play a significant role on top
of traditionally attractive approaches towards thermal comfort and human performance.
In hot and humid environments, an industrial safety helmet has to compete against masks
and balaclavas for head space. Sacrificing a mask for a helmet would be easy for safety
compliance, but it obscures a worker’s vision as perspiration can enter his eyes with little
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barrier. It can also increase his risk of skin-related occupational disease due to increased
direct sunlight exposure for prolonged durations. Conversely, sacrificing a helmet for
a mask would not only risk non-compliance and statutory penalties, but it also loses
mechanical impact protection that a helmet’s hard shell provides. Singapore, as part
of its forward-looking efforts, is targeting to implement best WSH practices by 2028 [8]
with strengthening safety ownership and technology-enabled WSH as two thirds of its
overall strategy. Part of safety ownership aims at facilitating worker involvement via safety
management, worker education, and unsafe work condition reporting systems as avenues
to achieve customized, last-mile WSH measures created by persons who have direct interest
in preserving themselves. However, evidence of such safety dilemmas remains hidden
when considered alongside workplace goals of remaining profitable despite a minority
of flouters, which effectively causes genuine work redesign suggestions or unsafe work
grievances to go undetected. This is where technology-enabled WSH can fill the gap with
data-driven research and innovation.

Our aim is to determine whether a helmet worn by a human subject using machine
learning (ML) algorithm(s) with low-cost and readily available MEMS sensors can leverage
individually authentic and non-identifiable helmet sensory information as a foundation
for a data-driven worker safety ownership solutions. Although helmet researchers re-
main split on various thermal comfort interventions, helmet microclimate psychrometric
response to helmet wearing consistently shows two distinct states between ambient and
helmet microclimate parameters [1,3,7] due to metabolism and perspiration dissipation
via a human wearer’s head. This provides an authentic and strong physiologically-based
phenomenon for helmet wearing determination [9–17]. Besides psychrometry, other helmet
safety research focused on enabling new levels of safety advisories by adding environ-
mental hazard sensors with communication devices to sense for increasing danger [18–20]
or brain-computer-interface with physiological sensors for emotion detection [21]. Fur-
thermore, application of ML in small-scale applications is a new development as recent
works explore fracture mechanics and additive manufacturing to overcome analytical and
empirical limitations when solving complex engineering problems [22,23].

Running ML algorithms with MEMS sensors and embedded computing platforms for
small-scale applications comes with the advantage of overcoming false responses created by
universally-prescribed fixed-decision thresholds failing to deal with localized deviations.
Instant ML modelling and predictions of immediate MEMS sensor measurements are
therefore well-positioned to facilitate calibrated decision thresholds’ creation and decision
making based on immediate local ground truths. At the same time, the solution must also
be cost effective for eventual commercial acceptance and be of appropriate form factor
for user acceptance. This is in contrast to recent technologies such as image analytics [24]
which requires a large number of cameras and direct view of sight which are impractical
in many worksites. Inherently, these bodies of works point to a research gap of using
binary output ML algorithm with ambient-microclimate difference (AMD) as input in
characterizing not worn (NW) and worn (W) states. If proven feasible, data logged will not
only detect helmet misuse but also suggest if a helmet may have been over-prescribed for
work, thus providing an unbiased and reliable database in guiding work redesign efforts
towards appropriate use.

The objective of this algorithm assessment study was to explore ML’s logistic regres-
sion (LR) modelling in helmet wearing determination by analyzing goodness of fit and
determination efficacies between human subject (S) and mannequin experiment control (C)
groups with respect to their ground truths. Two flouting scenarios were considered. First
scenario was represented by C group where a non–human object wears a helmet’s microcli-
mate at all times. The second scenario was represented by assembling a subject–control (SC)
group where a helmet was worn by a non–human object after proper calibration. No mask
(NM) and mask (M) runs were done for analysis under mask or balaclava conditions. Four
AMD psychrometric parameters were studied for feasibility; each parameter was used
independently in creating its LR model. They were as follows: (1) ambient-microclimate
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temperature difference (AMTD); (2) ambient-microclimate humidity difference (AMHD);
(3) ambient–microclimate temperature difference’s rate of change (AMTDROC); and (4)
ambient-microclimate humidity difference’s rate of change (AMHDROC). By our definition,
rate of change is a parameter’s derivative with respect to time.

Section 2 of this paper presents the methods and materials, detailing algorithm,
prototype, data collection scope, and experiment procedures. Section 3 covers results and
analysis. Section 4 concludes the study, highlighting significance to the industrial safety
helmet and safety landscape.

2. Methods and Materials
2.1. Helmet Microclimate Machine Learning Algorithm

Our proposed algorithm (Figure 1) uses a 2 min calibration phase to classify helmet
NW and W states into an immediate use LR ML model. Calibration phase duration was
based on statistically driven data sufficiency for each binary state. Using central limit
theorem (N ≥ 30), each binary state was to contain minimum 30 datapoints, creating
calibration requirement of at least 60 datapoints. Considering data refresh rate of low-cost
and readily-available MEMS sensors were 2 s and ideal calibration time should be as short
as possible, this resulted in a total calibration duration of 2 min which was practicable for a
worker who started making work preparations and was not too long as to impede work.
During calibration, the helmet started with NW state for the first minute followed by W
state in next minute, forming a data baseline for LR model calibration. Once calibrated,
the LR model was deployed for continuous monitoring. In continuous monitoring phase,
psychrometric measurements were taken continuously with each new measurement acting
as calibrated LR model’s input in determining output to be either 1 representing W state or
0 representing NW state.

In this study, four AMD psychrometric-based parameters were independently used
to generate their respective LR model. AMTD and AMHD were calculated by taking the
difference between ambient and microclimate sensor measurements. AMTDROC and
AMHDROC were calculated by subtracting respective AMTD and AMHD value from its
immediately preceding value; this difference was then divided by sensor’s refresh rate of
2 s. To implement this algorithm, LR ML used was from sci-kit-learn python ML library
with cross-fold validation (CV) set at 30 to randomize calibration data for a statistically
significant number of times in searching for the best LR model possible.

2.2. Helmet Dataloggers

The experimental setup utilized a data-logging helmet attachment with replaceable
MEMS sensors. To demonstrate preservation of helmet hard shell’s mechanical protection,
Future Assault Shell Technology (FAST) styled helmets with built-in velcro pads were used
to secure these attachments, as shown in Figure 2. Two identical helmets were used to facil-
itate experiment proceedings. Each data logger was assembled with a 10,000 mAh 5 V USB
powerbank battery and an Onion Omega 2 Plus single-board-computer (Onion Corporation,
Boston, MA, USA, average power use of 0.6 W), accompanied by Arduino–microcontroller
docker accessory (estimated average power use of 0.6 W) connected to two DHT–22 tem-
perature and humidity sensors (Aosong Electronics Co Ltd., Guangzhou, China, average
power use of 0.0033 W per sensor), as shown in Figure 3. One sensor was placed within
the helmet’s core to measure microclimate temperature (MT) and microclimate-relative
humidity (MH) while the other was placed at the helmet’s external surface to measure
ambient temperature (AT) and ambient-relative humidity (AH). Continuous use starting
with full battery charge was estimated at 41 h based on power specification and similar
prototypes having demonstrated 36 h of operation. To eliminate erroneously repeated
readings from influencing data’s statistical significance, data-loggers were synchronized to
record at DHT–22 sensor’s 2 s measurement refresh rate.
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Figure 1. Schematic of machine learning logistic algorithm for helmet wearing determination.

Figure 2. Photos of prototype of Future Assault Shell Technology (FAST) style helmet. (A) Isometric view; (B) rear view
with datalogger and ambient sensor; (C) internal view with microclimate sensor location; (D) prototype on mannequin
head without a mask; (E) prototype on mannequin head with a balaclava mask.
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Figure 3. DHT–22 Humidity and Temperature sensor (Aosong Electronics Co Ltd., Guangzhou,
China) with breakout board. Singapore 50 cent coin for scaling.

2.3. Experiment Proceedings

Two sets of 30 experiment runs were conducted for data collection. First set was
under NM condition while second was M condition. These runs were conducted in
room conditions and across non-consecutive days to ensure reproducibility under varying
conditions in an indoor setting, as shown in Figure 4.

Figure 4. Action sequence of a data-collection run with balaclava mask on human subject and mannequin experiment
control. C–1 and C–2 represents NW and W states during calibration phase respectively. T–1 through 4 represents 4 min
test period.
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Each run was an action sequence designed to contain ground truth information from
calibration followed by helmet wearing and removals during continuous monitoring.
Ground truths, by common definition, are information from direct observation. Therefore,
in this study, ground truth was a helmet’s actual state of either being worn or not captured
via camera recording. Each action sequence consisted of a 2 min calibration period (first
minute NW, second minute W). This was followed by a 4 min test period by alternating
the helmet between 1 min NW and W states. Both S and C were subjected to the same
abovementioned sequence simultaneously.

A head mannequin was used as experimental control to simulate reasonably sophis-
ticated means to outsmart the helmet. Two flouting scenarios were then analyzed. First,
a total abandonment scenario of using a non-human substitute at all times was utilized
and was represented by data from C group. Second, a misuse scenario was utilized where
the helmet was properly calibrated and then transferred to a non-human substitute in
attempt to outsmart the algorithm. This was represented by combining each run’s S group
calibration data with its C group continuous monitoring data; this assembled data group
was thereby referred as SC group.

3. Results and Discussion

This section presents results from direct data observations following with analysis
on algorithm’s goodness of fit, efficacy, and security for discussion. For visualization, an
experiment run each from NM and M conditions were randomly selected to represent
respective datasets. Random sampling showed similar trends across all runs. Analysis
would primarily focus on humidity parameters as temperature response was invariant in
Figures 5 and 6. Visualization of results was done using Excel standard plotter tools and
analysis was made using Python’s sci-kit-learn ML library. Unless specified, these findings
cover both NM and M conditions.

Figure 5. Temperature (◦C) versus time (2 s per interval) data logs from a typical no mask (NM) run, human subject (left),
and experiment control (right). Helmet state 0 = not worn (NW) and 1 = worn (W).

Figure 6. Temperature (◦C) versus time (2 s per interval) data logs from a typical M run, human subject (left), and experiment
control (right). Helmet state 0 = NW and 1 = W.
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3.1. Direct Observations from Raw Data Logs

From direct observations, microclimate humidity (MH) was the only significant respon-
sive parameter for helmet wearing determination. This was observable in Figures 7 and 8
as exponential growth and decaying MH waveforms in response to helmet wearing and
removing, respectively. Microclimate temperature (MT) was instead invariant. However,
MH alone could present a single point failure where sensor error would be extremely
hard to detect and hence AMHD was needed to realize MH utilities with ambient-relative
humidity (AH).

Figure 7. Relative humidity (% RH) versus time (2 s per interval) data logs from a typical NM run, human subject (left),
and experiment control (right). Helmet state 0 = NW and 1 = W.

Figure 8. Relative humidity (%RH) versus time (2 s per interval) data logs from a typical M run, human subject (left), and
experiment control (right). Helmet state 0 = NW and 1 = W.

AMHD preserved AH’s characteristics as a responsive and authentic parameter suited
for helmet wearing determination. This was possible as AH remained relatively constant,
resulting in exponential-like growth and decay AMHD waveforms in Figures 9 and 10.
This meant that AMHD provided a means to overcome MH’s single point failure weakness
while maintaining binary state calibration data needed for LR modelling.
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Figure 9. Ambient-microclimate differences (AMDs) versus time (2 s per interval) from a typical NM run, human subject
(top), and experiment control (bottom). Helmet state 0 = NW and 1 = W.
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Figure 10. AMDs versus time (2 s per interval) from a typical M run, human subject (top), and experiment control (bottom).
Helmet state 0 = NW and 1 = W.

Ambient-microclimate humidity difference’s rate of change (AMHDROC), in
Figures 11 and 12, consequently showed impulse-like response to helmet wearing and
removals. This impulse response was directional, as evident by an immediate polarity
changeover in AMHDROC values when helmet was worn or removed. It also tended to
zero as AMHD plateaued towards the end of the1 min wearing and removal sequences
which meant AMHDROC could not sustain a response for longer durations.
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Figure 11. Ambient-microclimate difference’s rate of change (AMDROCs) versus time (2 s per interval) from a typical NM
run, human subject (top), and experiment control (bottom).
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Figure 12. AMDROCs versus time (2 s per interval) from a typical M run, human subject (top), and experiment control
(bottom). Helmet state 0 = NW and 1 = W.

MH and its related AMD parameters also provided authentication capabilities in
identifying a human wearer. This was in part due to invariant response exhibited by
experimental control in MH-C group data in Figures 7 and 8. When compared to MH-S
group’s exponential-like growth and decay, this meant that MH response was unique to a
human wearer.

3.2. Calibration (First 2 min) Data’s Goodness of Fit as Logistic Regression Model

Goodness of fit served as metric in quantifying how well datapoints are associated
as a calibrated LR function. In an ideal situation, a 100% goodness of fit represents a
perfect alignment between datapoints and modelled function. An example is shown in
Figure 13 with a LR model being modelled based on AMHD data, and in Figure 9 with
NW datapoints associated to Helmet State = 0 and W datapoints to Helmet State = 1.
Outlier points between −7 to −6%RH AMHD then contributed to a goodness of fit spread
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between 71 to 85%, leftmost of Figure 14. Invariant parameters only demonstrated overall
consolidation to 50% goodness of fit, with full results as shown in Figure 14.

Figure 13. A typical ambient-microclimate humidity difference (AMHD) calibrated logistic regression model from a human
subject under NM condition. Red line represents resulting LR function with decision threshold of −6% RH. Black dots
represent NW datapoints associated to Helmet State = 0 and W to Helmet State = 1. The insert is the machine learning LR
model as shown in Figure 1.

Figure 14. Goodness of fit distribution between subject (S) and control (C) groups in LR modelling represented in
percentages. Each box contains 30 respective entries. AMHD (leftmost) has a mean of ~80% under N condition and ~75%
under M condition.
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AMHD was the best parameter in goodness of fit even though it was quantitatively
second, with AMHD-S ranging from 71 to 85%, leftmost in Figure 14. On the other hand,
AMHD-C group showed a considerably large range of 50 to 92% for NM condition and
consolidated at 50% for M condition. For AMHD, a clear distinction was observable
between AMHD-S and AMHD-C groups to facilitate identification of flouting attempts.
AMHDROC was the quantitatively best parameter with AMHDROC-S ranging from 82 to
92%. Most of the time, AMHDROC calibration data were zeroes and therefore produced
near-vertical LR decision thresholds at zero. This exceptional goodness of fit was due to
small but quantitatively favorable deviations in AMHDROC values during calibration
phase. There was also a clear distinction between AMHDROC-S and AMHDROC-C groups,
with the latter consolidated at 50%. Even though AMHDROC was quantitatively superior
and performed similarly, it lacked efficacy in helmet wearing correlation for extended
periods that AMHD possessed. This will be further discussed in Section 3.4.

Most control groups can be easily picked out via a 50% goodness of fit. Experiment
controls exhibited a consolidation at 50% goodness of fit caused by vertically arranged
calibration datapoints that were quantitatively unfavorable to LR modelling. This vertical
arrangement was consequent of same value datapoints being associated to both NW and W
helmet states. Exceptions often occurred under NM condition which showed wide spreads
from 50% to 92%, and also due to small deviations in parameter value. Therefore, it can be
reasonably inferred with a 50% goodness of fit that a non-human wearer was present.

3.3. Efficacy, LR Model’s Ability for Continuous Monitoring

Efficacy was defined as LR model’s ability to make correct determination during
continuous monitoring. C group efficacy also encompassed our first flouting scenario
of non-compliant calibration and continuous helmet use. Ideally, a 100% efficacy would
represent all outputs as perfect reflection of ground truth. For analysis, continuous data
were processed together with each corresponding LR model. Each datapoint served as
input for the LR model to generate an output result. This output was compared against its
corresponding moment in the ground truth video, thus creating a series of comparisons
for each run. These series of comparison were normalized on a 0 to 100% scale, with full
results as shown in Figure 15.

Figure 15. Efficacy between S and C groups during continuous monitoring. Each box contains 30 respective entries. AMHD
(leftmost) has a mean of 74% under N condition and 69% under M condition.
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AMHD was the best parameter in terms of efficacy even though it ranked second
quantitatively, with AMHD-S scoring between 72 to 76%, as shown on the leftmost column
in Figure 15. This meant that determinations were correct most of the time. Moreover, such
efficacies were distinct from AMHD-C group which showed a range of 48 to 58%. Hence,
AMHD was a clear distinction between S and C groups indicating that non-compliant
calibration can be identified during continuous monitoring when false determinations
occur about half the time. Similarly to be discussed in Section 3.4, AMHDROC was
quantitatively better with AMHDROC-S ranging from 88 to 95% efficacy; AMHDROC-C
group continued to consolidate at 50% with clear distinction between its S and C groups.

3.4. Security, LR Model’s Ability to Quantify Flouting Attempts

Security was defined as LR model’s ability to quantify a non-human wearer after
proper calibration. This encompassed our second flouting scenario of abandoning a helmet
after adhering to calibration procedures. Ideally, security can be inferred via distinct
efficacies between a parameter’s S and C group; the greater the better, as similar efficacies
would be unfathomable. For analysis, a subject-control (SC) group was created by cross
assembling a run’s S group calibration data with C group continuous monitoring data thus
creating inputs from a non-human source to a human-calibrated LR model. Similarly, SC
group LR model would create a series of comparison to be normalized on a 0 to 100% scale.
The full results comparing S with SC groups are shown in Figure 16.

Figure 16. Efficacy between subject (S) and subject-control (SC) groups during continuous monitoring. Each box contains
30 respective entries. AMHD (leftmost) demonstrated clear distinction between S and SC groups.

AMHD was the best parameter in security even though it was quantitatively ranked
second after AMHDROC. This observed distinction was due to incompatibility between
S group generated LR decision threshold and C group continuous monitoring data. To
elaborate this, AMHD-S calibration data in Figure 7 (top) showed that a −6%RH at the start
of calibration gave rise to a −6% RH LR model decision threshold in Figure 13. However,
when AMHD-C continuous monitoring values between 4 to 5%RH in Figure 7 (bottom)
were used as inputs, the LR modelling output would always be a 1. As a result, outputs
were syntactically correct for half the time resulting in a 50% efficacy for SC. Given that C
group data was invariant, the same superficial 50% efficacy would be produced even if
AMHD-C values were 0 outputs. This would apply similarly to M condition in Figure 10,
with a −12%RH in this instance.
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Even though SC efficacies demonstrated a tighter consolidation, both C and SC groups
demonstrated 50% efficacy consolidation across Figures 15 and 16. This would enable
quantitative inference of a flouting event when a 50% efficacy was presented. AMHDROC
also showed a distinction between S and SC groups, but its consistent quantitative superi-
ority was solely rooted in the study’s 1 min helmet wearing and removal time period. For
continous monitoring beyond 1 min, AMHDROC values will lose correlation to helmet
W state, as AMHD plateau was prefaced in Section 3.1. Poorly correlated AMHDROC
input data then resurfaces incompatbility issues between LR decision threshold with con-
tinuous monitoring measurements. Corresponding drops in AMHDROC-S goodness of
fit and efficacy would occur if either wear (W) calibration phase or continuous use was
extended beyond 1 min. Therefore, AMHDROC could not be relied upon as a continuous
monitoring parameter.

4. Conclusions

A machine learning LR algorithm was studied for helmet wearing determination
efficacy. To assess if a helmet was being worn by a human subject across location, time, and
environments, the proposed algorithm consisted of a 2 min immediate calibration phase
and a continuous monitoring phase. Four psychrometric parameters, AMTD, AMHD,
AMTDROC, and AMHDROC, were studied due to consistent binary state psychrometric
observations in past helmet research. Prototype helmets were built using low-cost and
readily available MEMS sensors to demonstrate current technology feasibility and algo-
rithm experimentation. S and C groups were simultaenously tested through an action
sequence for a statistical significant number of runs and across NM and M conditions.
Post-analysis was done for the data collected. Temperature was observed to be an invariant
or slow response to helmet wearing and thus analysis focused primarily on humidity
related parameters.

AMHD was found to be the best parameter for helmet wearing determination. When
worn by a human subject, AMHD calibration data demonstrated 75% goodness of fit as an
LR model which meant data was largely accounted for. When tested on an experimental
control mannequin head, AMHD instead demonstrated highly concentrated goodness
of fit at 50% or huge spreads. This means it would be possible to infer a human from a
non-human wearer when presented with an LR model’s goodness of fit. This distinction
was carried over to helmet determination efficacy analysis which was also the first flouter
scenario where AMHD-S group demonstrated 70% efficacy in making correct determina-
tions, whereas efficacy was distinctively lower at 50% in C group. This meant that during
continuous monitoring, a properly calibrated helmet would perform as intended most of
the time while non-complying helmet calibration would often give false alarms. AMHD
was again useful in detecting second flouter scenario after calibration procedures were
adhered to. This was due to fundamental response differences between S and C groups
observed during calibration that resulted in incompatiblity between LR decision thresh-
olds and continuous monitoring input data. As consequence of model and measurement
incompatibility, efficiacy in SC group dropped to 50% when using C group continuous
monitoring data to predict helmet state through S group calibration data-created LR models.
In practice, this means AMHD could still provide countermeasures through false alarms
when a flouter tries to outsmart the solution after proper calibration. In culmination, a
combination of AMHD goodness of fit and efficacy analysis was sufficient to confidently
determine if a helmet was worn by a human or non-human wearer.

AMHDROC was instead found feasible in identifying specific instances of helmet
wearing and removal events due to its impulse-like directional responses. In terms of
helmet wearing determination, the parameter was quantitatively better than AMHD across
goodness of fit, efficacy, and security analysis but carried an inherent flaw. This quantiative
advantage was only due to a 1 min helmet wearing time period designed into experimental
procedures which gave AMHDROC values a high correlation to helmet wearing and
removal events. In practice, AMHDROC correlation would diminish significantly as
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AMHD pleteaued beyond 1 min of continous use. AMHDROC LR decision thresholds and
continuous measurements would then be incompatible resulting in complete determination
failure. When considered holistically, AMHDROC could be best used as a supporting
parameter in automating ground truth associations during calibration phase.

These first findings presented in this paper are important to small-scale ML MEMS
research in enabling forefront WSH practices for tropical workplaces. As a proof of concept
shown in this work, helmet psychrometric datalogs can be analysed to confirm helmet worn
status, providing authentic personalization without creating privacy issues related to other
wearable solutions. This non-identifiable data collection takes care of any potential conflict
in personal privacy issues, and it is in line with Singapore’s effort with worker safety
ownership. There is high potential for eventual commercial application through the use
of two low-cost and readily available MEMS sensors, a single parameter, non–identifiable
psychrometric data, and low-power computing device with local ML capabilities for helmet
wearing determination. Furthermore, its form factor as a non-contact helmet wearable
attachment circumvents extreme discomfort issues that current skin-contact wearable
instrumentations introduce in tropical workplaces. Besides tropical Singapore, this study
has potential to be tested in other climates for further research.

Author Contributions: Conceptualization, Y.H.T., A.H., and K.H.H.L.; writing—original draft prepa-
ration, Y.H.T.; writing—review and editing, Y.H.T. and K.H.H.L.; visualization, Y.H.T.; supervision,
Y.H.T. and K.H.H.L.; project administration, Y.H.T. and K.H.H.L.; funding acquisition, K.H.H.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministry of Education (MOE) Tier 1 Award 020212-00001.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Davis, G.; Edmisten, E.; Thomas, R.; Rummer, R.; Pascoe, D. Effects of ventilated safety helmets in a hot environment. Int. J. Ind.

Ergon. 2001, 27, 321–329. [CrossRef]
2. Ueno, S.; Sawada, S.-I. Effects of ventilation openings in industrial safety helmets on evaporative heat dissipation. J. Occup. Health

2019, 61, 157–164. [CrossRef] [PubMed]
3. Mitchell, M.R.; Link, R.E.; Dullah, A.R.; Guan, Z.W.; Crompton, R.H. A Pilot Study on Thermal and Moisture Mapping of the

Head-Helmet System Using Micro-Sensor Technology. J. Test. Eval. 2011, 39. [CrossRef]
4. Amar, S.B.; Halimi, M.T.; Ben Hassen, M.; Sakli, F. Heat and moisture transfer in safety helmet. JP J. Heat Mass Transf. 2011, 5,

41–58.
5. Halimi, M.T.; Dhahri, H.; Khedher, N.B.; Hassen, M.B.; Sakli, F. Thermal properties of industrial safety helmets. J. Appl. Sci. Res.

2009, 5, 833–844.
6. Guan, Z.W.; Guan, Z.W.; Dullah, A.R.; Dullah, A.R.; Zhou, H.L.; Zhou, H.L. Experimental thermal/moisture mapping of

industrial safety helmets. In Lecture Notes in Computer Science; Springer Science and Business Media LLC: Berlin/Heidelberg,
Germany, 2007; Volume 4562, pp. 678–686.

7. Holland, E.J.; Laing, R.M.; Lemmon, T.L.; Niven, B.E. Helmet design to facilitate thermoneutrality during forest harvesting.
Ergonomics 2002, 45, 699–716. [CrossRef] [PubMed]

8. WSH Council and Ministry of Manpower. WSH 2028. 2019. Available online: https://www.mom.gov.sg/~{}/media/mom/
documents/safety-health/publications/executive-summary.pdf?la=en (accessed on 18 October 2019).

9. Liu, X.; Holmér, I. Evaporative heat transfer characteristics of industrial safety helmets. Appl. Ergon. 1995, 26, 135–140. [CrossRef]
10. Liu, X.; Holmér, I. Evaluation of Evaporative Heat Transfer Characteristics of Helmets. Appl. Hum. Sci. J. Physiol. Anthr. 1997, 16,

107–113. [CrossRef] [PubMed]
11. Ghani, S.; ElBialy, E.M.A.A.; Bakochristou, F.; Gamaledin, S.M.A.; Rashwan, M.M. The effect of forced convection and PCM on

helmets’ thermal performance in hot and arid environments. Appl. Therm. Eng. 2017, 111, 624–637. [CrossRef]
12. Chiumello, D.; Chierichetti, M.; Tallarini, F.; Cozzi, P.; Cressoni, M.; Polli, F.; Colombo, R.; Castelli, A.; Gattinoni, L. Effect of

a heated humidifier during continuous positive airway pressure delivered by a helmet. Crit. Care 2008, 12, R55. [CrossRef]
[PubMed]

13. Taylor, N.A.S.; Caldwell, J.N.; Dyer, R. The physiological demands of horseback mustering when wearing an equestrian helmet.
Graefes Arch. Clin. Exp. Ophthalmol. 2008, 104, 289–296. [CrossRef]

14. Cimolin, F.; Simos, T.E.; Psihoyios, G.; Tsitouras, C. Analysis of the internal ventilation for a motorcycle helmet. In Fourth
Huntsville Gammaray Burst Symposium; AIP Publishing: Melville, NY, USA, 2010; Volume 1281, p. 67.

http://doi.org/10.1016/S0169-8141(00)00059-7
http://doi.org/10.1002/1348-9585.12024
http://www.ncbi.nlm.nih.gov/pubmed/30866127
http://doi.org/10.1520/JTE102812
http://doi.org/10.1080/00140130210159959
http://www.ncbi.nlm.nih.gov/pubmed/12437853
https://www.mom.gov.sg/~{}/media/mom/documents/safety-health/publications/executive-summary.pdf?la=en
https://www.mom.gov.sg/~{}/media/mom/documents/safety-health/publications/executive-summary.pdf?la=en
http://doi.org/10.1016/0003-6870(95)00010-A
http://doi.org/10.2114/jpa.16.107
http://www.ncbi.nlm.nih.gov/pubmed/9230523
http://doi.org/10.1016/j.applthermaleng.2016.09.142
http://doi.org/10.1186/cc6875
http://www.ncbi.nlm.nih.gov/pubmed/18426561
http://doi.org/10.1007/s00421-007-0659-5


Micromachines 2021, 12, 449 17 of 17

15. Brühwiler, P.A.; Bogerd, C.P.; Rossi, R.M. Thermal Perception of Ventilation Changes in Full-Face Motorcycle Helmets: Subject
and Manikin Study. Ann. Occup. Hyg. 2010, 55, 192–201. [CrossRef]

16. Canuto, C.; Cimolin, F. A sweating model for the internal ventilation of a motorcycle helmet. Comput. Fluids 2011, 43, 29–37.
[CrossRef]

17. Wickwire, P.J.; Buresh, R.J.; Tis, L.L.; Collins, M.A.; Jacobs, R.D.; Bell, M.M. Comparison of an In-Helmet Temperature Monitor
System to Rectal Temperature During Exercise. J. Strength Cond. Res. 2012, 26, 1–8. [CrossRef]

18. Geetha, A. Intelligent helmet for coal miners with voice over zigbee and environmental monitoring. Middle East J. Sci. Res. 2013,
16, 1835–1837.

19. Dohare, Y.S.; Maity, T.; Das, P.S.; Paul, P.S. Low power low cost environment monitoring and control through zigbee in
underground mines. J. Mines Met. Fuels 2013, 61, 283–286.

20. Cheng, Q.; Sun, J.P.; Zhang, Z.; Zhang, F. ZigBee based intelligent helmet for coal miners. In Proceedings of the 2009 World
Congress on Computer Science and Information Engineering, Los Angeles, CA, USA; 2009; Volume 3, pp. 433–435.

21. Wang, M.; Zhang, S.; Lv, Y.; Lu, H. Anxiety Level Detection Using BCI of Miner’s Smart Helmet. Mob. Netw. Appl. 2017, 23,
336–343. [CrossRef]

22. Liu, X.; Athanasiou, C.E.; Padture, N.P.; Sheldon, B.W.; Gao, H. A machine learning approach to fracture mechanics problems.
Acta Mater. 2020, 190, 105–112. [CrossRef]

23. Lu, L.; Dao, M.; Kumar, P.; Ramamurty, U.; Karniadakis, G.E.; Suresh, S. Extraction of mechanical properties of materials through
deep learning from instrumented indentation. Proc. Natl. Acad. Sci. USA 2020, 117, 7052–7062. [CrossRef] [PubMed]

24. Takahashi, K. Helmet Wearing Determination Method, Helmet Wearing Determination System, Helmet Wearing Determination
Apparatus, and Program. U.S. Patent 2019/0236384, 1 August 2019.

http://doi.org/10.1093/annhyg/meq074
http://doi.org/10.1016/j.compfluid.2010.07.004
http://doi.org/10.1519/JSC.0b013e31823b0a5a
http://doi.org/10.1007/s11036-017-0935-5
http://doi.org/10.1016/j.actamat.2020.03.016
http://doi.org/10.1073/pnas.1922210117
http://www.ncbi.nlm.nih.gov/pubmed/32179694

	Introduction 
	Methods and Materials 
	Helmet Microclimate Machine Learning Algorithm 
	Helmet Dataloggers 
	Experiment Proceedings 

	Results and Discussion 
	Direct Observations from Raw Data Logs 
	Calibration (First 2 min) Data’s Goodness of Fit as Logistic Regression Model 
	Efficacy, LR Model’s Ability for Continuous Monitoring 
	Security, LR Model’s Ability to Quantify Flouting Attempts 

	Conclusions 
	References

