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Abstract: Nonlinear, mechanical microelectromechanical system (MEMS) resonating structures
exhibit large displacement and a relatively broad operating bandwidth. These unique features
make them particularly of interest for the development of MEMS actuators and sensors. In this
work, a mechanical MEMS structure allowing the designer to determine the type of nonlinearity,
that is, softening or hardening, based on its anchor scheme is presented. Effects of the excitation
signal on the behavior of the proposed MEMS in the frequency domain are investigated. In this
regard, a comprehensive experimental comparison among the nonlinear behaviors of softening and
hardening has been conducted. To reduce the hysteresis effect to a minimum, an excitation approach,
which is a pulsed sweep in frequency with a discrete resolution, is presented. The maximal velocity,
quality factor, bandwidth, and resonant frequency of these two types of nonlinear MEMS resonators
are compared under three different types of excitation. Finally, it is shown that the performance
and characteristics extracted from nonlinear mechanical MEMS resonating structures are highly
dependent on the excitation method. Hence, in the present case, the apparent performances of the
MEMS resonator can increase by up to 150% or decrease by up to 21%, depending on the excitation
approaches. This implies the necessity of a standardized testing methodology for nonlinear MEMS
resonators for given end applications.

Keywords: resonant behavior characterization; duffing resonators; hardening; softening; non-
linearity; micro-resonator; piezoelectric transducer; frequency response

1. Introduction

Nonlinearities of microelectromechanical system (MEMS) resonators have been rec-
ognized as a limitation to their normal operation. As a result, the presence of nonlinear
behavior in MEMS resonators can compromise their performance. As such, several tech-
niques and resonator architectures have been proposed to reduce or compensate for the
influence of nonlinearity [1–3]. On the other hand, nonlinear behavior is usually desired in
vibration insulators [4,5] and vibration energy harvesters (VEH), as they can leverage a
larger displacement and a broader bandwidth [6–8]. Such relatively large displacement is
also highly desirable for the conception of active time differentiators for terahertz applica-
tions [9,10]. Moreover, nonlinear resonators have been the subject of recent interest for the
design and development of nonlinear MEMS accelerometers, resonator switches, and logic
gates [11–14].

To exert nonlinear phenomena in MEMS devices, specific design guidelines are re-
quired. The expression of such nonlinear stiffness phenomena can be regrouped into
two categories: spring softening and spring hardening. In the first case, increasing of the
amplitude of the excitation will lead to a reduction of the resonant frequency, while in the
second case, this increase of the amplitude of the excitation will lead to an augmentation of
the resonant frequency. In terms of practical application of the nonlinear phenomenon in
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MEMS devices, there does not appear to be a preference for either type of nonlinearity for
specific applications, as softening- and hardening-type VEH, resonators, and switches have
been presented in the literature [15–17]. However, it can be expected that in the future,
as more and more of these devices are designed, preferences for targeted applications
will appear. This highlights the necessity of developing clear guidelines and structures,
allowing the designers to choose either spring softening or hardening of the MEMS devices.

Characterization of nonlinear MEMS performance is important to verify the accu-
racy of the simulations and determine the actual properties of the devices. However,
such nonlinear MEMS devices typically exhibit strong hysteresis phenomena. Such hys-
teresis renders the characterization more complex, as it causes the performance of the
MEMS devices to depend on the previous state. Characterization methods that reduce the
impact of hysteresis in nonlinear resonators have been developed. Among them, “FREE-
VIB” presented in [18,19] and “FORCEVIB” presented in [19,20] are the most prominent.
However, such characterization methods are time-consuming, complex to implement,
sensitive to noise, and generally reserved for macro-sized structures. For these reasons,
alternatives to such methods have been presented [21,22]. The application of such a
method to nonlinear MEMS resonators as presented in [23], and remains the exception.
Accordingly, characterization methods that reduce the impact of hysteresis are not widely
employed in the literature touching on the design and development of nonlinear MEMS
resonators, as can be observed in [6–8,11–17,24–27]. Therefore, developing experimental
characterization methods that allow for mitigation, or at least relative control of such
hysteresis in nonlinear MEMS resonators is desirable.

In the literature, several architectures that favor the nonlinear behavior in MEMS
resonators have been proposed. However, few of these studies investigate both the soft-
ening and hardening responses of the same design. Accordingly, the aim of this work is
to study the impacts of different anchoring schemes on the frequency response of piezo-
electric MEMS nonlinear resonators, and develop a characterization method allowing for
relative control of the hysteresis. In this regard, by using two different topologies, the
presence of hardening and softening behaviors in the nonlinear MEMS resonator are stud-
ied. The findings of this study highlight the necessity of controlling the characterization
of nonlinear MEMS resonators as a function of the end application. In such a system, the
characterization approach greatly impacts the performance of the MEMS devices in terms
of efficiency and operational frequency range. Thus, the contributions of this work can be
listed as follows:

1. A MEMS resonator architecture allowing the designer to readily control the type of
nonlinearity, that is, yielding either spring hardening or softening;

2. An experimental testing methodology allowing the monitoring and control of the
hysteresis in the nonlinear resonators; and

3. Recommendations for the characterization of nonlinear resonators.

The remaining parts of this paper are structured as follows: a general background on
how to induce the nonlinearity in the MEMS resonators is presented in Section 2. The design
and fabrication process of the studied structures is summarized in Section 3. In Section 4,
the performance of nonlinear MEMS resonators as a function of the excitation signal is
discussed, and the influence of the hysteresis is shown. Section 5 provides a comprehensive
comparison of the practical implementation of such changes in the performance of MEMS
resonators. Finally, a conclusion is presented.

2. Materials and Methods
Control of the Nonlinearity in MEMS Structures

During the design phase, the MEMS designer can exploit three main types of ef-
fects to induce nonlinearity in the MEMS device: damping, forcing, and stiffness [28].
Some damping effects have been shown to be inherently nonlinear, such as squeeze film
damping [29]. In the case of the forcing effect, it can be exploited to induce nonlinearity
by using an external force (e.g., capillary attraction, Van der Waals forces, electrostatic
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actuation, magnetic forces). Some of these effects have been successfully demonstrated in
MEMS devices [30,31]. Finally, changes in the stiffness of the MEMS structure will lead
to nonlinearity, and these changes of stiffness can be attained by using certain materials,
particularly piezoelectric ones [28]. These changes in stiffness can also be induced by
the use of geometrical nonlinearity, as MEMS devices generally undergo relatively large
deformation [32]. This geometrical nonlinearity can be caused by a wide range of factors,
such as large deflections or rotations, initial stresses, or load stiffening. These effects are
particularly noticeable in the stretching of thin structures.

Nonlinear resonant geometries have been of particular interest for both physicists
and mechanical engineers. In the case of a MEMS designer, the use of such previously
characterized geometric nonlinearity will allow for the control of the nonlinear behavior of
the MEMS device. Among these structures, some are particularly interesting, since they
can naturally exhibit either a softening or a hardening response. The weighted string is
such a system. Depending on its initial parameters, it is capable of exhibiting either spring
softening or spring hardening, or even a linear response [33]. This system is comprised
of string of a half-length l0 with a weight of a mass m located at distance a from one
anchor and b from the other anchor. x denotes the displacement of the mass. Such a
system is shown in Figure 1. To analytically describe this behavior, an approximation of
the governing nonlinear differential equation is given by [33]:

mẍ + F0

(
1
ab

)
x + (SE − F0)

(
a3 + b3

2a3b3

)
x3 = 0, (1)

where F0 is the initial tension, S is the cross-sectional area of the string, and E is the elastic
modulus of the string. In this system for the specific case where a = b, the value of κ, the
amplitude-frequency coefficient, can be expressed as:

κ =
SE − F0

4a ∗ F0
. (2)

In such a case, the initial tension is equal to [33]:

F0 = SE
(

a − l0
l0

)
. (3)

Therefore, by substituting (3) in (2), (2) can be rewritten as:

κ =
2 ∗ l0 − a

4a ∗ (a − l0)
. (4)

According to this equation, depending on the initial values of a and l0 different spring
behaviors (i.e., linear, softening, or hardening) can be observed. Therefore, the MEMS
designer can leverage such a mechanism by carefully choosing the design values to have a
nonlinear structure leveraging either softening or hardening behavior.

It should be noted that the weighted string is inherently nonlinear, as the anchoring of
the mass is made using strings that can be in tension, but cannot bend. At the MEMS scale,
such strings cannot be readily implemented and must be replaced by beams (which can
have various shapes) that have a different underlying dynamic.

However, the idea of using a central proof mass anchored on both sides to induce
nonlinearity in the MEMS structure has been successfully employed in the literature to
design nonlinear resonators with either spring softening or spring hardening characteristics.
In [8], a resonator was designed to have softening behavior, while in [6,24], a resonator with
spring-hardening behavior is presented. A similar but more complex structure, such as the
one presented by [7] exhibits spring-hardening behavior, where three proof masses were
used. However, to the best knowledge of the authors, no such micro-structure based on the
idea of a central proof mass and designed to exhibit either spring softening or hardening
behavior has been presented in the literature.
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Figure 1. Illustration of the weighted string mechanical system, Reprinted with permission from
ref. [33]. Copyright 2010 McGraw-Hill Handbooks..

It should be noted that the weighted string is not the only architecture that allows
for the designer to control the type of nonlinearity exhibited by the system. As such, [25]
has shown that the coupling of 45° inclined springs will result in either spring hardening,
softening, and even linear behavior. However, the focus of that work is more on the
analytical modelling of such nonlinearity. Work presented in [26] showed that the coupling
of two cantilevers with a multi-walled boron nitride nanotube (BNNT) can result in either
spring hardening or spring softening. However, this method requires post-processing of
the MEMS and has only been demonstrated at the nanoscale.

3. Design and Micro-Fabrication Process
3.1. Design

As was previously discussed, MEMS architectures with nonlinear behavior have
been proposed in the literature. However, few allow for the control of their nonlinear
behavior to support either spring softening or hardening behavior. In this paper, one of
these architectures, the squared daisy (SD) structure, is studied w.r.t. its nonlinear behavior.
This architecture was presented for the realization of a MEMS piezoelectric VEH in [27].
The SD structure can be partially simplified to the weighted string structure, as it consists of
a central proof mass acting as the weight suspended by a predefined number of cantilevers
of varying cross-sections, as shown in Figure 2. These cantilevers can either be anchored or
free. By choosing which of the cantilevers will be anchored and act as the string, and the
ones that are only clamped on the central proof mass, the MEMS designer can carefully
determine the spring-mass parameters of the structure. In Figure 2, the free cantilevers are
illustrated in blue, while the anchored ones (i.e., supports) are shown in green. The central
mass is shown in an orange color.

A basic analytical analysis of the resonant frequency in the SD structure was presented
in [27], where it was shown that the fundamental resonant frequency of such a structure
can be expressed as [27]:

f0 =
(

1
2π

)
∗
√

48EI
(2πRmρH) ∗ (L − (2Rm)Sc)

, (5)

where E is the Young’s modulus of the material, I is the area moment of inertia, which
depends on the physical dimensions of the device, Rm is the radius of the proof mass, H is
the height of the proof mass, ρ is the density of the material, L is the length of the structure,
and Sc denotes the scaling factor.
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Figure 2. Illustration of one of the available anchoring schemes of the squared daisy MEMS resonator.
In this anchoring scheme, the cantilevers 3, 7, 11, and 15 are anchored and shown in green, while the
others are free and shown in blue.

However, it should be noted that these equations can only be used for an approximate
estimation of the resonant frequency, since the cross-sectional area in the proposed MEMS
nonlinear resonator is not uniform over the entire cantilever length. Furthermore, this
analytical model does not take into account the nonlinear behavior of the system.

In terms of behavior, the displacement of central mass is expected to dictate the global
behavior of the system. If this displacement is small, then the spring constant of the
anchoring cantilevers can be assumed as linear, and therefore the global behavior of the
structure will be linear. However, for larger displacements, the supporting cantilevers will
be deflected and stretched, eventually exhibiting non-linear behavior. This implies that the
spring constant of the SD will vary with the magnitude of the displacement. To predict the
behavior of the supporting cantilevers, it is necessary to either make an analytical model or
use FEM simulations.

Therefore, to validate and accurately predict the behavior of the SD structure un-
der different anchoring schemes, simulations have been performed using the COMSOL
Multiphysics software package, version 5.5, COMSOL Inc., Stockholm, Sweden. These
simulations are aimed to extract the mode shape, resonant frequency, and spring constant
under varying loads when the anchoring scheme is changed.

As a result of this process, two SD variants have been defined. The parameters used
to describe these variants are presented in Table 1. These parameters have been carefully
chosen to simulate MEMS devices fabricated using the PiezoMUMPs micro-fabrication
process. The results of the simulation of the behavior of such variants, under different
loads, are shown in Figure 3. Consequently, it has been shown that the SD structure has
the potential to exhibit either softening or hardening behavior depending on its anchoring
scheme, since such an anchoring scheme effectively changes the behavior of spring in the
presence of a large-enough displacement.

The thicknesses and geometry of the different layers have been chosen to match the
guidelines of the PiezoMUMPs micro-fabrication process from MEMSCAP, Crolles, France.
The selected anchoring schemes are presented in Table 1 and shown in Figure 3. It should
be noted that due to the rotational symmetry in the SD structure, several configurations
result in the same anchoring scheme. Simulation and experimental measurements of the
mode shape of each defined variant is presented in Appendix A.
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Table 1. Overview of the parameters for each of the SD resonator design variants.

Variant 1 Variant 2

Size of the design (µm × µm) 1700 × 1700
Radius of the proof mass, Rm (µm) 200

Thickness of the substrate (µm) 400
Thickness of the cantilevers (µm) 10

Cantilever used as anchors 1 5 9 13 3 7 11 15

Free Cantilever 2 3 4 6 7 8 10 1 2 4 5 6 8 9
11 12 14 15 16 10 12 13 14 16

Resonant frequency (simulation) 8100 4050
Nonlinear behavior (simulation) Hardening Softening

Variant 1

Variant 2

Figure 3. Influence of the force applied on the deflection of the central proof mass for both SD
resonator variants.

3.2. Fabrication

To experimentally validate and study the effects of nonlinearity on the SD structure,
the variants previously presented were fabricated. In this section, the PiezoMUMPs’ micro-
fabrication process to prototype the MEMS resonators described in Section 3.1 is described.
This process provides cost-effective access to piezoelectric MEMS prototyping. In the
literature, this process has been reported for the implementation of various MEMS-based
resonators and VEH (e.g., [7,27,34–37]). The fabrication process includes five masks based
on an N-type, double-sided, polished silicon-on-insulator (SOI) wafer. In the first step,
a 10 µm-thick silicon (Si) layer in the (001) orientation (Figure 4a) is doped in order to
increase its electrical conductivity for use as a bottom electrode. Thereafter, an insulating
0.2 µm-thick layer of silicon dioxide is grown and patterned on the SOI wafer (Figure 4b).
A 0.5 µm-thick piezoelectric layer of aluminum nitride (AlN) is then deposited and pat-
terned (Figure 4c). In the next step, a layer of metal is deposited, consisting of a stack of
20 nm-thick chromium (Cr) and of 1 µm-thick aluminum (Al). This layer is used as the top
electrode (Figure 4d). The silicon device layer is then patterned to create the suspended
structure (Figure 4e). Then, the 400 µm substrate is etched from the backside of the wafer
to form the trench below the structure to release it (Figure 4f). It is worth noting that
this process allows for the use of the suspended substrate to be used as a proof mass.
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Accordingly, in the case of the SD structure, the trench step also frees the proof mass to
enable it to vibrate. Upon reception of the device from the foundry, no post-processing step
has to be applied to the manufactured devices. Complementary information regarding the
fabrication process can be found in [38].

(a)

(b)

(c)

(d)

(e)

(f)

Substrate Insulator Si SiO2 AlN Metal Trench

TopCross-section TopCross-section

Figure 4. Simplified overview of the PiezoMUMPs’ fabrication process flow, applied to the fabrication
of Variant 2 of the Squared Daisy.

The layouts for both SD resonator variants as defined in Table 1 were implemented.
The fabricated resonators occupy a total silicon area of 1700 by 1700 µm, and are shown
in Figure 5. In this figure, the proposed anchoring schemes and the point used for the
vibration measurement are shown.

(a) (b)(a) (b)1 mm

Figure 5. Micrograph of the fabricated SD devices: (a) Variant 1 (hardening) and (b) Variant 2
(softening). The different anchoring schemes for each structure can be identified, along with an
indication of the vibration measurement point used.
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4. Experimental Results
4.1. Description of the Experimental Test Setup

To characterize the hysteresis and nonlinearity behaviors of the MEMS resonators de-
scribed in Section 3, the following approach was carried out. The prototyped SD resonators
were electrically excited, while their mechanical responses were measured by an optical
vibrometer. It is worth mentioning that in the case of MEMS piezoelectric transducers, a
mechanical or an electrical excitation will yield similar behavior in frequency. In the present
case, an electrical excitation was used, since a simpler measurement setup is required for
that purpose.

The vibrometer used for the experimental test setup was acquired from Polytec, Irvine,
CA, USA , and includes a data management system, a vibrometer controller (OFV-2570),
and a laser unit (OFV-534). This test setup is presented in Figure 6. In order to satisfy the
Nyquist-Shannon sampling theorem, the sampling frequency Fs for all the measurements
was set to be 25.6 kHz. To excite the prototyped MEMS resonators, a function generator
type 33250A from Keysight, Santa Rosa, CA, USA was used. This function generator
was controlled by the serial interface to provide the desired voltage excitation signal. As
marked in Figure 5, the deflection of the central mass was considered as the measurement
point. The deflection measurements of the free cantilevers will yield a similar response
with a higher velocity due to the increased degree of freedom of such cantilevers, as shown
in [27]. This can also be directly observed using the measurement of the mode shape of
both variants presented in Appendix A.

Laser

Excitation Source

Controller Laser ControlData Management Unit

RS-232

Device Under Test

Figure 6. Schematic of the vibrometer test bench.

4.2. Description of the Excitation Signals

The MEMS resonators were excited by using three different excitation voltage sig-
nals—namely, pulsed sweep (PS), where the excitation frequency is discretely swept,
continuous sweep forward (CSF), where the excitation frequency was swept in an ascend-
ing manner, and continuous sweep backward (CSB), where the excitation frequency was
swept in a descending manner. The nature of these excitation voltage signals are described
in further detail below.

In the nonlinear regime, the hysteresis is dependent on the prior state of the vibrating
system. To eliminate the hysteresis effect in the characterization of the MEMS resonator,
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a pulsed sweep PS was defined. When excited with a PS-type excitation, the MEMS
devices are excited at a particular frequency Fi, for a given duration of Ton; afterwards,
the devices are turned off for a duration of To f f . The value of Fi is sequentially swept
between Fstart and Fend, the lower and the higher excitation frequencies, respectively.
The excitation frequencies are thus discrete, and the resolution of this PS is equal to
the distance between two consecutive excitation frequencies, Fres.

The PS has been carried out following three main variations. In the first one, the
excitation frequencies’ steps are applied in an increasing order. Then in the second, the
excitation frequencies’ steps are applied in a decreasing order. Finally, in the third, the
excitation frequencies’ steps are applied in a random order. These sweeps have been
named pulsed sweep forward (PSF), pulsed sweep backward (PSB), and pulsed sweep
random (PSR), respectively. By performing these three pulsed sweeps, the test setup can
be validated, and the hysteresis effect of the characterization can be eliminated (i.e., by
using a sufficient To f f duration to eliminate the hysteresis in the system). The minimal
duration of To f f varies with each resonator, as it is a function of the quality factor Q and
the resonant frequency of the resonator. Both of these parameters are responsible for the
decay time of the resonator τ. Experimental results have shown that if To f f is greater than
10 τ, then the hysteresis effect of the characterization is effectively eliminated. It should be
noted that the resolution in frequency for this characterization mode is equal to Fres, and is
affected by neither the sampling frequency nor the duration of the excitation (provided
that the Nyquist-Shannon sampling theorem is respected).

An illustration of the excitation signal for the (PSF) is shown in Figure 7a. In this case,
the amplitude of the excitation signal is set to be 20 V, while Fstart and Fend are 10 Hz and
50 Hz, respectively. Fres is 10 Hz. The duration of Ton and To f f are identical, that is, 0.5 s.
The overall excitation is carried out over a duration of Ts = 5 s.

In order to exert the hysteresis behavior of the devices, two continuous sweep exci-
tation signals were used, where the frequency was swept continuously in an ascending
manner, named continuous sweep forward (CSF), and in a descending manner, named
continuous sweep backward (CSB). For these excitation signal sweeps, the start and end
frequencies of the sweep (Fstart and Fend), as well as the duration of the excitation Te are
set. These parameters result in a sweep rate Sr and a resolution in frequency Fres. Sr can be
expressed as:

Sr =
∣∣∣∣ Fend − Fstart

Te

∣∣∣∣. (6)

However, experimental results have shown that varying the value of Sr from 8 Hz s−1

up to 6250 Hz s−1 does not have an influence on the behavior in frequency of the resonators.
On the other hand, Fres is entirely dependent on the sampling frequency Fs and the number
of points considered for the FFT operation NFFT , and can be expressed as:

Fres =
Fs

NFFT
. (7)

As the value NFFT is a function of the duration of the excitation, reducing the value of
Te will increase the value of Fres, and therefore reduce the ability to accurately characterize
the behavior of the nonlinear MEMS resonator. This effect can be partially compensated by
using zero-padding on the measured signal, as this operation will artificially augment the
number of points considered for the FFT operation.

An illustration of the excitation signal for the CSF and CSB is shown in Figure 7b,c, re-
spectively. With reference to this figure, the amplitude of the excitation signal is 20 V.
The lower and higher frequencies are 10 Hz and 50 Hz, respectively. The excitation
duration is Te = 5 s.

It is worth reminding that the term of “frequency response” and “resonant frequency”
are somehow inaccurate for the nonlinear resonators, as the hysteresis effect comes into
action. Hence more accurately described, the behavior in frequency of the resonators in
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presented, as caused by a defined stimulus. In the case of nonlinear resonators, contrary
to linear resonators, the resonant frequency varies as a function of the amplitude of the
excitation signal and the type of excitation provided to the resonator (i.e., while for a linear
resonator knowing the amplitude and frequency of the excitation is enough to determine
the displacement of the resonator, in the case of nonlinear resonators, the previous state
should also be specified to allow such determination). Hence, the term “resonant frequency”
will not be used, and instead the term frequency at which the maximum velocity is reached
(Fmv) will be used. This effect will be demonstrated in the following sections, where the
responses of the devices over frequency to different excitation amplitude levels and to the
excitation signal types described above will be shown.
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Figure 7. Examples of three of the excitation signal types used: (a) PSF, (b) CSF, and (c) CSB.

4.3. Signal Parameters for Each of the Excitation Signals

To allow for a comparison of the continuous sweeps forward and backward (CSF
and CSB) signals, the sweep parameters have been carefully chosen to allow a rela-
tive comparison between each of them. These parameters are presented in Table 2.
These parameters have been chosen to provide a wideband excitation signal but also
allow for relative comparison between the two excitation schemes, as the value of Te, Sr,
and Fres are kept constant to 500 s, 8 Hz s−1, and 2 mHz, respectively.

Table 2. Characteristics of the CS-type excitation signal.

Excitation Type Fstart (kHz) Fend (kHz) Te (s)

Variant 1 CSF 6 10 500CSB 10 6

Variant 2 CSF 2 6 500CSB 6 2

In the case of the PS excitation, the parameters of the signal for both devices are pre-
sented in Table 3. These parameters have been chosen to provide a large band excitation sig-
nal, and also to allow a relative comparison between the (CSF and CSB) excitation signals.
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Table 3. Characteristics of the PS excitation signal.

Fstart (kHz) Fend (kHz) Fres (Hz) Ton (s) Tof f (s)

Variant 1 6 10 10 1.06 0.53Variant 2 2 6

For these three types of excitation, (PS, CSF, and CSB), measurements will be per-
formed for different signal amplitudes, namely, 5 V, 10 V, 15 V, and 20 V.

4.4. Summary of the Measurement Results

The measurement results in the time and frequency domains when modifying the
amplitude of the excitation signal for both variants can be found in Appendix B for the
CSF- and CSB-type excitation. In the case of the PS-type excitation, the measurement
results in the frequency domain when modifying the amplitude of the excitation signal and
the order of the excitation of the frequencies for both variants can be found in Appendix C.
Figure 8 presents a summary of the measurement results for each variant under CSF-,
CSB-, and PSF-type excitation. In this figure, the amplitude of the excitation voltage is
20 V. The influence of the type of excitation on the behavior in frequency of the resonator
can be clearly seen.

7000 7500 8000 8500 9000
Frequency (Hz)

0

1

2

3

4

5

6

7

8

PS
D

 (
(

m
/s

)2 )

104

CSF
CSB
PSF

(a)

3000 4000 5000
Frequency (Hz)

0

0.5

1

1.5

2

2.5

PS
D

 (
(

m
/s

)2 )

104

CSF
CSB
PSF

(b)
Figure 8. Influence of the excitation signal type (CSF, CSB, or PSF) on the frequency behavior when the amplitude of the
excitation signal is 20 V (a) Variant 1 and (b) Variant 2.

In Table 4, the measurement results are summarized. The influence on the amplitude of
the excitation voltage and the type of excitation signal on the maximal velocity reached, the
frequency at which the maximum velocity is reached (Fmv), and bandwidth of both variants
are presented. The measurement results using the pulsed sweep (PS)-type excitation have
been summarized in the columns PS, as PSF-, PSB-, and PSR-type excitation yield similar
results. In this table, the bandwidth has been defined as the full width at half maximum
(FHWM) (i.e., the frequency range in which the amplitude is equal or greater than 50% of
the maximal velocity reached).

Contrary to the behavior of a linear resonator, for which the variation of the amplitude
and type of the excitation signal does not result in variation of the resonant frequency, it can
be seen that the behavior of both the variants in the frequency domain is highly dependent
on the amplitude and type of the excitation signal. For all excitation types, increasing the
amplitude of the excitation signal results in a higher Fmv for Variant 1, but in a lower Fmv
for Variant 2. As shown in Figure 9, if the amplitude of the excitation voltage is constant,
it can be observed that the reduction of Fmv for Variant 2 is greater than the increase of
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the Fmv of Variant 1. This is in line with the simulation results shown in Figure 3. As
shown in that figure, at a constant force, the difference between the deflection of Variant 2
and linear behavior is greater than the difference between the deflection of Variant 1 and
linear behavior.

Table 4. Summary of the characteristics of each variant for different excitation signal types.

Excitation Variant 1 Variant 2
Voltage (V) PS CSF CSB PS CSF CSB

Maximal Velocity (mm s−1)

5 90.0 93.3 93.2 20.7 17.0 42.5
10 176.6 181.50 181.7 95.0 95.7 118.0
15 234.0 261.7 234.7 109.6 110.1 193.3
20 271.1 334.2 268.9 122.1 120.5 228.1

Fmv (Hz)

5 7750 7722 7716 4080 4197 4002
10 7800 7812 7797 3970 3969 3854
15 7860 7929 7839 3930 3942 3675
20 7910 8058 7879 3920 3918 3638

Bandwidth (Hz)

5 180 185 182 150 213 87
10 180 163 169 160 196 188
15 230 234 193 180 156 265
20 280 308 221 220 190 294

Quality factor

5 43 42 42 27 20 46
10 43 48 46 25 41 21
15 34 34 41 22 25 14
20 28 26 36 18 21 12

It can be concluded that Variant 1 exhibits a hardening-type spring softening, while
Variant 2 exhibits a softening-type spring softening. It is also shown that if the amplitude
of the excitation signal is too low (below ≈ 3 V), the amplitude of the excitation voltage
does not have a strong influence on Fmv, and both devices appear to behave linearly as the
displacement of the central proof mass is too small to induce the geometrical nonlinearity.

The frequency behavior of the device can be modified according to the excitation
technique. As for Variant 1, as shown in Figure 8a, it can be clearly seen that when the SD
device is subjected to the CSF excitation signal, it has a larger displacement amplitude in
comparison to the CSB excitation signal; while on the contrary for Variant 2, as shown in
Figure 8b, it can be seen that when the SD device is subjected to the CSB excitation signal,
it has a larger displacement amplitude in comparison to the CSF excitation signal.
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Figure 9. Influence of the amplitude and type of the excitation (CSF, CSB, or PSF) on Fmv of (a) Variant 1 and (b) Variant 2.
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It is also interesting to note from Figure 8 that the characterization using the pulsed
sweep (PS)-type excitation (i.e., PSF, PSB, or PSR) will have similar behavior to the
characterization using CSB-type excitation, but a slightly higher maximal velocity and
Fmv for Variant 1. A similar observation can be made regarding Variant 2 and CSF-type
excitation. This can also be seen in Figure 9, where the variation in the Fmv is plotted versus
the excitation voltage, showing that as the amplitude is increased, the CSF-type excitation
for Variant 1 and the CSB-type excitation for Variant 2 yield a resonant frequency that
diverges significantly from that obtained using PS excitation. These variations are not
linked to the resolution in frequency of the PS signal.

Consequently, as it has been simulated and measured, the SD structure has the poten-
tial to exhibit different nonlinear behavior depending on the selected anchoring scheme.
Moreover, it has been shown that using a PS-type excitation can allow for relative control
of the hysteresis in nonlinear resonators.

5. Discussion

Nonlinear resonators are being considered for the realization of VEH, resonators,
switches, and logic gates. Depending on the end application, the excitation of the nonlinear
resonators will vary. If the nonlinear resonators are employed as actuators or sensors, they
will be electrically driven at a defined frequency, such that the behavior in frequency of
these nonlinear resonators will be closer to the results obtained with the PS-type excitation.

If the nonlinear resonators are destined for energy-harvesting applications, they will
be subjected to the vibrations in the ambient. Due to their nature, mechanical vibrations
cannot be predicted, and therefore, the characterization of VEH using a method that
will give different results depending on the previous state of the system will lead to
inaccurate results.

Therefore, pulse swept signals have been chosen as the reference, as in the case of a PS
excitation, the hysteresis effect is removed from the characterization. To compare the effect
of such excitation signals on the characterization of the same resonator (Variant 1 or 2),
the amplitude of the excitation signal was set to 20 V, and the three different signals were
applied: (PSF, CSF, and CSB). For the pulsed sweep, for simplicity, only the PSF results
are presented, as it has been previously demonstrated that it will yield a similar response
to the other PS methods (PSB or PSR). The resulting maximal velocity, Fmv, bandwidth,
quality factor, and resonance amplitude are presented in Table 5 for both variants. As
explained previously, the reference has been set to the performances of the devices when
excited with a PSF-type excitation.

Table 5. Summary of the performances of Variants 1 and 2 under different excitation when the
amplitude of the excitation signal is of 20 V.

Excitation Type Variant 1 Variant 2

Overestimation of the velocity (%) CSF −1.31 23.28
CSB 86.81 −0.81

Overestimation of Fmv (%) CSF 0.05 1.87
CSB −7.19 −0.39

Overestimation of the bandwidth (%) CSF −13.64 10.00
CSB 33.64 −21.07

Overestimation of the quality factor (%) CSF 16.67 −7.14
CSB −33.33 28.57

FOM (Hz mm s−1)
PSF 26,862 75,908
CSF 22,895 102,934
CSB 67,061 59,427

Overestimation of the FOM (%) CSF 35.60 −14.77
CSB −21.71 149.64
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As such in the present case, characterizing a device presenting spring softening
behavior with a CSF instead of a PS-type excitation will lead to a global underestimation
of its characteristics, as the maximal velocity, Fmv, and bandwidth will be underestimated
by 1.31%, 0.05%, and 13.64%, respectively. This will lead to an overestimation of the quality
factor of 16.67%. On the contrary, characterizing a device presenting spring softening
behavior with a CSB instead of a PS-type excitation will lead to a general overestimation of
its characteristics, as the maximal velocity and bandwidth will be overestimated by 86.81%,
and 33.64%, respectfully, as well as an underestimation of both Fmv and of the quality factor
by 7.19% and 33.33%, respectively.

On the other hand, characterizing a device presenting spring-hardening behavior
with a CSF instead of a PS-type excitation will lead to a global overestimation of its
characteristics, as the maximal velocity, Fmv, and bandwidth will be overestimated by
23.28%, 1.87%, and 10%, respectively. This will lead to an underestimation of the quality
factor of 7.14%. Characterizing a device presenting spring-hardening behavior with a CSB
instead of a PS-type excitation will lead to a global underestimation of its characteristics,
as the maximal velocity, Fmv, and bandwidth will be underestimated by 0.81%, 0.39%, and
21.07%, respectively. This will lead to an overestimation of the quality factor of 28.57%.

In the case of energy harvesters, this overestimation is particularly of interest, as the
maximum output power is directly linked to the maximum displacement, and therefore,
the velocity reached by the resonator, and the operation range of the resonator is linked to
the bandwidth of the resonance. Therefore, a figure of merit (FOM) has been defined as the
product of the amplitude of the velocity at resonance by the bandwidth of the resonance.
This FOM is therefore expressed in Hz mm s−1. This FOM allows for the realization of a
compromise between the bandwidth and amplitude of the displacement at resonance, both
weighted equally. Such FOM is presented in Table 5 for both variants. This shows that the
FOM can be skewed significantly depending on how the devices are characterized.

Similarly to what has been observed previously, characterizing a device presenting
with nonlinear behavior with a CSF-type excitation will lead to an underestimation (−15%
in the present case) or an overestimation (36% in the present case) of its characteristics,
depending on whether the device is presenting with spring softening- or spring hardening-
type behavior.

On the other hand, characterizing a device presenting with nonlinear behavior with a
CSB excitation will lead to an overestimation (150% in the present case) or an underestima-
tion (−22% in the present case) of its characteristics, depending on whether the device is
presenting with spring softening- or hardening-type behavior.

Therefore, the authors recommend the characterization of nonlinear MEMS resonators
to be performed using a PS-type excitation. However, the characterization of a nonlinear
resonator with such excitation is a bit more complex to implement than the CSF and
CSB excitations. As function generators are not readily suited to such an operation, it
is necessary to remotely control the excitation frequency, using either a remote interface
capability or arbitrary signal generation. A manual measurement of the frequency behavior,
frequency by frequency, to carry out a PS excitation can also be carried out if test time is
not a factor. In this work, automated test sequences were programmed using the signal
generator interface to reduce the test time.

It should be noted that if PS-type excitation is not available to the designer, the
type of excitation used should be specified to allow the reader to estimate whether the
characteristics presented are either overestimated or underestimated. Exceptions to this
recommendation can be made if the excitation signal of the nonlinear resonators is known
to exhibit a sweep in frequency while in use in a given end-application, in which case the
characterization using a CSF or a CSB-type excitation will lead to more accurate results
depending on the type of the frequency sweep expected in the application.
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6. Conclusions

In this paper, the characterization and control of the nonlinearity in MEMS resonators
were studied. This was done by investigating the effects of the anchoring scheme on
the nonlinearity of the squared daisy structure (SD). Two variants of this structure were
simulated, fabricated, and measured. Although all the designs occupy the same area, their
nonlinear behavior in the frequency domain is not identical due to their anchoring scheme.
One anchoring scheme results in spring softening, while the other results in spring harden-
ing, thus allowing the designer to tune the behavior of the nonlinear MEMS. It was also
shown that the excitation scheme used to characterize the resonators is important, as it can
affect the characterization of the device, and lead to different extracted performance metrics.
Accordingly, the use of pulsed sweeps (PS) to characterize the behavior of these nonlinear
MEMS resonators was presented. PS excitation allows for an accurate characterization of
nonlinear MEMS resonators, as it allows the removal of the impact of hysteresis on the
frequency behavior of nonlinear resonators. The authors recommend the use of PS-type
excitation as the standardized testing methodology for nonlinear MEMS resonators for
most end-applications.

Ultimately, the recommendations stemming from this work can help provide a better
understanding of the considerations for the design and characterization of nonlinear MEMS
resonators, and to ensure that their characterization is done with excitation signals that
are appropriate.
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Appendix A. Presentation of the Mode Shape of the Resonators

The vibrometer test setup presented in Figure 6 has been used to experimentally mea-
sure the mode shape of each variant. To make such acquisition, a grid made of 2500 linearly
spaced points has been defined. The position of each point of this 50 × 50 grid has been
carefully defined using a positioning controller (Corvus Evo from PI) and 2 positioners
(VT-80 Linear Stage from Physik Instrumente (PI), Karlsruhe, Germany).

The experimental data has been acquired using the CSF-type excitation for variant 1
and the CSB-type excitation for variant 2 as described in Table 2. The amplitude of the
excitation has been set to 20 V. In order to reduce the time needed to perform the whole
experiment, the excitation duration has been set Te = 640 ms. This in turns results in
Sr = 6250 Hz s−1.

After acquisition of the data, the movement of the structure can be reconstructed at
a defined frequency, as the exact coordinates where the points are measured are known.
The experimental measurement of the mode shapes of both proposed variants are presented
in Table A1. This table also presents the simulated mode shapes obtained using the
COMSOL Multiphysics software package. The good agreement between the simulated and
experimentally measured mode shape can be seen.

In each figure it is possible to identify the displacement of the free and anchored
cantilevers. The data has been is scaled relatively to the largest displacement present in the
mode shape, which means that for the Variant 2 some free cantilever almost appear as not
moving while in fact they are, but amplitude of the displacement of those cantilevers is
lower than other free cantilever in the structure.
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Table A1. Visualisation of the mode shape of the structure.

Mode Shape
Simulation Measurement

Variant 1

Variant 2

Appendix B. Excitation with Continuous Sweep Signals

In Table A2, the response of variants 1 and 2 in the time domain is shown along with
the frequency content of such signal when the devices are excited with a CSF or CSB-type
excitation. For clarity, the frequency range shown in this figure has been limited to the
interval between 7 kHz and 9 kHz for the variant 1 and between 3 kHz and 5 kHz for the
variant 2.

The influence of the excitation amplitude on the resonant frequency of the variants
is clearly noticeable. For variant 1, the greater the amplitude, the greater the resonant
frequency. Such an increase is greater for CSF excitation. For variant 2, the greater the
amplitude, the lower the resonant frequency. Such a decrease is greater for CSB excitation.

Such results validate the simulation results which predicted a hardening type response
for variant 1 and softening type response for variant 2. This also shows the dependency of
the frequency domain behavior of nonlinear MEMS resonators in response to the type of
excitation used.

It should be noted that sharp peaks just before the down-jump or up-jump phenomena
are shown in the frequency domain, these sharp peaks are artifacts due to the signal
processing as it can be seen that these peaks do not exist in the time domain.
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Table A2. Summary of the measurements results for the CS-type excitation.

Excitation Measurements in the:
Type Time Domain Frequency Domain
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Appendix C. Excitation with Pulsed Sweep Signals

In Table A3, the behavior over frequency of both variants when varying the amplitude
of the excitation signal is shown. For clarity, the frequency range shown in this figure
has been limited to the interval between 7 kHz and 9 kHz for the variant 1 and between
3 kHz and 5 kHz for the variant 2. The influence of the order in which the frequencies are
applied when the devices are excited with a PS-type excitation is also shown in the table.
As can be seen, the order in which the frequencies are applied has no significant impact
on the behavior in frequency of both variants, as the results for the PSF, PSB and PSR
are identical. Therefore, the characterization of the nonlinear resonators using a PS-type
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excitation allows for the characterization of the nonlinear resonator devices without the
effect of hysteresis.

Such results validate the simulation results which predicted a hardening type response
for variant 1 and softening type response for variant 2. This also validates that it is possible
to mitigate the hysteresis behavior in nonlinear MEMS resonators by characterizing them
using a PS-type excitation.

Table A3. Summary of the measurements results for the PS-type excitation.

Influence of the:
Amplitude of the Excitation Signal Order of Excitation of the Frequency
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