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Abstract: Spin-orbit torque memory is a suitable candidate for next generation nonvolatile magne-
toresistive random access memory. It combines high-speed operation with excellent endurance, being
particularly promising for application in caches. In this work, a two-current pulse magnetic field-free
spin-orbit torque switching scheme is combined with reinforcement learning in order to determine
current pulse parameters leading to the fastest magnetization switching for the scheme. Based on
micromagnetic simulations, it is shown that the switching probability strongly depends on the con-
figuration of the current pulses for cell operation with sub-nanosecond timing. We demonstrate that
the implemented reinforcement learning setup is able to determine an optimal pulse configuration to
achieve a switching time in the order of 150 ps, which is 50% shorter than the time obtained with
non-optimized pulse parameters. Reinforcement learning is a promising tool to automate and further
optimize the switching characteristics of the two-pulse scheme. An analysis of the impact of material
parameter variations has shown that deterministic switching can be ensured for all cells within the
variation space, provided that the current densities of the applied pulses are properly adjusted.

Keywords: spin-orbit torque MRAM; reinforcement learning; two-pulse switching scheme; magnetic
field-free switching; machine learning

1. Introduction

Spin-transfer torque magnetoresistive random access memory (STT-MRAM) is cur-
rently the state-of-the-art MRAM technology, entering volume production at all major
foundries [1–6]. It is an emerging nonvolatile technology suitable for future universal
memory applications. One of its key advantages is that it is compatible with CMOS tech-
nology, so it can be straightforwardly embedded in circuits [7]. It is promising not only for
standalone, but also for embedded memory applications as replacement of conventional
volatile CMOS-based and nonvolatile flash memories in systems on chip. STT-MRAM
can be integrated in a broad range of applications, from Internet-of-Things to automotive
applications [3] and last level caches [8–10]. Recently, 1Gb standalone [11] and embedded
STT-MRAM solutions [2,4,12,13] have been reported and STT-MRAM operation with a
timing of a few nanoseconds has been demonstrated [8]. However, in order to further
reduce the timing below the nanosecond range, the required current density becomes quite
large. This creates an important limitation, since large currents flowing through the thin
tunnel oxide of a magnetic tunnel junction (MTJ) lead to reliability issues, reducing the
MRAM endurance.

Spin-orbit torque (SOT) MRAM is a promising nonvolatile memory candidate outper-
forming STT-MRAM for ultra-fast operation [14]. In SOT-MRAM, the large current required
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for the writing operation does not flow through the MTJ. Switching is accomplished by
applying a current through a heavy metal wire attached to the magnetic free layer (FL).
Thus, it can operate with a sub-nanosecond timing retaining excellent endurance [15–17].
These properties make SOT-MRAM particularly interesting for nonvolatile replacement of
the classical static random access memory (SRAM) used in caches. It should be pointed out,
however, that deterministic SOT switching of a perpendicularly magnetized FL requires an
external magnetic field [18]. Several field-free schemes have been proposed to circumvent
this issue, usually at the cost of a more complex cell stack fabrication [15,16,19–23].

We consider an alternative field-free scheme, in which a purely electrical control of
the switching process is realized by applying current pulses to two orthogonal heavy
metal wires [24]. A proper configuration of the current pulses is able to reverse the
perpendicularly magnetized FL [25]. Nevertheless, an interesting question arises: how can
one determine a pulse sequence that leads to optimal switching? Searching for such a pulse
sequence requires a very large number of experiments and/or simulations. Ideally, this
task can be outsourced to an algorithm and performed in a guided and automated way.

Machine learning (ML) has been increasingly applied to the solution of physics-based
problems [26] and has already been used to solve fundamental micromagnetic problems,
such as the computation of the magnetization dynamics of a thin film [27] and of the
magnetic microstructure of a single magnetic body [28]. Recently, an ML model was
applied to identify the regime of field-free SOT switching as a function of the magnitude of
the applied current density, the nanomagnet size, and the interfacial Dyzaloshinskii-Moriya
interaction [29]. The two most used ML approaches are supervised and unsupervised
learning. In turn, another sub-branch of ML so-called reinforcement learning (RL) has
gained interest [30,31]. Big RL breakthroughs were achieved lately using games like chess
or Go [32], but this type of learning algorithm has also been successfully applied for
physics-based problems.

The RL principle of operation is based on an agent and an environment, in such a way
that the agent interacts with the environment and learns how to act or take decisions to
achieve a specific state or goal [30]. In other words, the agent interacts with the environment
by performing actions that cause the environment to move from one state to another. Once
the environment moves to a new state, it informs about its state and returns a reward to
the agent. Based on this information, the agent can decide to take actions to maximize
the cumulative reward received over time. During this process, the agent learns how to
achieve the given objective.

In this work, we combine the two-current pulse switching scheme with an RL algo-
rithm to optimize the switching of a spin-orbit torque memory cell. We demonstrate that
the reinforcement learning implementation can find an optimal sequence and timing for
the current pulses in order to achieve faster switching in comparison to a conventional
combination of pulse parameters.

2. Spin-Orbit Torque Memory Cell and Switching Dynamics

The two-pulse switching scheme for a SOT memory cell is depicted in Figure 1. The
cell is formed by growing a perpendicularly magnetized FL on top of a heavy metal wire
(NM1), where a first current pulse is applied to generate the initial SOT on the FL. On the
right part of the cell, a second, orthogonal heavy metal wire (NM2) is placed on top of the
FL, and a second current pulse is applied through it. The SOT generated due to this second
pulse acts on the FL to complete the magnetization switching of the memory cell [33]. The
NM1/FL/NM2 stack composes the structural part used for the writing operation of the
memory cell. In the left part of the cell, next to the SOT writing stack, an MTJ is grown on
top of the FL, which is required for carrying out the reading operation of the memory cell
via measurement of the tunneling magnetoresistance.
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Figure 1. (a) SOT-MRAM cell for switching based on (b) two orthogonal current pulses. Pulse 1 is applied to the NM1
wire and Pulse 2 is applied to the NM2 wire. I1,2 is the current amplitude and T1,2 is the width of the first/second pulse. τ

represents the delay or overlap between the pulses.

In order to carry out micromagnetic simulations of the two-pulse SOT switching
scheme, the magnetization dynamics is described by the Landau-Lifshitz-Gilbert (LLG)
equation

∂m
∂t = −γµ0 m × Heff + αm × ∂m

∂t
−γ }

2e
θSH j1
MSd [m × (m × y)]Θ(t, T1)

+γ }
2e

θSH j2
MSd [m × (m × x)]Θ(t, T1, T2)

(1)

where m is the normalized magnetization, γ is the gyromagnetic ratio, µ0 is the vacuum
permeability, α is the Gilbert damping factor, and MS is the saturation magnetization. Heff
is an effective magnetic field, which includes the exchange field, the uniaxial perpendicular
anisotropy field, the demagnetization field, the current-induced field, and the stochastic
thermal field at 300 K. The last two terms on the right-hand side of the LLG equation
describe the SOT generated by the applied current pulses through the NM1 and the NM2
wire, respectively, where e is the elementary charge, h̄ is the reduced Plank constant, θSH
is an effective Hall angle, j1,2 is the current density of the first/second pulse, d is the FL
thickness, and Θ(·) is a function which determines when each pulse is active.

Equation (1) is solved numerically using a micromagnetic simulation software devel-
oped in-house [34] based on the finite difference method. The simulation parameters are
given in Table 1.

Table 1. Simulation parameters. Heavy metal wires of b-tungsten and a magnetic FL of CoFeB on
MgO are assumed [18].

Parameter Value

Saturation magnetization, MS 1.1 × 106 A/m
Exchange constant, A 1.0 × 10−11 J/m

Perpendicular anisotropy, K 8.4 × 105 J/m3

Gilbert damping factor, α 0.035
Spin Hall angle, θSH 0.3

Thermal stability factor, ∆ 45
Free layer dimensions 40 nm × 20 nm × 1.2 nm

NM1: w1 × l 20 nm × 3 nm
NM2: w2 × l 20 nm × 3 nm

3. Reinforcement Learning for the Two-Pulse Spin-Orbit Torque Switching

Figure 2 shows the RL setup implemented for performing the learning experiments
with the two-pulse switching scheme. The environment consists of our in-house tool,
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which provides the simulation of the memory cell switching and returns the current
state of the simulation together with a reward after every iteration. The used deep Q-
network (DQN) algorithm [31] incorporates a neural network to approximate a function
for mapping states to actions. An existing Python library providing the RL capabilities has
been employed [35]. Here, the goal of our RL implementation is to determine the pulse
configuration which results in the shortest switching time, defined as the time when the
perpendicular component of the magnetization vector reaches −0.5, i.e., mz = −0.5.
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Figure 2. Reinforcement learning setup for the two-pulse switching scheme. The micromagnetic
simulation of the memory cell provides the environment, with which the agent interacts and takes
actions to achieve the fastest magnetization switching.

The state vector returned from the environment after every iteration consists of 11 vari-
ables: the average of the three magnetization vector components (mx, my, mz), the difference
of each component to the previous iteration (∆mx, ∆my, ∆mz), the average component of the
effective magnetic field (Heff,x, Heff,y, Heff,z), and two variables indicating whether the first
and the second pulse are active or not. Based on the state information, the learning agent
deduces which action to take. It is important that the dynamics of the magnetization vector,
given by (∆mx, ∆my, ∆mz), is taken into account, so the direction in which the magnetization
is moving is known. In this way, the agent can decide on the best action to take to drive
the switching as fast as possible. Our setup allows the agent to take four different actions,
namely, setting both pulses off, setting both pulses on, turn the first pulse on with the
second off, or turn the first pulse off and the second pulse on. If a pulse is on, it means
that current has been applied to the corresponding heavy metal wire and a spin torque is
applied to the magnetization of the FL.

The rewarding scheme is critical for the RL approach, because it is the main factor
which leads the learning algorithm in the right direction and the agent to select the best
actions to achieve the target. The reward is an integer value returned by the environment,
indicating whether the actions performed by the agent were good or bad. For the SOT
switching, the rewarding scheme is chosen such that a shorter switching time corresponds
to a higher reward, since the RL algorithm tries to maximize the cumulative reward during
the learning process. Here, a reward of −1 is given for every simulation step in which the
target, mz = −0.5, has not been reached yet. We define tmax = 1 ns as an upper limit for
the simulation time. If the target is not reached within this time, the learning episode is
terminated and a new one is started. On the other hand, if the target is reached at a time
tfinal before tmax, a positive reward of (tmax−tfinal)/∆t is returned, where ∆t is the simulation
time-step. In this way, the rewarding scheme is a complementary measure of the number
of time-steps required to reach the switching. The smaller the number of time-steps needed
to switch, the shorter the switching time is and, therefore, the larger the reward is.
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4. Results and Discussion
4.1. Numerical Simulations

Micromagnetic simulations of the switching dynamics of the two-pulse SOT scheme,
as described in Section 2, were carried out. We start by investigating the impact of the pulse
configuration on the magnetization dynamics. In particular, the current densities of the first
and the second current pulse are fixed at j1 = 2.7 × 1012 A/m2 and j2 = 1.3 × 1012 A/m2,
respectively, while the pulse durations T1 and T2 can be modified (c.f. Figure 1). A perfect
synchronization between the pulses is considered, i.e., the second current pulse is turned
on immediately after the first pulse is turned off. Thus, there is no delay or overlap between
the pulses (τ = 0). This constraint will be lifted in Section 4.2, where the results of the RL
approach are discussed.

Figure 3 shows the perpendicular component of the magnetization (mz) as a function
of time for different widths of the first current pulse, while the second pulse width is
kept fixed at T2 = 100 ps. In order to account for the thermal spread resulting from the
stochastic thermal field at room temperature, a total of 50 realizations are considered for
each simulation condition. The curves shown in Figure 3 represent the average of these
50 realizations. One can clearly see that, depending on the width of the first pulse, the
magnetization dynamics changes significantly, and so does the switching behavior. Here,
the pulse sequence and the timing lead to successful magnetization reversal, when the
width of the first pulse is short, while switching does not occur for larger values of T1.
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shown in Figure 4. As in the previous results, switching is obtained depending on the 
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Figure 3. Perpendicular component of the magnetization vector (average of 50 realizations) as a
function of time for various durations of the first pulse, T1. The simulation parameters are found in
Table 1 and j1 = 2.7 × 1012 A/m2, j2 = 1.3 × 1012 A/m2, and T2 = 100 ps. j1 and T1 are the current
density and the duration of the first pulse, respectively, and j2 and T2 are the current density and the
duration of the second pulse (c.f. Figure 1b). The dashed line represents the switching threshold.

Next, we reverse the analysis and fix the first current pulse width at T1 = 150 ps, while
the width of the second current pulse is varied. The resulting magnetization dynamics
is shown in Figure 4. As in the previous results, switching is obtained depending on the
value of T2. In contrast to the previous scenario, successful switching is observed as the
second pulse width becomes longer.

The above results suggest that the configuration of the pulse sequence has an impor-
tant impact on the switching characteristics of the cell, in such a way that variations of
the pulse configuration can lead to either switching or non-switching schemes. To further
understand this impact, we performed simulations for various combinations of pulses
and evaluate the switching probability. The results are shown in Figure 5, which plots the
switching probability as a function of the first and the second pulse width. In general, for
short values of T2 (≤150 ps), the switching probability depends largely on the first pulse
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width, i.e., it depends on the particular pulse sequence and small changes of the pulses
can yield successful or non-successful magnetization switching. In turn, increasing T2
beyond ~200 ps, the switching probability tends to 1, becoming practically insensitive to
the duration of the first pulse.
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For short pulse widths, precise pulse schemes are required to obtain deterministic switching.

From the previous analysis, we are able to determine pulse parameters that lead to
deterministic switching of the memory cell. However, this does not guarantee that these
parameters produce fast switching. Now we would like to find the pulse sequence which
leads to the fastest possible switching. In order to accomplish that, we have to evaluate
many more combinations of pulse sequences than those considered before. It should
be pointed out that the previous results were obtained by manually running a total of
180 micromagnetic simulations. Considering that 50 realizations (due to the stochastic
thermal field) are carried out for each pulse sequence combination, the number of switching
simulations increases to 9000, even though delays or overlaps between the pulses are still
not considered. Thus, taking into account all possible variations of pulse parameters results
in an exponential increase of the required number of simulations, which makes a manual
optimization of the switching intractable. Here, the RL setup described in Section 3 is
extremely useful, offering a powerful methodology for searching the fastest switching
condition in a guided way.
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4.2. Reinforcement Learning Experiments

RL is applied with the goal of achieving the fastest magnetization switching, namely
to achieve the shortest switching time, which is determined by the time when the condition
mz = −0.5 is reached. The agent searches for a pulse sequence and combination of the
first and the second pulse duration, T1, T2, which lead to the shortest switching time.
The actions performed by the agent (c.f. Figure 2) have been restricted to facilitate the
learning process, thus it can switch on and off each pulse individually. However, the pulse
synchronization constraint of the previous section is now relaxed, so that the current pulses
are allowed to overlap or be delayed. The minimum pulse width is limited to 100 ps and
the amplitude of the pulse is fixed to 130 µA and 100 µA for the first and the second current
pulse, respectively. A learning episode is finished once mz = −0.5 or the time has reached
1 ns.

The results of the learning process of our RL setting are shown in Figures 6 and 7,
respectively. Figure 6 reports the switching time over the course of the learning period for
20 independent learning runs, where each run encompasses 106 learning steps. During an
initial exploration phase, the action selection by the agent is not greedy, i.e., an action is not
selected with the purpose of accumulating the highest reward, but the agent takes a random
action to explore the state-action space. Furthermore, different random seeds are used for
initializing the neural network weights. A general trend can, however, be observed, which
is the reduction of the switching time as the number of learning steps increases. Initially,
the switching times are distributed around 400–500 ps, but as the number of learning steps
increases, several runs reach switching times in the 200–300 ps range.
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Figure 6. Switching time over the course of the learning period of 20 independent runs. As the
number of learning steps increases, there is a trend towards switching time reduction.

The switching time decrease with the learning progress can be better visualized in
Figure 7, which shows the mean switching time and the reward as a function of the number
of learning steps of the six best learning runs. First, an increase of the switching time is
observed, which is a consequence of the initial focus on exploration of the state-action space
previously mentioned. Then, over the course of 106 learning steps, the mean switching
time reduces to around 240 ps. The direct relationship between the switching time and the
accumulated reward is readily demonstrated in Figure 7. As the switching time decreases,
the accumulated reward increases, indicating that the agent has learned a better policy to
select actions which can switch the memory cell faster. It should be pointed out that single
runs were able to achieve an even better policy, which resulted in a minimum switching
time of about 146 ps.
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Figure 7. Learning curve showing the mean switching time and reward over 106 time steps. It shows
that, the faster the cell switches, the larger is the accumulated reward during learning.

The pulse configuration learned by the DQN algorithm and the resulting magneti-
zation dynamics are shown in Figure 8. The current pulses through the NM1 and the
NM2 wire are turned on simultaneously right in the beginning of the simulation. After
100 ps, the first pulse is turned off and the magnetization component mz drops below the
−0.5 threshold. Once this threshold is achieved, no further action is taken and the second
current pulse is kept active for the rest of the simulation. This generates a SOT which
acts on the FL under the NM2 wire, resulting in an average perpendicular magnetization
component of about −0.8. Thus, the magnetization of the FL is not fully reversed to −1.
This demonstrates the importance of the rewarding scheme and the general setup of the RL
experiment. As the RL agent was rewarded for finishing the learning episode as fast as pos-
sible and the episode was considered finished as soon as the −0.5 threshold was reached,
the agent learned how to achieve the threshold and did not take any action afterwards.
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Figure 9 shows the dynamics of the magnetization component mz considering different
variations of the learned pulse configuration. In the learned model, the second pulse is
now switched off after mz = −0.5 is reached, which guarantees that the magnetization
reversal is completed. The variations consisted of extending the first pulse and/or delaying
the second pulse. A comparison of the magnetization dynamics with the learned model
is given in Figure 9. One can observe that the learned configuration (black curve) leads
indeed to the fastest switching. In turn, in the scenario with a longer first pulse, for which
the pulses are almost perfectly overlapping, switching does not occur (red curve). The
modified pulse sequences, represented by the green and blue curves, also lead to switching
of the cell, however with longer switching times.
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Figure 9. Comparison of different pulse configurations. The learned model is compared with
modified ones. The learned pulse configuration leads to the fastest switching. I1 is the current
amplitude of the first pulse, P1, applied to the NM1 wire and I2 is the current amplitude of the second
pulse, P2, applied to the NM2 wire. The dashed line represents the switching threshold.

The robustness of the switching for the learned scheme is confirmed in Figure 10, for
which 50 realizations under influence of the stochastic thermal field are reported. The
variations between the different realizations are small and all of them switch, which shows
that the learned scheme results in reliable and deterministic switching. It should be pointed
out that, while the RL approach was able to find a scheme for which the switching time is
146 ps, the minimum switching time obtained from the previous manual configuration of
the pulse was around 300 ps. This demonstrates the potential of the RL tool in combination
with micromagnetic simulation for optimizing the two-pulse SOT switching scheme.
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Figure 10. z-component of the magnetization of 50 switching realizations using the switching scheme
found by the RL algorithm shown in the inset. I1 is the current amplitude of the first pulse and I2 is
the current amplitude of the second pulse.

4.3. Impact of Parameter Variations

Although the fastest switching condition has been determined, variations of the pulse
timing and/or of the process and material parameters of the magnetic FL can lead to slower
or even non-deterministic switching. Thus, we now consider the impact of variations of
the saturation magnetization and the anisotropy energy on the switching scheme.

Figure 11 shows the x, y, and z components of the magnetization vector as a function
of time for K = 8.8 × 105 J/m3 and MS = 1.05 × 106 A/m, which represent a variation of
5% in relation to the nominal parameter values. In this case the cell does not switch and,
more importantly, one can observe that the perpendicular component of the magnetization
(mz) does not reduce below 0.7. This means that the SOT generated by the applied current
density of the first pulse (j1 = 2.7 × 1012 A/m2) is too weak to trigger the magnetization
reversal. This can be explained by the fact that the variation of material parameters can
change the critical current density for SOT switching. The above parameters lead to an
increase of the critical current density, so that it becomes larger than the applied one. Thus,
in order to switch this particular cell, the applied current has to be increased.
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Figure 11. Magnetization dynamics for a cell with 5% variation of the perpendicular anisotropy
energy and saturation magnetization in relation to the nominal values. The current density of the
first pulse (2.7 × 1012 A/m2) is smaller than the critical current density, so the cell does not switch.
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Considering that different material parameter variations happen concurrently, one
should expect that different cells of the same design undergoing the same fabrication
process can require different current densities to trigger switching. Figure 12 shows the
required current density for the first pulse to guarantee deterministic switching for various
combinations of saturation magnetization and anisotropy energy. For 10% variation of
the parameters, the minimum switching current density varies from 1.0 × 1012 A/m2 to
about 3.0 × 1012 A/m2. These results indicate that, in order to switch all cells within the
parameter spread, a current density of at least 3.0 × 1012 A/m2 has to be applied for the
first pulse.
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Figure 12. Minimum current density required for the first pulse to trigger reliable magnetization
switching for cells with different combinations of saturation magnetization and anisotropy energy.
The lowest current density is 1.0 × 1012 A/m2 (lower right corner) and the highest value is about
3.0 × 1012 A/m2 (upper left corner). The current density of the second pulse is 1.3 × 1012 A/m2 and
both pulse durations are set to 200 ps.

Next, the required current density for the second pulse is determined, as shown in
Figure 13. We consider four combinations of anisotropy energy and saturation magnetiza-
tion, denominated C1 to C4, which cover the variation space of Figure 12: K = 8.8 × 105 J/m3,
MS = 1.05 × 106 A/m (C1), K = 8.8 × 105 J/m3, MS = 1.16 × 106 A/m (C2), K = 8.0 × 105 J/m3,
MS = 1.05 × 106 A/m (C3), and K = 8.0 × 105 J/m3, MS = 1.16 × 106 A/m (C4), where C1
and C4 correspond to the two extreme cases, upper left and lower right corner, respectively,
of Figure 12. In order to ensure 100% switching, the minimum current density required for
the second pulse is about 1.0 × 1012 A/m2.

The above analysis has allowed us to determine the minimum settings which guaran-
tee 100% switching in the presence of cell-to-cell variations. Applying j1 = 3.0 × 1012 A/m2

and j1 = 1.3 × 1012 A/m2, the average switching realizations from parallel to anti-parallel (P-
AP) as well as from anti-parallel to parallel (AP-P) configuration are reported in Figure 14,
for the parameter combinations C1 to C4 and the nominal (Nom.) case, K = 8.4 × 105 J/m3,
MS = 1.1 × 106 A/m. It should be pointed out that 50 realizations have been tested for each
combination and all of them resulted in successful switching.
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Figure 13. Switching probability as a function of the current density for the second current pulse,
for four combinations of anisotropy energy and saturation magnetization. C1: K = 8.8 × 105 J/m3,
MS = 1.05 × 106 A/m; C2: K = 8.8 × 105 J/m3, MS = 1.16 × 106 A/m; C3: K = 8.0 × 105 J/m3,
MS = 1.05 × 106 A/m; C4: K = 8.0 × 105 J/m3, MS = 1.16 × 106 A/m. The current density of the first
pulse is set to 3.0 × 1012 A/m2 and both pulse durations are 200 ps.
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Figure 14. Average switching realizations from parallel to anti-parallel (P-AP) and anti-parallel to
parallel (AP-P) for various combinations of anisotropy energy and saturation magnetization. C1:
K = 8.8 × 105 J/m3, MS = 1.05 × 106 A/m; C2: K = 8.8 × 105 J/m3, MS = 1.16 × 106 A/m; C3:
K = 8.0 × 105 J/m3, MS = 1.05 × 106 A/m; C4: K = 8.0 × 105 J/m3, MS = 1.16 × 106 A/m; Nom.:
K = 8.4 × 105 J/m3, MS = 1.1 × 106 A/m. Each curve represents the average of 50 realizations, all of
them resulting in successful switching.

5. Conclusions

We developed a reinforcement learning approach in combination with micromagnetic
simulations to optimize the switching of a spin-orbit torque memory cell. The magnetiza-
tion switching is accomplished with a two-current pulse scheme and it is shown that, for
sub-nanosecond operation, the switching probability strongly depends on the parameters
of the applied current pulses. We demonstrated that the reinforcement learning setup can
determine optimal sequence and timing parameters for the current pulses, which results in
the fastest switching of the memory cell. This optimal pulse sequence yielded a switching
time as short as 146 ps, remarkably shorter in comparison to a switching time of 300 ps
for the manually configured pulse sequence. Based on our results, reinforcement learning
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is a promising tool to automate and further optimize spin-orbit torque switching based
on the two-pulse scheme. We analyzed the impact of material parameter variations and
showed that reliable switching can be guaranteed in the presence of cell-to-cell variations,
provided that the current amplitude of the pulses is adjusted.
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