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Abstract: Brain-on-chip (BoC) models are tools for reproducing the native microenvironment of
neurons, in order to study the (patho)physiology and drug-response of the brain. Recent develop-
ments in BoC techniques focus on steering neurons in their activity via microfabrication and via
computer-steered feedback mechanisms. These cultures are often studied through calcium imaging
(CI), a method for visualizing the cellular activity through infusing cells with a fluorescent dye.
CAlciumImagingAnalyser 2.0 (CALIMA 2.0) is an updated version of a software tool that detects and
analyzes fluorescent signals and correlates cellular activity to identify possible network formation in
BoC cultures. Using three previous published data sets, it was demonstrated that CALIMA 2.0 can
analyze large data sets of CI-data and interpret cell activity to help study the activity and maturity of
BoC cultures. Last, an analysis of the processing speed shows that CALIMA 2.0 is sufficiently fast to
process data sets with an acquisition rate up to 5 Hz in real-time on a medium-performance computer.

Keywords: brain-on-chip culture; calcium fluorescence imaging; software tool; neuronal network

1. Introduction

Developing new types of medication for an organ as complex as the brain remains a
challenge until now. In the past, brain diseases were studied mainly in ex-vivo slices of
animal brains and in cell cultures. From these options, ex-vivo slices are a more accurate
representation of a brain as these contain remnants of a functional network, including
extracellular matrix (ECM) and a variety of cell types [1]. Moreover, brain slices are
valuable, not only because of their cellular and matrix components, but because they
preserve, even though in part, the original circuitry of the native tissue, as opposed to cell
cultures, where this architecture is lost. However, not all properties of animal brains are
translatable to the human brain and the use of animals for research and drug development
yields ethical issues on top of the scientific challenges.

Hence, more elaborate brain models are being developed based on cultures of human
cells rather than ex-vivo brain slices. Brain-on-chip (BoC) models intend to mimic the
physiological microenvironment of the neurons such that the cell cultures can operate
under “natural” conditions. A well-designed BoC system can exhibit electrical activity
and develop communication networks [1,2]. When such models encompass diseases and
disorders of the brain, it is believed that the knowledge of the connectivity within the brain
areas is required to better understand the effects of pharmacological drugs on certain brain
areas [3].

Another recent trend in the development of BoC cultures is its influence on activities in
the cultures by integrated nano-and microfabricated physical features that, either directly
affect cell differentiation processes as ECM biomimicking factors, e.g., nanogrooves [4], and
by time-responsive control mechanisms to evoke a response of the cultured network [5].
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Recent advances in calcium signal analysis software have brought fast processing algo-
rithms that enable real-time, feedback-based (closed-loop) control of cellular activity [6,7].
Such experiments require a fast processing of the data acquired from such cultures.

The main optical imaging technique allowing for dynamic analysis of neuronal activity
in multiple cells is fluorescent calcium imaging (CI), which is a method to measure cell
activity in multiple neurons at the same time [8]. Cells are treated with a fluorescent dye,
and the fluorescent properties of the dye change when the amount of intracellular calcium
is altered, such as the case during neuronal signalling [8]. Comparing neuronal signalling
between different cells can correlate to these neurons being connected in a network, which
is essential for revealing information of maturity in the neural cell networks.

There are many semi-automated CI-analysis tools readily available, but not all allow
for correlation analyses of cellular activity, which is required to study network develop-
ment [9–11], or require supporting software such as Matlab [12]. Additionally, the program
should be open source to ensure accessibility, data handling transparency, and continuous
improvement of the software, in line with the expected high potential for new discoveries.
For example, BoC platform technology can be used to explore novel therapeutic strategies
for neurodegenerative diseases [13], to investigate drug delivery across the blood-brain bar-
rier [14] or to study the complexity of the brain [15]. Finally, a CI-tool should be fast enough
to allow the aforementioned closed-loop experiments, and sufficiently accurate with respect
to the unmet need for these on-chip brain models in the pharmaceutical industry.

The previously developed open-source CALciumIMagingAnalyser (CALIMA) 1.0 [16]
enables the user to detect cells, process calcium spike activity and provides an overview of
the communication between neurons within limited computation time. It demonstrated the
ability to detect and process calcium spike activity for two examples where neural activity
was evaluated using CI in BoC technology utilizing three-dimensional (3D)-microsieve-
assisted scaffolding by Moonen et al. [17], and applying nanogrooved substrates for ECM
mimicry by Bastiaens et al. [4]. However, while CALIMA 1.0 is able to detect calcium
peaks, its algorithms translation from raw fluorescence traces to the changes in cellular free
calcium concentrations is lacking. Cellular calcium plays a role in communications between
cells, as well as in processes regarding cell health, such as apoptosis and differentiation [8].
Therefore, a translation of fluorescent traces to cellular calcium concentrations is required
to further develop culture-based techniques such as BoC.

In this paper, we present CALIMA 2.0, a user-friendly open-source CI-tool available
at [18], which is able to identify individual cell activity in a network of cells, and meeting
the requirements set above. Modifications in the source code of CALIMA 1.0 allow for
a more detailed analysis of the fluorescent intensity fluctuations delineated by the ap-
plied algorithms, along with improvements in processing speed. This provides the next
step towards the interpretation of the physiological meaning of these signals. Here, the
improvements in the algorithms are detailed, initial estimates regarding the parameters
used by CALIMA 2.0 are given and the data processing is demonstrated in three data sets.
Additionally, the processing speed of CALIMA 2.0 is investigated.

2. Materials and Methods
2.1. Processing Workflow

CALIMA 2.0 uses the framework and data loading algorithms of CALIMA 1.0 [16],
but data processing strategies have been adapted to improve the processing speed and
to make parameter selection more intuitive. The schematic workflow of CALIMA 2.0 is
depicted in Figure 1, and will be further detailed in the following sections.
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blue blocks. Furthermore, the user-set input parameters are indicated for each processing step.

2.2. Processing Changes Compared to CALIMA 1.0
2.2.1. ROI Detection

After loading a data set, the regions of interest (ROI) are detected, see the top part
in Figure 1. The footage is first averaged per pixel and contrast-stretched, resulting in an
image normalized to a scale from 0 to 1. Next, a difference of Gaussians (DoG) filter is used
to detect the ROIs, which enhances the features of the image at edges to discover locations
with sharp dark-to-bright transitions [19]. CALIMA 1.0 used an additional blurring filter on
top of a DoG filter to reduce the influence of neurites on the ROI detection [16]. In CALIMA
2.0, this step has been combined with the DoG filters to save processing time and to reduce
the number of parameters to be set by the user.

2.2.2. Signal Extraction

Per ROI, the raw fluorescence signals are extracted from the raw footage by averaging
the values of all pixels in the ROI per frame, see Figure 1. The raw fluorescence signals
are then corrected for the background fluorescence and baseline fluorescence of the ROI
through a sliding window algorithm similar to the one used in [12]. This approach is differ-
ent from the strategy used by CALIMA 1.0, which combined the signal normalization and
calcium peak detection steps to save on processing time [16]. However, the normalization
to the background and baseline fluorescence, enables the extraction of fluorescence traces,
which are directly related to the cell’s free calcium concentration [20]. The fluorescence
intensity F0 of a cell in rest is determined, and the fluorescence data Fraw of a cell Fraw is
compared to it through ∆F = Fraw − F0. This ∆F serves as a measure of the cellular fluores-
cence activity of the cell compared to its activity in rest. As F0 varies greatly between cells,
the absolute fluorescence difference ∆F is normalized to F0 to obtain a relative measure of
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the fluorescence activity of the cell. Changes in these ∆F/F0 traces can be related to the
internal calcium concentrations of the cells. These concentration differences can be linked
to a plethora of biochemical processes [8], and are, thus, of interest.

2.2.3. Peak Detection

The calcium spikes are detected from the ∆F/F0 traces through a robust sliding Z-
score algorithm [21]. This algorithm tracks the signal mean and standard deviation when
the ROIs are in rest and uses this information to detect signal peaks. An extended version
of this algorithm was used in CALIMA 1.0 for the combined signal normalization and
peak detection [16]. In CALIMA 2.0, the number of parameters that has to be set for peak
detection has been reduced to three, simplifying this strategy. Now, the user only has to
set the size of the window from which the local signal mean and standard deviation are
determined, a smoothing factor which reduces the influence of peaks on the local signal
mean and standard deviation, and the peak detection threshold.

2.3. Algorithms and Parameter Space
2.3.1. ROI Detection

The ROI boundaries ROIbnd are found from the pixels having intensities above a
certain threshold ThDoG in the image after a DoG operation D with blurring parameters σa
and σb on the averaged, contrast-stretched image Iavg from the following set of equations:

ROIbnd = D(σa, σb) > ThDoG (1)

D(σa, σb) = Iavg ∗ G(σa)− Iavg ∗ G(σb). (2)

Here, G represents the Gaussian blur filter as given by,

G(σ) =
1

(2πσ2)
exp

(
−x2 + y2

2σ2

)
(3)

with a Gaussian kernel of width σ, and spatial coordinates (pixel positions) x and y.
Boundary pixels were padded to enable the detection of ROIs at the sides and corners
of the footage. Next, the areas enclosed by ROIbnd are filled using an 8-pixel boundary
fill algorithm.

The optimal settings for the ROI detection depend on the dataset. A sensible initial
estimate for the three parameters σa, σb and ThDoG can be determined as follows. The DoG
filter acts as a spatial band pass filter for the brightness gradients between cut-off fre-
quencies of 1/2πσb and 1/2πσa [19]. Based on the examples obtained from [5,22], the
per-pixel maximum brightness rate of change of a contrast stretched calcium fluorescence
image is typically in the range of 0.1 to 0.33. This implies that both σa and σb should be
between 3–10 pixels. Furthermore, setting σb to 1.6 times σa makes the DoG filter approach
the behavior of the Laplacian of Gaussian edge detection operator [19], [23]. The opti-
mal value of ThDoG depends on the scale factor between σa and σb [19]. Starting with
ThDoG = 0.002(σb/σa) appears to be a suitable initial guess. The number of ROIs found
and the area of the ROIs discovered can both be increased by lowering ThDoG.

2.3.2. Signal Extraction

To find the ∆F/F0 traces, the per-ROI averaged signal traces need to be corrected
for the background fluorescence Fmin and the ROI-dependent resting fluorescence F0 [20],
which is done with a sliding window like described in:

∆F /F0[n] = (Fraw[n]− F0[n])/F0[n] (4)

F0[n] = Flow[n]− Fmin (5)

Flow[n] = mean(lowest q % o f values o f (Fraw[n − K : n])). (6)



Micromachines 2021, 12, 412 5 of 13

Here, Fraw is the per-time frame averaged signal trace of an ROI in frame n, Flow the
magnitude of the fluorescence signal in absence of a calcium spike, K the user-set window
size and q an user-set parameter determining the percentage of lowest values of Fraw used
to find Flow.

The background fluorescence Fmin is automatically estimated by averaging the 1%
lowest-valued pixels of the first frame of the footage. Furthermore, it is advisable to choose
window length K, such that it can contain at least one full calcium spike. The rise times and
decay constants of the calcium spikes depend among others on the fluorescent dye [24]
and last milliseconds to min [24,25], placing window size K in the range of tens (footage
acquisition rate ~1 Hz [4,5,25,26]) to hundreds of frames (acquisition rate ~10 Hz [27]).
Parameter q should be chosen sufficiently high such that multiple samples are used to
estimate Flow, but well below 50 to avoid basing F0 on trace sections that contain calcium
spikes. If K is much larger than the duration of one calcium spike, q should typically
be 10–20.

2.3.3. Peak Detection

The peaks in the ∆F/F0 traces are found with a robust sliding Z-score algorithm [21],
a variation of the often-used Z-score algorithm [28] that determines the signal mean and
standard deviation locally to detect signal peaks. The robust Z-score can be applied to the
∆F/F0 traces through the following set of equations:

Pf [n] =
{

1 i f Z f [n] > ThZ
0 otherwise

, (7)

Z f [n] =

(
∆F/F0[n]− µ f [n − 1]

SD f [n − 1]

)
, (8)

µ f [n] =
1

L f

n−1

∑
i=n−L f −1

Fbu f f [i] (9)

SD f [n] =

√√√√ 1
L f − 1

n−1

∑
i=n−L f −1

(
Fbu f f [i]− µ f [n]

)2
(10)

Fbu f f [n] =
{

jin∆F/F0[n] + (1 − jin)Fbu f f [n − 1] i f Pf [n] = 1
∆F/F0[n] otherwise

(11)

Here, the binary array Pf contains a 1 if a peak is detected in frame n and a 0 if there
is not. The array Z f contains the signal’s Z-score, ThZ is the user-set threshold for peak
detection µ f and SD f represent the trace mean and standard deviation, L f is the user-set
window length used to estimate µ f and SD f , Fbu f f is a low-pass filtered version of the
∆F/F0 trace, and jin is the user-set smoothing factor of the filter. Low-pass filtering the
traces in the presence of a peak decreases the influence peaks have on the estimates of the
signal mean and standard deviation, which leads to more robust peak detections. Note that
SD f is set to be minimally 1/(10ThZ) to avoid accidental divisions by 0, see Equation (8).
The threshold for peak detection ThZ represents by what amount the signal must be larger
than the standard deviation before it is classified as a peak. Depending on the signal to
noise ratio of the traces, a value of at least 3.0 should suffice. Ideally but not necessarily, the
window length L f is chosen longer than the duration of one calcium spike. The smoothing
factor jin should be set to a small value (0.1–0.2), but preferably higher than 0 to ensure that
calcium spikes do not contaminate the sliding window estimates.

2.3.4. Parameter Space Summary

The start estimates for the parameters used by CALIMA 2.0 are summarized in Table 1.
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Table 1. The proposed start estimates for the parameters of CALIMA 2.0.

Operation ROI Detection Signal Extraction Peak Detection

Parameter σa σb ThDoG K q L f Thz jin

Unit Pixels Pixels - Frames % Frames - -

Value 3.0 to 10.0 1.6σa 0.002σb/σa
>calcium spike

duration 10–20 >calcium spike
duration ≥3.0 0.1–0.2

2.4. Data Acquisition and Management

To evaluate the data processing of CALIMA 2.0, a data set for visualizing calcium
influx and testing the computational processing speed was retrieved from an online
source [22] (dataset 1). Dataset 1 contains spontaneous activity of cultured primary rat
cortical neurons transduced with AAV2-GCaMP6 dye. The 696 by 520 pixel 16-bit TIFF-
format dataset was acquired at 10 Hz.

Additionally, published data from human induced pluripotent stem cell-derived
neuronal cells (hiPSCNs) on nanogrooved polydimethylsiloxane (NG-PDMS) was used to
demonstrate the functionality of CALIMA 2.0 in a BoC environment [4] (dataset 2). In brief,
nanogrooved substrates, obtained via lithography with a 1000 nm pattern periodicity and
230 nm ridge [5], were used to study guidance of neuronal outgrowths in hiPSCNs. Cells
were loaded with (Fluo-4 Calcium Imaging Kit, Thermo Fisher, Walham, MA, USA [29])
and a TIFF-format dataset with 1280 by 960 pixels was recorded during a 10-min time-lapse
with a 0.1 Hz acquisition rate after the culture had been developing for 13 days in vitro
(DIV). CALIMA 2.0’s block peak detection was used, which measures per ROI all the
frames reaching higher than the peak threshold rather than just the moments of the peaks.
This was done to measure the duration of calcium level elevation. Newly obtained data
were exported as open file formats (.csv) for further analysis.

Lastly, to demonstrate the spatiotemporal analysis properties of CALIMA 2.0, a data
set was obtained from Xie et al. [5]. This BoC data set is based on a PMDS actuator chip
capable of mechano-stimuli to study network maturation. An applied pressure of 200 mbar
for 10 s throughout the calcium recording resulted in a detectable deformation within the
chip. Primary rat cortical neurons were loaded with Fluo-4 AM dye. Dataset 3 has a bit
depth of 16, is 512 by 512 pixels wide, and the acquisition rate was 0.254 Hz during an
experiment lasting 46 s (183 frames). For the spatio-temporal analysis, only a few specific
ROIs are of interest for comparing the results to the analyses done by the original authors.
Hence, a mask containing 38 ROIs was applied to this data and only the frames 75 to 183
were loaded (just before the stimulus onset until the end of the experiment).

3. Results
3.1. Physiological Behavior

Using the parameters as mentioned in Table 2, a total of 51 cells were detected in dataset
1 (Figure 2a). A cumulative total of 0 to 40 calcium spikes was measured over time, with a
maximum average of 0.73 peaks per active cell per frame (Figure 2b). Proposed correlated
cell activity can be seen in Figure 2c (Pearson correlation factor of ≥0.7). Multiple cells
with highly correlated activity can be determined from this plot. This could serve as an
indication towards communication in a network between the separate cells. Figure 2d
represents two correlated ROIs. The graph demonstrates that activity is concentrated
around certain time instances, underlining the correlations in activity demonstrated by
Figure 2c. Furthermore, the duration and shapes of the ∆F/F0 traces extracted by CALIMA
2.0 are in line with examples from literature [27].
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Table 2. The parameters used to test the processing speed of CALIMA 2.0 and detect physiological
levels of calcium influx in primary rat cortical neurons in dataset 1.

Operation ROI Detection Signal Extraction Peak Detection

Parameter σa σb ThDoG K q L f Thz jin
Unit Pixels Pixels - Frames % Frames - -

Value 6.6 10.6 0.0030 25 10 10 5.0 0.2
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cell in primary rat cortical cells between frame 500 and 600. (c) Proposed correlations between active primary rat cortical
cells according to CALIMA 2.0 software (Pearson correlation factor of ≥0.7). (d) Calcium fluorescence trace of ROI6 and
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Dataset 2 consisted of hiPSCNs on NG-PDMS detected with the parameters mentioned
in Table 3. The images shown in Figure 3 are cells at 13 DIV for one representative sample.
3108 ROIs were detected. A cell cluster can be observed on the top right in (a), along
with dispersed cell nuclei and outgrowths; (b) demonstrates peaks lasting multiple frames
seen in multiple ROIs in dataset 2; (c) shows that peaks last up to 100 s (average 21.80 s),
indicating that calcium transients vary in time.

Table 3. The parameters used to visualize early calcium activity of hiPSCNs in dataset 2.

Operation ROI Detection Signal Extraction Peak Detection

Parameter σa σb ThDoG K q L f Thz jin
Unit Pixels Pixels - Frames % Frames - -

Value 1.0 2.5 0.0040 10 30 8 5.0 0.2
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can be seen through the different colored bubbles that the activity in the culture appears to
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Figure 4. Stimulus-induced activity in primary cortical rat cells. (a) Wistar rat cortical cells loaded
with green-fluorescent Fluo-4 AM. (b). Spatio-temporal map of the activity in the culture with the
color of a dot representing the mean of the Figure 1. The arrows indicate the apparent directions in
which the activity travels. Note that the green ROIs where the cascade starts are reactivated, and thus,
show some activity later in the experiment as well as early.
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3.2. Processing Speed

The algorithms have been implemented with processing speed in mind. Firstly, CAL-
IMA 2.0 detects the number of logical cores used by the computer, and the data loading,
ROI detection, signal extraction and calcium spike detection algorithms have been multi-
threaded. To that end, a separable version of the DoG filter has been implemented [30],
which splits the DoG operation in four vector convolutions rather than the original two
computationally more expensive matrix convolutions. To save some additional compu-
tation time, the length of these vectors was limited to six times σb as a Gaussian function
decreases to nearly zero at more than three standard deviations distance from its origin.
Furthermore, the signal extraction algorithm requires the lowest values of a set to be found
rapidly, see Equation (6). The QuickSort algorithm was used for this.

Based on these strategies, the computational complexity of the critical steps in the
data processing can be estimated as a function of the frame width W, length L and number
of frames T, the DoG filter length M and the user-set parameter K. The loading and
data visualization module have a complexity of O(WLT), as the number of operations
required to load, convert and display the image stack are directly linked to the number
of pixels loaded. The separable DoG filter enables the ROI detection module to run in
O(M(W + M)(L + M)) operations due to the M pixels padded at the image borders to
enable ROI detection at the boundaries [30]. Last, sorting the values in a window of
length K with QuickSort during the signal normalization module requires O(TKlog(K))
operations and the peak detection, which requires L f multiplications to calculate the SD

and performs this T − L f times while sliding the window, needs O(L f

(
T − L f

)
) operations

per ROI.

3.3. Processing Speed Validation

The computational complexity as well as the actual data processing speed was verified.
The focus of the timing experiments was on the number of frames T for loading the data, the
filter length M for the ROI detection step and the window size K for the signal extraction
step. The image width and length were not varied, as the frame sizes of the footage
produced by different microscopes vary less than an order of magnitude. An analysis
of the frame length and width is, thus, not of interest to obtain a realistic estimate of the
processing time required by CALIMA 2.0.

Subsets of the 1200 frames of dataset 1 were loaded into the program to estimate the
processing speed as a function of the number of frames T. All 1200 frames were loaded
during the tests to effect of different filter lengths M on the ROI detection module. Lastly,
the 51 ROIs found by using the settings on the 1200 frame stack were used as a mask to
determine the effect of the sliding window length K on the operation time of the signal
extraction and the window length L f on the peak detection module. In addition to dataset
1, the procedure processing the 55 frames of dataset 2 was timed with the settings of Table 3,
resulting in 3108 ROIs being detected.

All timing tests were executed on an 2016 Intel(R) Core(TM) i7-5600U CPU with
4 logical cores running Windows 7, and were repeated 5 times in order to get a fair estimate
of the processing time required to complete each computational task. The execution time
of each processing step was timed with C#’s StopWatch subroutine.

Loading the data, finding the ROIs and extracting the signals for with the parameter
described in Table 2 took an average of 160.71 s in total for the 1200 frames, leading to a
processing time of 134 milliseconds per frame for the PC used. Of these 134 milliseconds,
122.5 milliseconds were used to load the data, 3 milliseconds to find the ROIs, 8.5 millisec-
onds to extract the ∆F/F0 traces and 4.8 microseconds to detect the peaks for the 51 ROIs
that were detected. Increasing M,K or L f to the most detrimental values, 600 pixels, and
1200 and 600 frames respectively, only increased the processing time per frame of the
respective processes to 11.0 ms, 11.1 ms and <1 ms. This further underlines the observation
that the data loading process is considered the step that takes up most processing time.
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The entire data processing procedure of dataset 2 took more time with 990 ms per
frame, divided in 630.5 ms for the data loading, 87 ms for the ROI detection, 271.5 ms for
the signal extraction and 1 ms for the peak detection. The reason behind this is that both
the frame size and the number of ROIs detected were significantly larger for dataset 2.

4. Discussion
4.1. CALIMA 2.0 as a Valuable Tool for Calcium Spike Detection in BoC-Devices

Previous data regarding culturing of primary neuronal cells, hiPSCNss and SHSY-5Y
cells have shown that CALIMA 1.0 is capable of determining cell connectivity and activity
through CI [4,17,26]. Applying CALIMA 2.0 to the previously accessed data now showed
that a physiological link can be attributed to CI-data sets with a high enough acquisition
rate. Calcium influxes range from microseconds to hours, depending on their function [31].
Therefore, their amplitude and duration play a major role in the interpretation of CI-
data. In neuronal calcium signaling, the calcium concentration can rise during electrical
activity [32], i.e., cell signaling. Calcium transients, due to an action potential, have a fast
rise and continue in a downwards slope [33]. Figure 2a presents recurring peaks in primary
rat cortical cells, which can be translated to activity bursts. Two individual ROIs and their
calcium transients can be seen in Figure 2d.

The hiPSNCs cultured on NG-PDMS are relatively in an early development stage
(13 DIV) and demonstrate slow-varying calcium spike activity, see Figure 3. These slow
calcium spikes are likely calcium waves, which can be linked to axonal extension [34].
This slow calcium activity is, thus, of great interest in the study of BoC cultures. Long-term
cultures take up to months to develop, which in turn, enhances neurite outgrowth [35],
thus, improving the possibility of enhanced network formation. Visual data provided by
CALIMA 2.0 can easily give an overview of the differences between experimental groups.
Whereas, numerical data provides the possibility for extensive, comparative data analysis.

The response of a neuronal culture to an applied stimulus can be seen in Figure 4. The
results of the spatio-temporal analysis were in line with findings from a manual evaluation
of the data, which was conducted in the original research [5]. The study of stimulus-based
responses is particularly interesting when working towards closed-loop experiments, a
future goal of BoC research.

Our results display the complexity of analyzing BoC-cultures seen in Figure 3 com-
pared to standard two-dimensional (2D)-cultures, such as those displayed in Figures 2–
4 also showcase the possibilities of CALIMA 2.0 in a more advanced BoC-environment
due to the improvements in CI-data processing, as explained in Figure 1. Hence, while
two-photon microscopy and juxtacellular electrodes is the gold standard for acquiring
CI footage, CALIMA 2.0 is able to gather valuable information about a BoC culture from
standard fluorescence microscope data without applying a complex image recording tech-
nique. This reduction in experimental complexity may provide an important step for
the development of BoC-devices, especially in examining the relationship between the
correlated activity and network activity.

Next to neuronal (BoC) research, CALIMA 2.0 can be a valuable tool for other organ-
on-chip research, wherein CI-imaging is applied. For example, CI-imaging has been applied
to visualize calcium signalling in skeletal muscle fibers. It is expected that the DoG ROI
detection, which is based on blurring images [19], which inherently leads to fine detail
reduction, and is especially well-suited for its application to objects with smooth edges,
such as muscle fibers. To understand quantitative myoplasmic calcium movements, we
would opt for an accurate estimate of delta calcium [36].

4.2. CALIMA 2.0 Operation Speed

From an analysis of the calculation speed on a medium-performance computer in a 696
by 520 pixel TIFF-format dataset studying calcium spikes, it was found that CALIMA 2.0
requires an average of 134 milliseconds of processing time per frame. A 1280 by 960 pixel
data set tracking 3108 ROIs required 990 ms per frame. Hence, data that is acquired at
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a slower rate than 1 Hz, such as data sets studying calcium waves [4,5,25,26], could be
processed directly by a theoretical closed-loop version of CALIMA 2.0, but data obtained at
a fast acquisition rate of e.g., 33 Hz, which is required for calcium spike-based closed-loop
experiments as were performed in [37], would have to be processed by a much faster
implementation of the software.

It was found that the time required to load a frame of the footage is the bottleneck,
as it takes up over 90% of the total processing time (122.5/134 ms). An online analysis con-
struction, such as in [7] does not require the data to be saved and again loaded, and would
significantly decrease the time CALIMA 2.0 would require to process a single frame. For
the PC and data set used for the operation speed validation, the processing time per frame,
required for the ROI detection and signal extraction would reduce to 11.5 ms, which is
comparable to the maximum of 28 ms processing time required per frame by Giovan-
nucci et al. [7]. Please note that the methodology of Giovannucci is more extensive than
CALIMA 2.0’s, and includes motion artefact correction in addition to ROI detection and
signal extraction. Still, the processing time of CALIMA 2.0 can be considered in the same
order of magnitude as methodologies intended for closed-loop experiments. Hence, with
some adjustments, CALIMA 2.0 could serve as a base for the development of closed-loop
experiments, such as previously described by Mitani et al. [6], Giovannucci et al. [7] and
Vogelstein et al. [37].

4.3. Outlook

In addition to the development of a closed-loop version, CALIMA 2.0 could be
extended to facilitate the study of cellular cultures further. CALIMA 2.0 detects ROIs
through discovering sharp edges in fluorescence intensity. Cells that overlap have edges
that fade gradually, and CALIMA 2.0 is, thus, at risk of merging such cells into one ROI.
An intensity-based declumping algorithm, as is used in Cellprofiler [38], could better
differentiate between different ROIs. Furthermore, sharp edge detection makes it difficult
to incorporate neurites into the ROIs, while the calcium signals in neurites can at times be
observed in experiments [5], and could be a great source of information when studying
network formation. In future versions, an active contours algorithm could be included to
help extend the DoG-deteced edges to incorporate neurites [39]. Another issue to be solved
is cell shifting. The feedback stimuli used are sometimes of a mechanical nature [5], which
causes the culture to move. Hence, the ROI locations would need to be adapted after each
stimulus, which could be done by correlating ROI maps.

5. Conclusions

CALIMA 2.0 is valuable in the analyzing CI-data in a BoC-environment. CALIMA
showed to be able to identify regions of interest, translate the raw data to ∆F/F0 traces,
detect signal peaks and correlate the activity between individual ROIs. In this work, CAL-
IMA aided in understanding the maturity and activity of a brain-on-chip culture. To this
end, CI-data was processed and essential statistics were calculated, such as the number of
calcium spikes produced per region of interest or the activity correlation between regions.

Additionally, the processing speed of CALIMA was determined both theoretically
and by computational tests. It was found that an average of 134 ms was required to process
a single frame of CI-footage (696 by 520 pixels, dozens of ROIs), hence, taking a safety
margin, CALIMA would be able to process such data faster than it is acquired for frame
rates up to 5 Hz. Tracking calcium waves in thousands of ROIs is already feasible, as such,
data are processed at around 1 second per frame and are typically acquired at frame rates
way below 1 Hz.
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