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Abstract: This paper presents a resonant pressure microsensor with a wide range of pressure mea-
surements. The developed microsensor is mainly composed of a silicon-on-insulator (SOI) wafer to
form pressure-sensing elements, and a silicon-on-glass (SOG) cap to form vacuum encapsulation. To
realize a wide range of pressure measurements, silicon islands were deployed on the device layer
of the SOI wafer to enhance equivalent stiffness and structural stability of the pressure-sensitive
diaphragm. Moreover, a cylindrical vacuum cavity was deployed on the SOG cap with the purpose
to decrease the stresses generated during the silicon-to-glass contact during pressure measurements.
The fabrication processes mainly contained photolithography, deep reactive ion etching (DRIE),
chemical mechanical planarization (CMP) and anodic bonding. According to the characterization
experiments, the quality factors of the resonators were higher than 15,000 with pressure sensitivities
of 0.51 Hz/kPa (resonator I), −1.75 Hz/kPa (resonator II) and temperature coefficients of frequency
of 1.92 Hz/◦C (resonator I), 1.98 Hz/◦C (resonator II). Following temperature compensation, the
fitting error of the microsensor was within the range of 0.006% FS and the measurement accuracy was
as high as 0.017% FS in the pressure range of 200 ~ 7000 kPa and the temperature range of −40 ◦C to
80 ◦C.

Keywords: resonant pressure microsensor; wide pressure measurement range; silicon islands; cylin-
drical vacuum cavity; quality factor

1. Introduction

In the fields of industrial control, aerospace and deep-sea exploration, pressure sensors
with a wide measurement range (over several atmospheric pressure) are widely used [1].
These pressure sensors mainly function with several typical working principles, such
as piezoresistive sensing [2–4], piezoelectric sensing [5,6], capacitive sensing [7,8], fiber
optical sensing [9,10] and resonant sensing [11–17]. Piezoresistive pressure sensors are
widely used in many areas because of significant advantages, including high sensitivities,
fast dynamic responses and easy miniaturizations. Nevertheless, piezoresistive pressure
sensors are sensitive to temperature variations and thus suffer from limited resolutions [18].
Compared with piezoresistive pressure sensors, although piezoelectric pressure sensors are
not sensitive to temperature variations, they cannot measure pressures without variations
as a function of time [19]. As another type of pressure sensor which is not sensitive to
temperature variations, a capacitive pressure sensor requires complex detection circuits [20].
Fiber optical pressure sensors are immune to electromagnetic interferences, and thus they
can work in harsh environments. However, the fabrication of fiber optical pressure sensors
is quite complex [21]. Compared to other kinds of pressure sensors, resonant pressure
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sensors feature high accuracies, high resolutions, quasi-digital outputs and high long-term
stabilities [22–26].

J.C. Greenwood presented a silicon resonant sensor for measuring a wide pressure
range up to 48.265 MPa in 1994 [27]. The resolution of this sensor was better than 100 ppm
with the total errors better than 0.02% FS from −20 ◦C to 70 ◦C [28]. In 2009, P.K. Kinnell
presented a Micro-Electro-Mechanical System (MEMS) resonant pressure sensor employing
a flexible fabrication route, including direct silicon fusion bonding and deep reactive
ion etching (DRIE) [29]. Theoretically, the sensor can measure 700 bar (70,000 kPa) in a
hermetic package. Experimental results showed that the total errors of the sensor were
less than 40 ppm over a temperature range of −54 ◦C to 125 ◦C and a pressure range of
0 to 200 kPa. Yiwen Jiang presented a micromachined resonant pressure sensor based on
a fully symmetrical structure in 2012 [30]. Experimental results showed that the sensor
had a pressure sensitivity of about 22.6 Hz/kPa, within the pressure range up to 550 kPa.
In addition, H. Mitsuya introduced a resonant pressure sensor based on squeeze-film
damping in a 2 µm driving/sensing gap of a silicon ring-shaped resonator in 2014 [31].
The reported data showed that the sensitivity was 1.8 Hz/kPa under a measurement range
of 10 kPa to 1 MPa. Furthermore, our previous studies focused on several types of resonant
pressure sensors with pressure measurement ranges over 500 kPa, such as Lu (2019) [32],
Yan (2019) [33] and Xiang (2020) [34], with s maximal value of 2 MPa.

When the range of pressure measurements is expanded from 0~2 MPa to 0~7 MPa, the
maximum deformation of the pressure-sensitive diaphragm is over several micrometers.
Therefore, the microsensor works in a nonlinear state and the accuracy of the microsensor
decreases. If the maximum stress on the pressure-sensitive diaphragm is higher than the
breaking strength of silicon, the microsensor can be damaged permanently. Hence, the key
points of expanding the pressure measurement range of the microsensor are reasonable
design of the microsensor’s structures, regulating pressure sensitivities and increasing
structural strength of the microsensor.

In order to address this issue, this study presented a resonant pressure microsensor
based on a specific design to downregulate the pressure sensitivities, improve the struc-
tural strength of the microsensor and eventually further enlarge the pressure measurement
range. The specific design optimized the shape of the vacuum cavity and the parameter of
the resonant beams. By employing this specific design, the pressure measurement errors
of this microsensor were less than 0.02% FS from 80 ◦C to −40 ◦C and over a pressure
range of 200 to 7000 kPa. Moreover, compared with the resonant pressure sensors which
were reported before, the package of this microsensor was easy to conduct. This paper
(1) introduced the design of the microsensor, (2) estimated maximum stresses under high
pressures and obtained frequency responses of the resonant microsensor based on theoreti-
cal calculations and numerical simulations, (3) realized the fabrication of the microsensor
based on MEMS, (4) validated the microsensor by employing several experiments including
open-loop and closed-loop tests.

2. Theoretical Analysis
2.1. Working Principle

As shown in Figure 1a, the proposed resonant pressure sensor mainly consists of
a silicon-on-insulator (SOI) layer as sensing elements and a silicon-on-glass (SOG) cap
(including a glass layer and a silicon layer) with a cavity for vacuum packaging. The
sensing elements include a pressure-sensitive diaphragm and a pair of resonators. To
keep the two resonators working linearly in a wide pressure measurement range and
increase the structural strength of the microsensor to bear larger pressures, the whole
handle layer functions as a pressure-sensitive diaphragm for the purpose of increasing the
thickness of the pressure-sensitive diaphragm. Besides, the device layer is used to form a
pair of H-shaped doubly clamped resonators (including “resonator I” located in the central
areas of the diaphragm and “resonator II” located in the edge areas of the diaphragm,
respectively). Additionally, electronic connections are formed by eight through silicon vias
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(TSVs). The SOG cap with a cylindrical cavity could strongly reduce the stress between
the SOI layer and the SOG layer during high-pressure measurements. Meanwhile, four
silicon islands are designed in the device layer of the SOI wafer. The silicon islands can be
regarded as a part of the pressure-sensitive diaphragm, which can increase the thickness of
the pressure-sensitive diaphragm further (as shown in Figure 1b).
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Figure 1. (a) Schematic of the resonant pressure sensor, including a silicon-on-insulator (SOI) layer
and a silicon-on-glass (SOG) cap. In the SOI wafer, there is a pressure-sensitive diaphragm, eight
TSVs in the handle layer and two H-shaped doubly clamped resonators in the device layer. In the
device layer of the SOI, four silicon islands are hidden to show the vacuum cavity. The SOG cap with
a cavity, evaporated with the getter material, was used to form vacuum packaging for the resonators
and reduce the temperature sensitivity of the resonant pressure sensor; (b) detailed structure of
sensing elements.

Pressure under measurement causes the deformation of the pressure-sensitive di-
aphragm, changing the axial stress of the resonators (see Figure 2a). Hence, the intrinsic
resonant frequencies of the two resonators shift. By measuring these two resonant frequen-
cies, the pressure can be calculated. Meanwhile, differential outputs of the two resonators’
frequencies can decrease the influence caused by temperature variations and increase the
pressure sensitivities of the pressure measurements.
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Figure 2. (a) The stress distribution on sensing elements under pressure; (b) the working principle of the resonator; (c) the
working principle of the presented microsensor.

According to Figure 1, the resonators of the presented microsensor are two “H” beams.
These two resonators vibrate laterally at the first-order modal (see Figure 2b).

The proposed microsensor was based on electro-magnetic excitation/electro-magnetic
detection. Additionally, the detailed detection principle was as follows. Carrying an AC
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current, the resonator vibrated due to Ampère’s force, in a static magnetic field which is
perpendicular to the pressure-sensitive diaphragm. The resulting vibration of the resonator
produced a magnetic induction voltage, which was further processed with the help of
amplifier and bandpass filters, for the extraction of the frequency signals (see Figure 2c).
Then, the comparison between the magnitude of the output frequency signal and a constant
voltage (VREF) was used to control the resistance of a voltage-controlled resistor (VCR).
Therefore, the driving signal of the resonator can be controlled to keep outputting a signal
with constant magnitude. This principle of the circuit is called automatic gain control
(AGC). These two output frequencies of the microsensor are functions of pressure and
temperature. After calibration, employing a polynomial fitting method based on differential
outputs and a temperature sensor, the microsensor’s temperature compensation can be
achieved in a wide pressure measurement range [34].

2.2. Optimal Design and Finite Element Analysis (FEA) Simulations

A wide pressure measurement range means the microsensor should work in a high-
pressure environment. The microsensor presented in this paper was designed to work
from 200 kPa to 7000 kPa. Therefore, the design must ensure that the microsensor can
work stably under 7000 kPa. In order to analyze the status of the microsensor working at
7000 kPa, theoretic analysis was employed.

According to structural mechanics [35], the maximum stresses of the microsensor at
the interface between silicon and glass should be

(σrr)max = α · A
h2 P, (1)

where α is the parameter of the pressure-sensitive diaphragm shape as shown in Table 1, P
is the outside pressure, A is area of the pressure-sensitive diaphragm, and h is the thickness
of the pressure-sensitive diaphragm.

Table 1. Shape parameters of pressure-sensitive diaphragm [35].

Items α

Square 0.31
Circle 0.24

Equation (1) shows that the maximum stress on the microsensor mainly depended
on the area and the shape of the pressure-sensitive diaphragm. Additionally, the stress on
a circular pressure-sensitive diaphragm was smaller than the square counterpart of the
same area.

To verify the design of the microsensor, FEA simulations based on ANSYS were
employed to evaluate the maximum stress on the microsensors with two different pressure-
sensitive diaphragms. The diameter of the circular pressure-sensitive diaphragm was equal
to the side length of the square pressure-sensitive diaphragm.

Figure 3a,b proves that the maximum stress on the circular pressure-sensitive di-
aphragm was smaller than the stress on the square counterpart under 7000 kPa.

For the sake of choosing a suitable size of vacuum cavity to make the microsensor
work well at 7 MPa, several chips with different vacuum cavity sizes were fabricated to
conduct pressure loading experiments. The parameters of these chips are listed in Table 2.
The shape of type A and B was a square, while the shape of type C and D was a circle.
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Figure 3. (a) Structural simulations under 7000 kPa: (a) the microsensor with square pressure-sensitive diaphragm (side
length of 4.4 mm); (b) the microsensor with circular pressure-sensitive diaphragm (diameter of 4.4 mm).

Table 2. Parameters of chips with different vacuum cavity sizes.

Type Length/mm Width/mm Diameter/mm

A 5 5 -
B 3.6 3.6 -
C - - 5
D - - 3.6

Table 3 shows the experimental results with different sizes under several pressure
points. When the diameter of the vacuum cavity was 3.6 mm, the maximum safe loading
pressure can reach 40 MPa, which suggests the strength of the microsensor can meet the
requirement. Therefore, the diameter of the presented microsensor’s vacuum cavity was
set as 3.56 mm.

Table 3. Experimental results of pressure loading on chips with different sizes.

Type 11 MPa 20 MPa 35 MPa 40 MPa 60 MPa

A Broken - - - -
B OK OK Broken - -
C OK Broken - - -
D OK OK OK OK Broken

The dimensional information of the microsensor model in FEA simulations is listed in
Table 4.

Table 4. Dimensional information of the microsensor model in FEA simulations.

Part Length/µm Width/µm Thickness/µm Depth/µm Diameter/µm

Resonant Beam 1200 16.5 40 - -
Device Layer of SOI 10,200 10,200 40 - -
Handle Layer of SOI 10,200 10,200 300 - -
Oxide Layer of SOI 10,200 10,200 2 - -

Vacuum Cavity - - - 10 3560
Glass Layer of SOG 10,200 10,200 120 - -

Silicon Layer of SOG 10,200 10,200 1500 - -
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Several simulations were also conducted to calculate the intrinsic frequency shifts in
response to pressure and temperature variations, relying on multi-models of steady-state
thermal, static structural, and modal. In simulations, tetrahedral elements were used to
mesh geometrical structures of the microsensor with 2,265,845 elements.

The materials used in simulations are listed in Table 5. In addition, a meshing size of
100 µm was used to mesh the entire body. Finally, the resonant frequencies were calculated
as the temperature dropped from bonding temperature (350 ◦C) to an ambient working
temperature range (−40~80 ◦C).

Table 5. Material properties in FEA simulation.

Item Silicon BF33

Young’s modulus (GPa) 165 64
Density (g/cm3) 2.33 2.23
Poisson’s ratio 0.28 0.2

Resonator I was designed to measure the pressure change. Meanwhile, resonator II
was designed to realize temperature compensation. In the static structure, pressures from
200 kPa to 7000 kPa were used as the loads. The generated stress distributions within
the structures were then used as the loads for the modal analysis, and the outputs of
the simulations were the intrinsic frequency shifts of the resonators in response to the
pressure applied.

The initial conditions of temperature properties in simulations were set with a refer-
ence temperature of 350 ◦C, which is the anodic bonding temperature of the SOG cap and
the SOI wafer. In fact, in order to facilitate the comparison with experimental results, a
reference pressure of 100 kPa was introduced into the static structure. In the steady-state
thermal simulations, temperatures from −40 to 80 ◦C were used as the loads and the
temperature distributions of the whole structure were transferred to the static structure.
The calculated stresses within the structures were then used as the loads for the modal
analysis, and the outputs of the simulations were the intrinsic frequencies of the resonators
in response to temperature variances.

In addition, the intrinsic frequency shifts as a function of applied pressures and sur-
rounding temperature variations are shown in Figure 4a,b. The pressure sensitivities of the
two resonators were quantified as 0.56 Hz/kPa (resonator I) and −1.23 Hz/kPa (resonator
II) in the pressure range from 200 kPa to 7000 kPa under a reference temperature of 20 ◦C.
In addition, the temperature sensitivities were quantified as 1.95 Hz/◦C (resonator I) and
1.83 Hz/◦C (resonator II) at 0 ◦C under a reference pressure of 100 kPa.
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3. Fabrication

Simple SOI-MEMS processing technologies were used to fabricate the proposed res-
onant beams and through silicon vias (see Figure 5). In the fabrication process, a 4” SOI
wafer (device layer: 40 µm, <100> oriented, p-type, doping concentration of 7.7 × 1019;
oxide layer: 2 µm; and handle layer: 300 µm, <100> oriented, p-type, doping concen-
tration of 6.6 × 1014~13 × 1014), a 4” BF33 glass wafer with a thickness of 500 µm and a
4” silicon wafer with a thickness of 1500 µm were employed in device fabrication. The
main fabrication steps included deep reactive ion etching, hydrofluoric (HF) releasing and
anodic bonding.
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Figure 5. The fabrication processes of the sensor based on SOI-MEMS technologies. (a) Cleaning
the SOI wafer; (b) conducting lithography to make through silicon vias on the handle layer; (c) con-
ducting the second deep reactive ion etching (DRIE) on the device layer to form pressure-sensitive
structures; (d) releasing resonant beams by HF; (e) conducting anodic bonding between a silicon
wafer and a BF33 glass wafer; (f) thinning the glass layer of the SOG wafer by chemical mechanical
planarization (CMP); (g) dry etching the glass wafer; (h) evaporating getters on the cavity; (i) con-
ducting anodic bonding between the SOI and the SOG wafers; (j) evaporating aluminum electrodes
for wire connections.

First, the SOI wafer was immersed in deionized water and dried with pure N2 gas after
being cleaned by piranha etchant to remove organic residues and boiled deionized water to
remove soluble ions (see Figure 5a). Second, 100 nm Cr was sputtered on the device layer
to protect the device layer during the etching step on the handle layer, and then, using
patterned photoresist as a mask, the handle layer of the SOI wafer was etched through to the
oxide layer, forming the through silicon vias (see Figure 5b). Third, employing patterned
photoresist and the Cr film as a compound mask, the device layer of the SOI wafer was
etched through to the oxide layer, forming the sensitive structures (see Figure 5c). Fourth,
lifting off the photoresist and Cr on the wafer was conducted based on the same process
of the first step to clean the wafer. Additionally, the resonant beams were released by dry
etching, employing HF solution and isopropanol in an alternate process (see Figure 5d).

The SOG wafer was made by conducting anodic bonding between a silicon wafer
and a BF33 glass wafer (see Figure 5e). Additionally, the glass layer of the SOG wafer
was thinned by chemical mechanical planarization (CMP) (see Figure 5f). The cavities for
containing the vibration of the resonators in the BF33 glass wafer were drilled by HF dry
etching (see Figure 5g). Then, a Ti/Au thin film was evaporated on the cavity as the getter
material for gas absorption during the next anodic bonding process (see Figure 5h).

After finishing the fabrications of the SOI and the SOG wafers, anodic bonding
was utilized to form a vacuum encapsulation for resonators where the voltage, vacuum
level, tool pressure and temperature of anodic bonding were set at 400 V, 0.1 Pa, 100 kPa
and 350 ◦C, respectively (see Figure 5i). The vacuum level of the vacuum cavity of the
microsensor after anodic bonding was about 10~20 Pa. Then, aluminum films were
evaporated on the TSVs of the bonding wafer to form electrical connections by a hard mask
which was a glass wafer with through glass vias (TGVs) fabricated by laser processing
(see Figure 5j). For isolating the silicon side walls, the diameter of TGVs (0.4 mm) on the
glass wafer were smaller than TSVs (0.6 mm) on the handle layer of the SOI wafer. Ohmic
contacts were formed by annealing the wafer in a 450 ◦C furnace for 30 min.
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Figure 6 shows the fabrication results of the microsensor, containing the top view of
the resonator (see Figure 6a), the scanning electron microscopy (SEM) cross-section image
of the resonator (see Figure 6b), the top view of the microsensors after dicing (see Figure 6c)
and the side view of the microsensor (see Figure 6d).
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As shown in Figure 7a, the fabricated microsensor was fixed to the Kovar pedestal
by glass chips. Electrodes on the microsensor and the pins of the Kovar pedestal were
connected by ball soldering based on golden wires. One permanent magnet was fixed on
the Kovar tube to produce a magnetic field of ~1 T in the package. The stainless steel tube,
Kovar tube and Kovar pedestal were connected by double laser welding to maintain a
high strength. Moreover, gas outlets in the Kovar tube were used to form gas paths during
measurements. The package prototype is shown in Figure 7b.
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4. Characterization

The open-loop characterization was used to obtain some properties of the resonant
pressure senor, such as quality factor, intrinsic frequency, signal strength and phase drift of
the two resonators. First, the sensor was fixed on the open-loop circuit, which can reinforce
the output signal and was connected with a network analyzer. The network analyzer was
used to supply an analog signal to one side of the “H” beam and pick up the signal induced
by the other side of the “H” beam.

In this way, the resonant frequency of resonator I was quantified as 91.729 kHz with
the phase drift of ~160.2◦ under a quality factor of 15,689 (see Figure 8a). Meanwhile,
the resonant frequency of resonator II was quantified as 90.910 kHz with a phase drift of
~162.7◦ under a quality factor of 15,696 (see Figure 8b).
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Figure 8. The properties of (a) resonator I and (b) resonator II under an atmospheric pressure of 100 kPa and a room
temperature of 25 ◦C.

In order to further characterize the performances of the fabricated sensor, a closed-loop
circuit producing self-oscillation signals was developed. The voltage generated by the
vibration of the resonator was amplified by an amplifier, and then the voltage was lowered
and sent to the driving beam of the resonator for excitation in a closed loop. In order to
maintain the stable vibrations of the resonator, an AGC module, including a bandpass filter,
a comparator and a field effect transistor, was introduced into the closed-loop circuit.

A pressure controller (PPC4, FLUCK) and a temperature chamber (SU-241, ESPEC)
were employed to provide pressure measurements and surrounding temperatures during
the characterization processes. In this study, the sensor was characterized within a pressure
range from 200 kPa to 7000 kPa and a temperature range from −40 ◦C to 80 ◦C.

Figure 9a shows the intrinsic frequencies of two resonators as a function of pressure at
20 ◦C, producing the sensitivities and linearly dependent coefficients of 0.51 Hz/kPa and
0.999846 for resonator I;−1.75 Hz/kPa and 0.999839 for resonator II, which were consistent
with the simulation results. Figure 9b shows the intrinsic frequencies of the two resonators
as a function of temperature. The temperature sensitivity of the differential outputs was
quantified as 0.06 Hz/◦C in the temperature range from −40 to 80 ◦C under an atmosphere
pressure of ~100 kPa. This value cannot match the result of the simulation due to the
machining errors during the fabrication process.
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Figure 9. (a) The pressure–frequency curve of the developed sensor at 20 ◦C; (b) the temperature–
frequency curve of the developed sensor under atmosphere pressure of ~100 kPa.

Moreover, calibrations were conducted to verify the high performance of the microsen-
sor. Figure 10a shows the fitting errors of the fabricated sensor in the full pressure and
temperature ranges with temperature compensation based on differential outputs and a
temperature sensor, producing compensation errors within ±400 Pa with corresponding
±0.006% FS, which indicated that the developed sensor was stable enough under the
heat conditions from −40 ◦C to 80 ◦C. Figure 10b shows the measurement errors of the
sensor at the surrounding temperatures of −40 ◦C, 20 ◦C, 60 ◦C and 80 ◦C in three cycles,
which demonstrated a high accuracy with quantified maximum measurement errors within
±1170 Pa and a corresponding ±0.017% FS.
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Figure 10. (a) The surface fitting of the sensor from the calibration process; (b) the measurement
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5. Conclusions

A design of the resonant pressure sensor with a wide pressure measurement range
was presented, where silicon islands were used to increase equivalent stiffness of the
pressure-sensitive diaphragm; the SOG cap was employed to decrease the temperature
sensitivity; and the cylindrical vacuum cavity was used to increase the strength of the
microsensor. Meanwhile, FEA simulations were used to calculate the pressure sensitivities
and temperature sensitivities. According to the simulations, the sensitivities of the two
resonators were 0.56 Hz/kPa and −1.23 Hz/kPa, with a differential linearity of 0.999939.
The microsensor was fabricated with MEMS techniques and simple processing technologies
only including two DRIE steps. The experimental results showed that the Q-factors of the
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resonator were quantified to be higher than 15,000, which showed that the two resonant
beams of the microsensor worked in a high vacuum. Besides, the pressure sensitivities
of the two resonators were 0.51 Hz/kPa and −1.75 Hz/kPa, with a differential linearity
of 0.999841. Additionally, the temperature coefficient of the differential frequency was
0.06 Hz/◦C, which means that the frequency drift caused by temperature was less than
8 Hz from −40 ◦C to 80 ◦C. More in-depth characterizations based on the closed-loop
self-oscillation system showed that the prototype demonstrated low fitting errors within
0.006% FS and low measurement errors within 0.017% FS under the pressure range from
200 kPa to 7000 kPa in the temperature range of −40 ◦C to 80 ◦C in three cycles.
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