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Abstract: In this work, a mechanical model of a rope-driven piezoelectric vibration energy harvester
(PVEH) for low-frequency and wideband energy harvesting was presented. The rope-driven PVEH
consisting of one low-frequency driving beam (LFDB) and one high-frequency generating beam
(HFGB) connected with a rope was modeled as two mass-spring-damper suspension systems and a
massless spring, which can be used to predict the dynamic motion of the LFDB and HFGB. Using
this model, the effects of multiple parameters including excitation acceleration, rope margin and
rope stiffness in the performance of the PVEH have been investigated systematically by numerical
simulation and experiments. The results show a reasonable agreement between the simulation and
experimental study, which demonstrates the validity of the proposed model of rope-driven PVEH. It
was also found that the performance of the PVEH can be adjusted conveniently by only changing
rope margin or stiffness. The dynamic mechanical model of the rope-driven PVEH built in this paper
can be used to the further device design or optimization.

Keywords: piezoelectric vibration energy harvester; low frequency; wideband; modeling

1. Introduction

In recent years, the great demand for micro-energy harvesting devices has been contin-
uously increasing with the wide application of wearable device and wireless sensors due
to the limited life-span and disposal pollution of the battery [1–3]. Mechanical vibration
energy has been one of the major energy sources due to its ubiquity in the environment.
The mechanisms for vibration energy harvesting can be mainly categorized into electromag-
netic [4–6], electrostatic [7–9], piezoelectric [10–13], and triboelectric [14–17] ways. Since
piezoelectric mechanism has a characteristic of simple structure, high mechanical-electrical
conversion, and compatibility with CMOS (Complementary Metal Oxide Semiconductor),
PVEH has been a hot research area in the past two decades for making self-powered
sources to power small-scale systems [18–20]. For example, Kuang et al. proposed a PVEH
combining magnets was designed to wear on the leg and could scavenge energy from
knee-joint motions during human walking to provide sustainable energy supply for body
sensors to realize energy-autonomous wireless sensing systems [21].

A traditional PVEH is typically composed of a piezoelectric cantilever beam and a
proof mass attached to the free end of the cantilever. These kind of PVEHs usually have a
high resonant frequency, especially for the micro PVEHs whose resonant frequency can
reach thousands of hertz (shown in Table 1). Hence, it is difficult for the traditional can-
tilever beam type PVEH to be applied in many practical environment where the vibration
frequency is quite low (<100 Hz, shown in Table 2).
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Table 1. Typical micro piezoelectric vibration energy harvesters (PVEHs).

References Effective Volume
(mm3)

Power
(µW)

Acceleration
(g)

Frequency
(Hz)

Jeon et al. [22] 0.027 1.01 10.8 13,900

Renaud et al. [23] 1.845 40 1.9 1800

Shen et al. [24] 0.6520 2.15 2.0 462.5

Muralt et al. [25] 0.48 1.4 2.0 870

Elfrink et al. [26] 15 69 0.2 599

Park et al. [27] 1.05 1.1 0.39 528

Fang et al. [28] 0.78 2.16 1.0 608

Kanno.et al. [29] 0.168 1.1 1.0 1036

Table 2. Common vibration sources [30,31].

Vibration Sources Acceleration (g) Frequency (Hz)

Vanitation pipe 0.02–0.15 60

Lathe 1.0 70

Truck/Car engine 0.052–0.198 37

Human walking 0.2–0.3 2–3

Car instrument panel 0.3 13

Three-axis machine 1.0 70

Office building near the road 0.02–0.15 60–100

Tunnel train secondary vibration 0.0026 15–25

Meanwhile, traditional PVEHs are usually single-mode resonant systems with rela-
tively narrow bandwidth. Power output will be significantly reduced when the resonant
frequency of a resonator and the ambient vibration frequency is mismatched. Therefore,
it is a big challenge for PVEH to be used for in most practical applications, where the
vibration frequency is time-variable. To address this issue, Leland and Wright proposed
one technique to tune the resonant frequency of the harvester from 200 to 250 Hz by ap-
plying an axial compressive load since the resonant frequency of cantilever beam is stress
dependent [32]. Similar research on resonant frequency shift by preload was also studied
by Eichhorn et al., showing that one harvester could be altered from 380 to 292 Hz for a
compressive preload, and another harvester was tuned from 440 to 460 Hz by applying
a tensile preload [33]. However, the frequency tunable performance of these harvesters
was achieved manually with the aids of preload mechanical structure. Hence, enabling the
harvesters to automatically adjust its resonance frequency to match the driving frequency is
still a challenge. Another strategy is to develop wideband PVEH whose working frequency
can cover the frequency range of the vibration source as much as possible.

For achieving wideband energy harvesting, various methods have been proposed [34–36],
which can be mainly categorized into multimodal technique and nonlinear techniques. As for
multimodal technique, it usually uses an array of beams with different resonant frequencies or
designing one beam to have multiple vibrational modals [37–39]. For example, Wang et al. [37]
and Liu et al. [38] demonstrated that the array-beams PVEH could achieve wider bandwidth
if the number of beams were added, where each beam had different frequency characteristics.
Wu et al. [40] presented a PVEH based on one M-shaped beam comprising a main beam and
two dimension-varied folded auxiliary beams interconnected through a proof mass at the end
of the main cantilever. Such an energy harvester owns a three degree-of-freedom vibrating
mode, and the resonant frequencies of its first three orders can be tuned close enough to
obtain a utility wide bandwidth. Compared with tradition single-mode resonator system, the
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bandwidth of harvester can be greatly improved by multimodal mechanism, and wider or
even unlimited bandwidth could be theoretically achieved if the number of beams continu-
ously add for array-beams harvester. However, the disadvantage of multimodal technique is
low volume efficiency because the fact that the bandwidth of single beam is not broadened.

On the contrary, the wideband energy harvesting using nonlinear techniques is increas-
ing the bandwidth of single energy harvester based on nonlinear mechanism [35,41–44].
The most common nonlinear mechanism is the frequency up-conversion (FUC) technique,
which can broaden the frequency bandwidth efficiently and offer a PVEH MEMS (Micro-
Electro-Mechanical System) solution for low-frequency vibration energy harvesting. Gen-
erally, these frequency up-conversion (FUC) technologies can be classified into the contact
and non-contact types. In terms of contact type, research has most commonly been con-
ducted on the impact-driven PVEH that uses contact-mechanical force [11,43,45–48] to
convert vibration energy to electrical energy. For example, Liu et al. [45] realized wideband
energy harvesting and high output power via direct impact of a high-frequency piezoelec-
tric Pb(ZrxTi1-x)O3 (PZT) beam using a low-frequency driving beam. Vijayan et al. [49]
investigated a modified design in which a spring element is attached to one end of a beam,
which can avoid damage to the device due to the direct mechanical impact between the
hard beams. As for the harvesters using the non-contact FUC technique, non-contact forces
such as an extra magnetic force [50–55] are used to convert vibration energy to electrical
energy. For example, Tang et al. [52] proposed a bi-stable FUC PVEH that consists of a cen-
tral sliding mass and a pair of piezoelectric generators. Permanent magnets are mounted
on both the central mass and the ends of the generators. The sliding mass moves back and
forth under the ambient excitation and intermittently repels generators to oscillate by the
mutually repulsive magnetic force. Since it is non-contact frequency up-conversion, thereby
avoiding mechanical collision and improving long-term working durability. Izadgoshsb
et al. [56] presented a PVEH consisting of a double-pendulum and a PZT cantilever beam
with magnets on their ends. By coupling the rotatable magnetic force interactions between
the ends of the pendulum and PZT cantilever beam, the double-pendulum can impact the
PZT cantilever beam for multiple times within one excitation period. Hence, the perfor-
mance of the double-pendulum-based system in harvesting energy from low frequency
human motions can be effectively improved compared to the conventional PVEH and
single pendulum-based system. Although the nonlinear technique has been proven to
be very efficient on broadening the bandwidth of harvester, the resulted bandwidth is
still limited.

Hence, we proposed a low-frequency and wideband harvester based on a hybrid
frequency up-conversion (FUC) nonlinear and multimodal mechanism in our previous
work [57], aiming to combine the advantages of these two mechanisms, as demonstrated
in Figure 1. The proposed wideband PVEH system (shown in Figure 1a) is composed
of one high-frequency beam attached with piezoelectric material as the generating beam
(HFGB) and multiple low-frequency beams with different frequencies as driving beams
(LFDBs). Multiple LFDBs are connected mechanically with the HFGB using ropes. The
main advantages of the rope-driven PVEH can be described as below:

(a) Wider or even unlimited bandwidth could be achieved if the number of LFDBs are
continuously increased. Unlike wideband PVEH based on an array piezoelectric
beams in serial/parallel connection, the output performance of proposed PVEH will
not deteriorate with the changing number of LFDBs, which has theoretically and
experimentally been proved, and Figure 1b,c show a typical experimental result [57].

(b) Similar to the impact-driven FUC wideband PVEH using a stopper, when an indi-
vidual LFDB pulls the HFGB to oscillate it can achieve wideband energy harvesting,
named as rope-driven FUC mechanism. Additionally, impact and rope-driven FUC
mechanism can occur in the proposed PVEH by properly setting the length of rope,
thus a much wider bandwidth could be achieved compared with the conventional
impact-based FUC nonlinear wideband PVEH. Moreover, the working frequency
of proposed PVEH can be tuned without re-fabricating or damaging the original
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structure by simply changing the rope length, which is ultra-convenient for practical
applications. All these features of proposed PVEH has been experimentally verified,
as shown in Figure 1d [58].

(c) Only HFGB is used for output in the proposed PVEH, which does not require a
piezoelectric layer on LFDB, allowing great flexibility on the structure design of LFDB
for various applications. For example, LFDB can adopted a curved shape shown
in Figure 1e, which makes it easy to achieve low-frequency energy harvesting in a
vibration environment, such as human motion, engine vibration, moving vehicles,
and wave motion. Moreover, ultralow frequency, low intensity, and multidirectional
vibration energy harvesting in a horizontal plane can be achieved if a liquid-based
system is used as LFDB (see Figure 1f), which is difficult to be realized with traditional
PVEHs [59].
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Figure 1. Schematic of the proposed novel low-frequency wideband piezoelectric energy harvester
based on rope-driven mechanism for wideband, low-frequency, and multi-directional energy har-
vesting: (a) proposed rope-driven PVEH; (b) performance of traditional arrays of beams PVEH
vs. number of beams; (c) performance of proposed rope-driven PVEH vs. number of LFDBs; (d)
proposed rope-driven PVEH vs. rope lengths; (e) proposed rope-driven PVEH with curved LFDBs;
(f) proposed rope-driven PVEH using liquid as energy capturing medium.

The mainly characteristics of the proposed PVEH have been demonstrated and dis-
cussed in detail in our prior work [57,58]. Whereas the dynamic process of LFBD driving
HFGB is complicated, and multiple parameters such as acceleration, rope margin and rope
stiffness, will greatly affect performance of harvester, which has not been systematically
studied. Hence, in this paper, a rope-driven PVEH consisted of one LFDB and one HFGB is
presented as a basic structure to systematically investigate the effects of the parameters
in the performance of the PVEH by theoretical modeling and experimental verification.
Here, a mechanical dynamic model is established based on mass-spring-damper systems,
which can be used to predict the dynamic motion of the LFDB and HFGB effectively using
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lumped parameter modeling approach. The effects of multiple parameters, including accel-
eration, rope margin and rope stiffness, have been clarified systematically by numerical
simulation and experiments using this model. The results show a reasonable agreement
between the simulation and experimental study. This work will provide a basic mechanism
understanding and give guidance for the design of rope-driven PVEH. The rest of the
paper is organized as follows: Section 2 gives a mechanical model of the basic structure of
rope-driven PVEH. Section 3 describes the experiment and simulation procedure. Section 4
mainly shows the parameter study on PVEH based on simulation and experiments, and
Section 5 presents the conclusions drawn from the simulation and experimental results.

2. Modeling

The operation principle of the rope-driven PVEH with one LFDB and one HFGB is
illustrated in Figure 2. The rope-driven PVEH is mounted on a base. Under a periodic
excitation of the base, the LFDB pulls HFGB and transfers mechanical energy to HFGB
by the rope for a short period in each vibration cycle when the LFDB is excited to exceed
the margin ∆x (defined as length of rope x1 minus initial distance of two beams x0). This
stage is named as Phase 1 (rope-driven vibration). This pull will give rise to a retardation
of the LFDB’s vibration amplitude but broaden the operating frequency bandwidth of
LFDB. The reason is that HFGB arranged above the LFDB can be treated as a stopper
just like the conventional impact-driven PVEH. As the rope pulls the HFGB, the effective
stiffness of LFDB increases suddenly and results in a higher resonant frequency. Hence,
the resonance of PVEH is extended over a wider interval of the frequency spectrum. After
Phase 1, HFGB obtains vibrational energy from the LFDB and vibrates with exponentially
attenuating amplitude at its higher resonant frequency (shown in Figure 2), and the cyclic
deformation of piezoelectric material on HFGB will be transformed into electricity based
on piezoelectric effect. LFDB continues to be excited by the base excitation until it pulls
the HFGB in the next cycle. This phase is thought as Phase 2 (free vibration). The LFDB
pulling the HFGB will not happen when the excitation is not large enough, and they will
be forced to vibrate at the frequency of base excitation.
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A mechanical model of the rope-driven PVEH is established to describe the dynamic
motion of PVEH base on the above mentioned working principle, as seen in Figure 3.
Following the similar procedure [45], LFDB and HFGB can be modeled as two mass-spring-
damper systems. LFDB, which is considered to be one suspension system, consists of a
proof mass m1 suspended by a spring k1 and a damper c1. HFGB is another suspension
system, acting as a generator. Initially, HFGB is placed at a distance of x0 above the LFDB,
and has a damping coefficient c2, stiffness k2, and proof mass m2. The base excitation y(t)
causes the proof mass m1, m2 to move relatively to the base movement (y(t)) as z1(t), z2(t),
respectively. When the relative displacement of z1(t) − z2(t) is bigger than rope margin ∆x
(defined as length of rope x1 minus initial distance of two beams x0), the LFDB will pull
HFGB by the rope. At this time, the rope can be treated as a massless spring with stiffness
of k0 considering the mass of rope is much less than the m1, m2 as shown in Figure 3a.
Otherwise, when z1(t) − z2(t) is smaller than ∆x, the rope is ignored (see in Figure 3b).
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Hence, corresponding to the mechanical model, the equations for dynamic motion of LFDB
and HFGB’s tip movement (z1(t), z2(t)) can be built.

LFDB :
{

m1
..
z1 + c1

.
z1 + k1z1 + k0((z1 − z2)− ∆x) = −m1

..
y (z1 − z2 ≥ ∆x)

m1
..
z1 + c1

.
z1 + k1z1 = −m1

..
y (z1 − z2 < ∆x)

(1)

HFGB :
{

m2
..
z2 + c2

.
z2 + k2z2 − k0((z1 − z2)− ∆x) = −m2

..
y (z1 − z2 ≥ ∆x)

m2
..
z2 + c2

.
z2 + k2z2 = −m2

..
y (z1 − z2 < ∆x)

. (2)
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For simplifying the analysis, an assumption that beams and rope work on the linear
range is adopted in the modeling. For harmonic base excitation y(t) = Ysin(ωt), using 2ζ1ω1
= c1/m1, 2ζ2ω2 = c2/m2, ω1

2 = k1/m1 and ω2
2 = k2/m2, Equations (1) and (2) can be rewritten

as follows:

LFDB :
..
z1 + 2ζ1ω1

.
z1 + ω1

2z1 =

{
− k0

m1
((z1 − z2)− ∆x) + a sin ωt (z1 − z2 ≥ ∆x)

a sin ωt (z1 − z2 < ∆x)
(3)

HFGB :
..
z2 + 2ζ2ω2

.
z2 + ω2

2z2 =

{
+ k0

m2
((z1 − z2)− ∆x) + a sin ωt (z1 − z2 ≥ ∆x)

a sin ωt (z1 − z2 < ∆x)
(4)

where ω1 and ζ1 are the LFDB frequency and damping characteristics, ω2 and ζ2 are the
HFGB frequency and damping characteristics, a = Yω2 is the acceleration amplitude of the
base excitation. m1,2 = mb/3 + mp/3 + m [60], where mb, mp and m are the mass of substrate,
piezoelectric layer, and proof mass. Thus, the displacements of the LFDB and HFGB versus
the excitation frequency ω can be numerically derived based on Equations (3) and (4).

3. Experiment and Simulation Procedure

To determine the real-time displacement of LFDB and HFGB under different fre-
quencies, a vibration monitoring system including a lock-in amplifier (STANFORD RE-
SEARCH SYSTEM, Model SR830, Sunnyvale, CA, USA), vibration shaker (MB Dynamics,
MODAL110, Cleveland, OH, USA), power amplifier (MB Dynamics, MB500VI, Cleve-
land, OH, USA), accelerometer (Baofei, JYD-2, Yangzhou, China), charge amplifier (Baofei,
KD5002, Yangzhou, China), micro stages, two displacement sensors (KEYENCE, LK-
G30/G10, Osaka, Japan) and a high-speed camera (PHANTOM, V611, Wayne, NJ, USA)
were established, where the rope-driven PVEH system (see Figure 4) is fixed on a three-
dimensional micro stage. In experiment, for the convenience of mechanical model vil-
ification, LFDB and HFGB all use the pure beams without piezoelectric materials, and
the detailed parameters are shown in Table 3. The damping ratios of LFDB and HFGB
were measured from the exponentially decayed waveform using the relationship ζ =
(1/2nπ)lnA1/An [47], where A1 and An are the amplitudes of peaks. The rope stiffness
k0 is determined by the relationship k0 = EA/L, where E is young modulus measured by
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stress-strain relationship, A and L are cross-sectional area and length of rope determined
by micrometer.
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Table 3. Simulation and experiment parameters of LFDB, HFGB and the rope.

Parameters LFDB HFGB Rope

Length (mm) 24.32 19.51 18.7
Width (mm) 6.00 6.00 -

Thickness (mm) 0.28 0.28 -
Diameter (mm) - - 0.1
Proof mass (g) 1.93 0.00 -

Frequency (Hz) 63.7 410.3 -
Young modulus (Gpa) 90 90 2.7

Density(kg/m3) 8800 8800 -
Damping ratio 2.56 × 10−3 5.79 × 10−3 -

By adopting the parameters shown in Table 3, simulation results of LFDB and HFGB’s
displacements can be achieved using MATLAB/SIMULINK® model based on Equations (3)
and (4). We firstly verify the feasibility of the mechanical model by comparing experimental
results with simulation results. After that a parameter study was developed using the
numerical simulation and experiments to understand the performance of the proposed
PVEH. Specifically, we focus on the effect of rope, which is the easiest part for us to adjust
once the beam structure is fabricated, in this paper.
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4. Results and Discussion

Figures 5–8 show the simulation and experimental results of the proposed PVEH for
acceleration a from 0.2 g to 0.6 g, rope margin ∆x from 0.5 to 1.5 mm and rope stiffness k0
from 170 to 2500 N/m. The peak displacement of LFDB and HFGB is used as output to
evaluate the characteristics of the rope-driven PVEH under different frequencies, which is
defined as the maximum displacement during the rope-driven phase where LFDB pulls
HFGB and reaches the lowest place in the downward direction (shown in Figure 2).Micromachines 2021, 12, x FOR PEER REVIEW 9 of 15 
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Figure 5. Experimental and simulation frequency responses of the peak displacement of LFDB with
(a) a = 0.2 g, (c) a = 0.4 g and (e) a = 0.6 g; experimental and simulation frequency responses of the
peak displacement of HFGB with (b) a = 0.2 g, (d) a = 0.4 g and (f) a = 0.6 g.
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Figure 7. Frequency responses of the peak displacement of LFDB and HFGB for various accelerations
under the condition of ∆x = 0.5 mm and k0 = 1150 N/m: (a) simulation frequency responses of LFDB;
(b) simulation frequency responses of HFGB; (c) experimental frequency responses of LFDB; (d)
experimental frequency responses of HFGB.
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As seen in these figures, the simulation results basically agree well with the exper-
imental results, demonstrating the validity of our rope-driven PVEH modeling though
there are slight mismatches in amplitude over special frequency range. Figure 5 shows
typical simulation and experimental frequency responses curves of LFDB and HFGB with
∆x = 0.5 mm, k0 = 1150 N/m, and a = 0.2 g, 0.4 g, 0.6 g. It can be seen that the simulation
curve coincide the experimental curve in most frequency ranges, and the minimum error
of displacement can reach 1.3%. However, the displacement discrepancy of simulation and
experiment is more obvious when excitation frequencies get close to the end-frequency
point (corresponding to the frequency point where the output suddenly drops to zero).
Interestingly, real-time experimental and simulation displacement curves of HFGB (shown
in Figure 6) demonstrated that shape of dynamic motion curves are still kept similar and
has same pulling times. The mismatches in amplitude over the end-frequency range are
probably due to two reasons. Firstly, the closer to the end-frequency point, the more
strongly the whole PVEH system vibrates, which makes the beams and rope work on the
nonlinear range possibly. However, the mechanical model we built gives no consideration
to the nonlinear terms of beam movements. Furthermore, it can be seen that the higher
acceleration is, the mismatch over the end-frequency range is more obvious by comparing
Figure 5a,b with Figure 5c–f. Secondly, the rope is equivalent to a spring without damper
in the established model, which may be oversimplified, considering the complicate move-
ment of HFGB and LFDB in the multiple-pulling stage (shown in Figure 6). Hence, the
non-linear terms of beams and the good equivalent of rope under strong excitation should
be addressed for the model improvement in the future.

In general, the model established in this paper can be used to predict the character-
istics of the rope-driven PVEH effectively. For example, in Figure 7, both simulation and
experimental results show that wider bandwidth and higher output displacement of LFDB
and HFGB can be observed when the excitation increases from 0.2 g to 0.6 g. Using the
numerical simulation system in this paper, the characteristic of PVEH can be predicted
qualitatively before fabricating the device for guiding the design of the PVEH.

According to the established mechanical model, we know that the performance of the
PVEH is affected by multiple parameters, which mainly includes geometric parameters of
LFDB and HFGB, margin and stiffness of rope, and excitation acceleration level. As the
PVEHs applied in a specific application, once the PVEHs are fabricated, the characteristics
of PVEHs will be fixed. Usually, owing to the fabrication error, there would be a different
performance between the designed PVEHs and the fabricated PVEHs. If to change the
performance of PVEHs, it will be difficult and inconvenient by changing the parameters of
LFDB or HFGB, especially for the MEMS PVEHs, unless the devices are re-fabricated, while
by adding the rope to PVEHs, only controlling the rope margin, the desired performance
can be realized effectively. Hence, we mainly focus on the parameter study of rope margin
and stiffness by using numerical simulation and experimental investigation.

Figure 8 shows the frequency responses of the peak displacement of LFDB and HFGB
for different rope-margins. It can be seen from the simulation and experimental results that
the performance of PVEH can be tuned by controlling the rope length. Taking the frequency
responses curves in Figure 8b of HFGB as an example, as the rope margin changing from
1.5 mm to 0.5 mm, the bandwidth can be broadened from 7.5 Hz (63.5–71 Hz) to 12.5 Hz (62–
74.5 Hz), although there is a slight drop in the output near the end-frequency point. Thus,
changing rope could become a more convenient choice for adjusting the performance of the
PVEHs applied in the real applications, and can also increase the tolerance of fabrication.

Figure 9 depicts frequency responses of the peak displacement of LFDB and HFGB
for various rope stiffness k0 changing from 1150 to 2500 N/m. Both simulation and
experiments suggest that bandwidth and output displacement of LFDB and HFGB (shown
in Figure 9a,b,e,f) are weakened but not much compared to the effect of rope margin when
increasing the rope stiffness such as from 1150 to 2500 N/m. To further understanding
the effect of rope margin, small rope stiffness less than 1150 N/m was investigated by
simulation, which is shown in Figure 9c,d. In contrast to the conclusions as rope stiffness k0
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changing from 1150 to 2500 N/m, the bandwidth of LFDB increases when the rope stiffness
is at a range of 170–1150 N/m, whereas its displacement decreases (see in Figure 9c). As
for HFGB, the bandwidth increases, whereas the displacement hardly decreases (see in
Figure 9d). It means that the bandwidth and output of rope-driven PVEH can also be
adjusted by rope stiffness, and could be improved further if the stiffness of rope increases
in a certain range. Overall, for practical applications, adjusting rope margin is a better
and more effective way to change the rope-driven PVEH’s performance to achieve tunable
energy harvesting.Micromachines 2021, 12, x FOR PEER REVIEW 12 of 15 
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Figure 9. Frequency responses of the peak displacement of LFDB and HFGB for various rope stiffness
under the condition of a = 0.6 g and ∆x = 1.0 mm: (a) simulation frequency responses of LFDB
under k0 = 1150–2500 N/m; (b) simulation frequency responses of HFGB under k0 = 1150–2500 N/m;
(c) simulation frequency responses of LFDB under k0 = 170–1150 N/m; (d) simulation frequency
responses of HFGB under k0 = 170–1150 N/m; (e) experimental frequency responses of LFDB under
k0 = 1150–2500 N/m; (f) experimental frequency responses of HFGB under k0 = 1150–2500 N/m.

5. Conclusions

In conclusion, a mechanical mass-spring-damper model of the rope-driven PVEH with
one LFDB connecting one HFGB by a rope was built using lumped parameter modeling
approach, and the dynamic equations for predicting the dynamic movement of LFDB and
HFGB were established, respectively. Based on the equations using MATLAB/SIMULINK®

model, the effects of multiple parameters including excitation acceleration, rope margin
and stiffness were investigated by numerical simulation and experiments. Overall, the
results show that the established model in this study can be used to predict the behaviors
of our rope-driven PVEH though there are some mismatches near the end-frequency point,
which can provide guidance for the design of the rope-driven PVEH before fabricating it.
The parameter study suggests that rope-driven PVEH’s performance can be optimized
by multiple parameters. Adjusting rope is the most convenient choice for optimizing the
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performance of the PVEH in variable environments without refabricating the device, this
tunable performance of the proposed rope-driven PVEH system makes it promising for
vibration energy harvesting in wideband environments with low frequency.
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