
micromachines

Article

An Ultra-Low-Power Embedded Processor with Variable
Micro-Architecture

Wenheng Ma , Qiao Cheng, Yudi Gao, Lan Xu and Ningmei Yu *

����������
�������

Citation: Ma, W.; Cheng, Q.; Gao, Y.;

Xu, L.; Yu, N. An Ultra-Low-Power

Embedded Processor with Variable

Micro-Architecture. Micromachines

2021, 12, 292. https://doi.org/

10.3390/mi12030292

Academic Editor: Woo Young Choi

Received: 11 February 2021

Accepted: 8 March 2021

Published: 10 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China;
wenhma@outlook.com (W.M.); 13772525011@163.com (Q.C.); gyd18392005058@163.com (Y.G.);
xl314008@163.com (L.X.)
* Correspondence: yunm@xaut.edu.cn

Abstract: Embedded processors are widely used in various systems working on different tasks
with different workloads. A more complex micro-architecture leads to better peak performance
and worse power consumption. Shutting down the units designed for performance enhancement
could improve energy efficiency in low-workload scenarios. In this paper, we evaluated the energy
distribution in various embedded processors. According to the analysis, pipeline registers and the
dynamic branch predictor, which are employed for better peak performance, have great impacts on
energy efficiency. Thus, we proposed an ultra-low-power processor with variable micro-architecture.
The processor is based on a 4-stage pipeline core with a Gshare branch predictor, and all units
work in high-performance mode. In normal mode, the Gshare predictor is shut down and Always-
Not-Taken prediction is used. In low-power mode, some of the pipeline registers are bypassed to
avoid unnecessary energy dissipation and improve executing efficiency. A mode register (MR) is
designed to indicate current working mode. Switching between different modes is controlled by the
software. The proposed core is implemented in 40 nm technology and simulated with the traces of
17 benchmarks in Embench. The average amounts of power consumed by the respective modes are
41.7 µW, 59.7 µW and 71.1 µW. The results show that normal mode (N-mode) and low-power mode
(L-mode) consume 16.08% and 41.37% less power than high-performance mode (H-mode) on average.
In best case scenarios, they could save 25.36% and 49.30% more power than H-mode. Considering
the execution efficiency evaluated by instructions per cycle (IPC), the proposed processor consumes
7.78% or 51.57% less energy for each instruction than the baseline core. The area of the proposed
processor is only 7.19% larger than the baseline core, and only 3.08% more power is consumed
in H-mode.

Keywords: ultra-low-power; embedded processor; energy efficiency; variable micro-architecture;
pipeline register

1. Introduction

The Internet of Things (IoT), which excludes PCs, tablets and smartphones, will
grow to 25 billion units installed in 2021, representing an almost 30-fold increase from
0.9 billion in 2009 [1]. Additionally, more and more IoT systems are working in battery-
powered scenarios or even battery-less scenarios [2,3]. Given the limitation of energy supply
and the demand for performance, system designers are paying more attention to power
consumption, especially for the embedded processor which is one of the core components
in IoT systems [4,5]. Due to its responsibility for data computation and system control,
an embedded processor has to deal with a variety of complicated tasks with different
workloads, making it difficult to balance peak performance and power consumption for
various scenarios. Improving energy efficiency is now becoming a key concern for all
designers [6,7].

To satisfy the performance and power demands of diverse embedded systems, proces-
sors with different micro-architectures are employed in different devices. For commercial

Micromachines 2021, 12, 292. https://doi.org/10.3390/mi12030292 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-2349-7286
https://doi.org/10.3390/mi12030292
https://doi.org/10.3390/mi12030292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12030292
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12030292?type=check_update&version=2


Micromachines 2021, 12, 292 2 of 16

use, ARM Ltd. has introduced Cortex-M series processors, including Cortex-M0, Cortex-
M3, etc. [8]. These processors are designed for deterministic, real-time embedded process-
ing and microcontroller applications, and are optimized for low-cost and energy-efficiency.
In addition to processors in industry, many cores are implemented in academia [9–14].
For example, the Pulp team from ETH and the University of Bologna has proposed sev-
eral processors, including Zero-riscy, Riscy, and Ariane. All these cores are implemented
elaborately for different scenarios, and are silicon-proven for commercial use rather than
research-use-only [15–19].

In many embedded systems, peak performance is a key factor for the processor
selection. However, more complex architectures provide better performance and worse
power consumption. Despite finishing an instruction in a shorter time, a high-performance
processor will still dissipate more energy on the same task and consume more power
in idle state. Figure 1 demonstrates the performance, power consumption and energy
efficiency of different embedded cores. The performance of Cortex-M3, shown in Figure 1a,
is 1.36 times that of Cortex-M0+ [20,21]. However, it consumes 2.89 times the power, which
is demonstrated in Figure 1b. According to the results shown in Figure 1c, the tremendous
power increase leads to 113% more energy dissipation to execute the CoreMark benchmark
once. As the performance and power increase, the energy efficiency for Cortex-M4 and
Cortex-M7 is even worse [22,23]. Compared to Cortex-M0+, they use 138% and 656% more
energy for the same task. Besides the Cortex-M series cores, Pulp cores are also evaluated in
Figure 1. The performance of Riscy is better than Zero-riscy. However, Zero-riscy consumes
less energy for a task due to its simpler micro-architecture. For power reduction, scaling
down the supply voltage is the most widely used method [24,25]. Some processors are
designed to work at a low voltage, or even work at near-threshold or sub-threshold voltage.
However, the voltage scaling has slowed down in recent years, since it is no longer possible
to scale the threshold voltage because of rising leakage currents [26]. Thus, architecture
optimization is now necessary to improve energy efficiency further.

The main focus of this paper is designing an embedded processor with variable
architecture. The variable core could change its pipeline structure and shut down the
branch predictor to reduce power consumption. The main contributions of this paper are
as follows:

1. We present a detailed analysis of the energy distribution of different embedded
processors and point out the inefficiency in a processor based on four baseline cores
with state-of-the-art performance and power efficiency.

2. We propose a variable processor which could work with different micro-architectures
in different working modes.

3. We present a software-based mode switching method that simplifies the circuit design
and reduces the hardware overhead.

4. We show the possibility to improve the energy efficiency of an embedded processor
by adding simple bypass data paths for architecture switching.

The rest of this paper is structured as follows: Related works are discussed in Section 2.
Section 3 presents the baseline processors and analyzes the power distribution in these
processors. Section 4 introduces the hardware architecture and software interface of the
variable processor. Results and evaluations are shown in Section 5. Section 6 concludes
this paper.



Micromachines 2021, 12, 292 3 of 16

0.6

0.9

1.2

1.5

1.8

2.1

2.4

0

1

2

3

4

5

6

Cortex-M0+ Cortex-M3 Cortex-M4 Cortex-M7 Zero-riscy Riscy

Cortex Cores Pulp Cores

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

P
er

fo
rm

an
ce

(C
o

re
m

ar
k/

M
H

z)

Performance (Cortex Cores) Performance (Pulp Cores)

Normalized Performance (Cortex Cores) Normalized Performance (Pulp Cores)

(a)

0.5

1

2

4

8

16

1

2

4

8

16

32

64

Cortex-M0+ Cortex-M3 Cortex-M4 Cortex-M7 Zero-riscy Riscy

Cortex Cores Pulp Cores

N
o

rm
al

iz
ed

 P
o

w
er

P
o

w
er

(μ
W

/M
H

z)

Power (Cortex Cores) Power (Pulp Cores)

Normalized Power (Cortex Cores) Normalized Power (Pulp Cores)

(b)

0.5

1

2

4

8

1

2

4

8

16

Cortex-M0+ Cortex-M3 Cortex-M4 Cortex-M7 Zero-riscy Riscy

Cortex Cores Pulp Cores

N
o

rm
al

iz
ed

 E
ff

ic
ie

n
cy

Ef
fic

ie
n

cy

(μ
W

/C
o

re
M

ar
t)

Efficiency (Cortex Cores) Efficiency (Pulp Cores)

Normalized Efficiency (Cortex Cores) Normalized Efficiency (Pulp Cores)

(c)

Figure 1. Performance, power and energy efficiency of Cortex-M cores and Pulp cores. (a) Perfor-
mance of Cortex-M Cores and Pulp Cores, (b) Power of Cortex-M Cores and Pulp Cores, (c) Energy
Efficiency of Cortex-M Cores and Pulp Cores.

2. Related Work

In many cases, processors only work on compute-intensive tasks for short periods of
time, and on low-load tasks most of the time. To improve the energy efficiency, numerous
studies are presented for performance and power consideration [27–30]. Both circuit-level
and architecture-level optimizations were involved in these studies. According to their
methods, all the designs can be categorized into (1) systems with dynamic voltage and
frequency scaling, (2) heterogeneous multi-core processors and (3) fine-grained heteroge-
neous processors.

2.1. Dynamic Voltage and Frequency Scaling (DVFS)

The voltage of the power supply has a significant impact on energy dissipation.
Many digital systems are designed based on a low voltage supply for power reduction.
However, a fixed low voltage of the power supply is harmful to the peak performance.



Micromachines 2021, 12, 292 4 of 16

To improve energy efficiency and meet the performance demand, dynamic voltage and fre-
quency scaling (DVFS) is widely used, especially for IoT systems [31,32]. By regulating the
supply voltage and clock frequency dynamically, a system could manage its performance
and power according to the working status. As one of the core components in digital sys-
tems, processors benefit greatly from DVFS in low-load conditions as well [33,34]. Besides,
DVFS could easily be incorporated into a processor with architecture-level optimization.
However, the voltage scaling has slowed down in recent years, since it became impossible
to scale the threshold voltage because of rising leakage currents [26]. Considering the
limitations of voltage scaling, the utility of DVFS has been decreasing, making it difficult to
reduce power dissipation further without architecture optimization.

2.2. Heterogeneous Multi-Core Processors

Many works have focused on exploring heterogeneity in a digital system to improve
efficiency. Annavaram et al. proposed to use small cores for parallel tasks, while serial tasks
are run on a big core [35]. Considering the power limitation, it will improve the overall
energy efficiency. Kumar et al. advocated assigning tasks to different cores with various
power and performance characteristics, so that each core could achieve the best power
efficiency [28,29]. Besides the asymmetric multicore processors, ARM Ltd. has proposed
big.LITTLE technology, which contains a big core (Cortex-A15) and a little core (Cortex-A7)
in a cluster and only activates one core at a time. Thread switches between cores in coarse
granularity. For the same task, the energy efficiency of little cores is much better than that
of big cores [36]. To further improve the execution efficiency of these processors, many
studies about task mapping and thread switching were also conducted [37–39].

2.3. Fine-Grained Heterogeneous Processors

Heterogeneous multi-core processors improve performance within a limited power
budget, but also lead to additional costs. To avoid the significant drawbacks in terms of area
and latency, researchers suggested achieving heterogeneity within a single core. Andrew
Lukefahr et al. proposed a composite core with a big µEngine and a small µEngine. The two
µEngines share an L1-cache, a branch predictor and an architectural register file. In the
composite core, thread switching is controlled dynamically by an online controller [40].
Sudarshan Srinivasan et al. designed a processor that could work in different modes
with different micro-architecture resources, e.g., fetch width, issue width and buffer sizes.
The processor will perform a program in an appropriate mode determined by a runtime
mechanism and switch to another mode when the workload has been changed [41].

Previous works focused on complex heterogeneous processors using an Out-of-Order
core as the big core. However, they are too heavy to work in ultra-low-power scenar-
ios. Considering the power limitation, in-order cores without multiple issue ports are
always preferred.

3. Power Consumption in Embedded Processors

Analyzing the power impact of each part in processors makes sense in order to
identify the inefficient units in idle state. To explore the power distribution, we have
designed four RISC-V cores supporting RVC32IM and found out the main contributor to
energy dissipation. Instructions and data are stored in separate SRAMs. All decoding and
execution units are the same in these processors. Thus, the distinction in energy efficiency
is mainly caused by different structures, such as control units, branch predictors, pipeline
stages, etc. These processors were designed in three different pipeline structures:

1. TinyCore. The most simplified architecture is employed in this core. As is shown in
Figure 2a, there is no pipeline register in TinyCore. Only load, multiplication and
division instructions can cause stalls in this processor.

2. LittleCore. It has pipeline registers before the Write-Back unit. Figure 2b demonstrates
its architecture. Only multi-cycle instructions will stall this processor.



Micromachines 2021, 12, 292 5 of 16

3. PipeCore. The other two processors have the same architecture as the PipeCore
shown in Figure 2c. They are both single-issue in-order cores with four pipeline
stages and a branch predictor. The only difference between them is the branch
prediction algorithm.

Always-Not-Taken and Gshare are used, respectively, in PipeCoreA and PipeCoreG.
Gshare is only a tiny predictor without branch target buffer (BTB) and return address stack
(RAS) due to their huge requirements in terms of area and energy consumption. Thus, all
branch predictions are completed in Decode, which can get the branch target from the
instruction. The Gshare predictor has 256 entries. That number of entries was selected
because of its better balance between performance and energy efficiency. The maximum fre-
quencies of the cores are 290 MHz (TinyCore), 310 MHz (LittleCore), 740 MHz (PipeCoreA)
and 720 MHz (PipeCoreG).

Src1
Src2
Src3

OP

Dest

PC

Src1
Src2
Src3

OP

Dest

PC

Src1
Src2
Src3

PCPC

Ins
Decode

I
n
s

I
s
s
u
e

Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

Load
Process

Final
Res
Sel

WB

P
C
+
4 Source

Operand
Fetch

I
T
C
M D
T
C
M

PC

PC+4

Ins
Issue

IRam

PC

Ins

PC

S1

S2

S3

Dest

Ex
Unit

Ex
Op

Ex
Mop

Ins
Decode

Source
Operand
Fetch

I
ns

D
is
pa
tc
h

Int
Unit

Csr
Unit

Mem
Unit

PC

Res1

Res2

Dest

Ex
Unit

Ex
Op

Ex
Mop

Ex
Res
Sel

PC

Res1

Dest

Ex
Unit

Ex
Op

Ex
Mop

Load
Data

Load
Process

Write
Back

Final
Res
Sel

SRAM
Access

SRAM
Access

Fwd
Sel

RF

RF

DRam

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

PCPC

P
C
+
4

I
T
C
M

PC

Ins

I
n
s

D
i
s
p
a
t
c
h

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

Res

OP

Dest

PCPC

P
C
+
4

I
T
C
M

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

PCPC

P
C
+
4

I
T
C
M

PC

Ins

I
n
s

D
i
s
p
a
t
c
h

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

Res

OP

Dest

D
T
C
M

Load
Process

Final
Res
Sel

WB

OP

Dest

PC

Branch
Predict

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WBBranch
Predict

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB
Variable
Branch
Predict

PipeEn

GshareEn

32+32=64 32+5+32*3+12=145

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WBBranch
Predict

PipeEn

GshareEn

(a)

Src1
Src2
Src3

OP

Dest

PC

Src1
Src2
Src3

OP

Dest

PC

Src1
Src2
Src3

PCPC

Ins
Decode

I
n
s

I
s
s
u
e

Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

Load
Process

Final
Res
Sel

WB

P
C
+
4 Source

Operand
Fetch

I
T
C
M D
T
C
M

PC

PC+4

Ins
Issue

IRam

PC

Ins

PC

S1

S2

S3

Dest

Ex
Unit

Ex
Op

Ex
Mop

Ins
Decode

Source
Operand
Fetch

I
ns

D
is
pa
tc
h

Int
Unit

Csr
Unit

Mem
Unit

PC

Res1

Res2

Dest

Ex
Unit

Ex
Op

Ex
Mop

Ex
Res
Sel

PC

Res1

Dest

Ex
Unit

Ex
Op

Ex
Mop

Load
Data

Load
Process

Write
Back

Final
Res
Sel

SRAM
Access

SRAM
Access

Fwd
Sel

RF

RF

DRam

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

PCPC

P
C
+
4

I
T
C
M

PC

Ins

I
n
s

D
i
s
p
a
t
c
h

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

Res

OP

Dest

PCPC

P
C
+
4

I
T
C
M

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

PCPC

P
C
+
4

I
T
C
M

PC

Ins

I
n
s

D
i
s
p
a
t
c
h

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

Res

OP

Dest

D
T
C
M

Load
Process

Final
Res
Sel

WB

OP

Dest

PC

Branch
Predict

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WBBranch
Predict

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB
Variable
Branch
Predict

PipeEn

GshareEn

32+32=64 32+5+32*3+12=145

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WBBranch
Predict

PipeEn

GshareEn

(b)

Src1
Src2
Src3

OP

Dest

PC

Src1
Src2
Src3

OP

Dest

PC

Src1
Src2
Src3

PCPC

Ins
Decode

I
n
s

I
s
s
u
e

Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

Load
Process

Final
Res
Sel

WB

P
C
+
4 Source

Operand
Fetch

I
T
C
M D
T
C
M

PC

PC+4

Ins
Issue

IRam

PC

Ins

PC

S1

S2

S3

Dest

Ex
Unit

Ex
Op

Ex
Mop

Ins
Decode

Source
Operand
Fetch

I
ns

D
is
pa
tc
h

Int
Unit

Csr
Unit

Mem
Unit

PC

Res1

Res2

Dest

Ex
Unit

Ex
Op

Ex
Mop

Ex
Res
Sel

PC

Res1

Dest

Ex
Unit

Ex
Op

Ex
Mop

Load
Data

Load
Process

Write
Back

Final
Res
Sel

SRAM
Access

SRAM
Access

Fwd
Sel

RF

RF

DRam

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

PCPC

P
C
+
4

I
T
C
M

PC

Ins

I
n
s

D
i
s
p
a
t
c
h

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

Res

OP

Dest

PCPC

P
C
+
4

I
T
C
M

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

PCPC

P
C
+
4

I
T
C
M

PC

Ins

I
n
s

D
i
s
p
a
t
c
h

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

Res

OP

Dest

D
T
C
M

Load
Process

Final
Res
Sel

WB

OP

Dest

PC

Branch
Predict

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WBBranch
Predict

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB
Variable
Branch
Predict

PipeEn

GshareEn

32+32=64 32+5+32*3+12=145

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WBBranch
Predict

PipeEn

GshareEn

(c)

Figure 2. Architecture of baseline processors. (a) Architecture of TinyCore, (b) Architecture of
LittleCore, (c) Architecture of PipeCore.



Micromachines 2021, 12, 292 6 of 16

The area, performance and power consumption of these baseline processors are
shown in Table 1. All features are close to those of the state-of-the-art cores in academia and
industry [8,42]. To further explore the energy efficiency and power distribution of different
cores, we have synthesized all these processors with UMC 40LP technology, and evaluated
the performance and energy efficiency with the trace of 17 benchmarks in Embench [43].
All cores were synthesized with relaxed timing constraints and run at the frequency of
20 MHz. The execution efficiency of each core was evaluated by the number of instructions
per cycle (IPC).

Table 1. Comparison of baseline processors and the state-of-the-art cores.

Core Name Pipe No. Hard Mul Div Technology Power Supply Area (KGE) Perf (CoreMark/MHz) Power (µW/MHz)

TinyCore / Y 40 nm 1.1 V 19.3 2.88 2.12

LittleCore 2 Y 40 nm 1.1 V 19.8 3.44 2.29

PipeCoreA 4 Y 40 nm 1.1 V 21.2 2.75 3.63

PipeCoreG 4 Y 40 nm 1.1 V 24.8 2.91 5.32

micro-riscy 2 N 65 nm 1.2 V 11.6 0.91 2.33

zero-riscy 2 Y 65 nm 1.2 V 18.9 2.44 2.81

riscy 4 Y 65 nm 1.2 V 40.7 3.19 6.98

Cortex-M0+ 2 Y 40 nm 1.1 V 12.5 2.46 3.8

Cortex-M3 3 Y 40 nm 1.1 V 37.9 3.34 11

Cortex-M4 3 Y 40 nm 1.1 V 53 3.42 12.26

As shown in Figure 3, there are wide variations in execution efficiency. The IPC values
of PipeCores are lower than those of TinyCore and LittleCore. This reduction is caused by
the more complex pipeline structure, leading to additional speculative execution and data
hazard stalls in the processor. The IPC of PipeCoreG is better than PipeCoreA because of
the Gshare predictor. LittleCore has a better IPC than TinyCore, since all load-conflicts are
avoided by splitting the load operation into two different pipeline stages and forwarding
the result before writing back. Considering the maximum frequency, PipeCoreG offers the
best performance followed by PipeCoreA, LittleCore and TinyCore.

0.7

0.8

0.9

1 TinyCore

LittleCore

PipeCoreA

PipeCoreG

IP
C

Benchmarks Avr

(I
n
st
ru
c�
o
n
s/
C
yc
le
)

Figure 3. Instructions per cycle (IPC) of baseline Processors.

Figure 4 shows the power consumption for each core. Compared to the TinyCore,
the other three processors consume 1.32× (LittleCore), 2.11× (PipeCoreA) and 2.58×
(PipeCoreG) more power, respectively, on average. Figure 5 demonstrates the power
distribution of all baseline processors. The “logic” part in Figure 5 represents the power
consumption of all necessary combinational circuits, including instruction decoder, execute
unit, load data selector, etc. Since the circuits of the “logic” part are essential and their power
consumptions are nearly the same in different cores, we will skip that in the following
discussion. Note that the RegFile of LittleCore consumes more energy than others, since its



Micromachines 2021, 12, 292 7 of 16

better IPC results in more data writing back within the same time frame. Similarly, more
power consumption is needed by the RegFile of TinyCore than that of PipeCores.

nettle-aes

crc_32
libminver

libst
picojpeg_test

qrtest
basicmath_small

libedn
libnsichneu

libstatemate

mont64

nettle-sha256

combined

libhuffbench

libslre
libub

matmult_int

avr
0

20

40

60

80

TinyCore LittleCore PipeCoreA PipeCoreG

Figure 4. Power consumption of baseline processors.

0 20 40 60

TinyCore

LittleCore

PipeCoreA

PipeCoreG

othersPredictor

PipeReg

logic

PcGenRegfile

Power (μW)

Figure 5. Average power consumption and distribution of baseline processors.

Taking into account the execution efficiency, the distribution of energy efficiency is
a bit different from the power consumption. Figure 6 shows the energy dissipation of
each part in a processor for executing one instruction. RegFiles almost consume the same
energy in different cores because of the same number of write-backs. PcGenerators and
logic circuits in PipeCores consume a little more energy than TinyCore and LittleCore
due to the speculative execution. Pipeline registers and the branch predictor have great
impacts on energy efficiency. They lead to differences in performance and efficiency among
baseline processors.

0 1 2 3 4

TinyCore

LittleCore

PipeCoreA

PipeCoreG

othersPredictorPipeReg

logicPcGenRegfile

Energy Efficiency (pJ/Instruc�on)

Figure 6. Average energy consumption and distribution of baseline processors.

• Pipeline registers. They are not the key contributor to the area, but consume the most
energy than other parts in a processor. For example, the area of the pipeline registers
is 1.60 KGE that is only 7.54% of the total core in PipeCoreA. However, they need
about 1.96 µW/MHz. That is, over 53.9% of total energy (3.63 µW/MHz) is consumed
by them. The counterintuitive result is caused by their higher transition frequency.



Micromachines 2021, 12, 292 8 of 16

• Branch predictor. The dynamic branch predictor has tremendous impacts on perfor-
mance, power and energy efficiency. The IPC of PipeCoreG is 0.793 which is 6.34%
more than that of PipeCoreA. When running at 20 MHz, the power of PipeCoreG
is 68.97 µW. That is 22.38% more than PipeCoreA which consumes 56.36 µW. Thus,
the Gshare predictor leads to about 15% more energy dissipation for each instruction.

Considering the performance requirements in embedded systems, a deeper pipeline
and dynamic branch predictor are indispensable. However, in low-load scenarios, they
become a burden on power. Shutting down these units, when they are not necessary in
idle state, will be beneficial for energy efficiency.

4. Architecture and Implementation
4.1. Multiple Operating Modes

Performance and power differ greatly among these baseline processors. An aggressive
branch predictor and pipeline structure, which are not essential to complete an instruction,
are the main contributors to power increasing. Working without these units will improve
energy efficiency. Thus, the ability to run in diverse operating modes is useful for an
ultra-low-power processor to balance the performance and energy efficiency.

In the previous section, four baseline cores were discussed. It is not a good idea to
support all modes in the design, since more modes may lead to an unnecessary overhead.
Among these cores, PipeCoreG has the best performance that is important for many
applications. Additionally, the only difference between PipeCoreA and PipeCoreG is the
branch predictor. Shutting down the Gshare predictor by inserting several clock gating cells
makes the PipeCoreG working like PipeCoreA. Because of the negligible cost, their micro-
architectures are both selected as two different modes. The performance of TinyCore is
much worse than LittleCore with similar energy efficiency. Therefore, supporting LittleCore
only is preferred rather than having two individual modes for them, since additional
MUXes are needed for the architecture of TinyCore.

Taking all factors into account, there are three operating modes in the variable architec-
ture processor: (1) High-Performance mode (H-mode). The processor works with a 4-stage
pipeline and a Gshare branch predictor. (2) Normal mode (N-mode). The 4-stage pipeline
is still employed while shutting down the Gshare predictor. (3) Low-power mode (L-mode).
Pipeline registers between Fetch and Execute are all bypassed and no speculative structure
is used in this mode. Switching between different modes is controlled by software.

4.2. Variable Branch Predictor

Figure 7 shows the architecture of the variable branch predictor. A memory-mapped
register named GshareVldReg is employed in the processor. The branch predictor could
work in two different modes indicated by the GshareVldReg.

If GshareVldReg is 1, the prediction result of Gshare is enabled. Prediction is per-
formed in the Decode unit, and the branch target is calculated from the instruction instead
of using a branch target buffer (BTB) to avoid additional energy costs. The saturating
counter in the Gshare predictor will be out of service when training the pattern history
table (PHT), since the PHT SRAM has only one port. Thus, Backward-Taken-Forward-
Nottaken(BTFN) prediction is used if a training conflict appears.

When GshareVldReg stays at 0, the Always-Not-Taken algorithm is used. To reduce
the energy consumption, the clock to Gshare is gated, and operand isolation is used in the
branch target generator. Thus, all the logic circuits, registers and SRAMs keep silent until
the operating mode has been changed. In this way, most of the energy could be saved due
to the shutting down of Gshare predictor. Only several AND gates are inserted into logic
circuits, leading to little costs in terms of area. As these additional gates are not on the
critical path, there is no timing overhead for them.



Micromachines 2021, 12, 292 9 of 16

Branch Target
Generator

BTFN

PHT

Predictor

Trainer

GHR

+

Gshare Cnt

PC

Ins

B
ra
nc
h

R
es
ul
t

Branch Target

BranchEn

G
sh
ar
e

V
ld
Re
g

Clk

Figure 7. Variable branch predictor.

4.3. Variable Pipeline Architecture

Figure 8 demonstrates the variable-architecture processor. It is based on the PipeCore
shown in Figure 2c. To eliminate the wasted energy in pipeline registers, all registers
between Fetch and Execute are bypassed, making the core work with a 2-stage pipeline,
similarly to the LittleCore mentioned in Figure 2b. All bypass transmission is achieved
by inserting MUXes after pipeline registers, as shown in Figures 8 and 9a. To simplify
the MUX circuits, all pipeline registers are flushed to zero before clock gating. Hence,
a real multiplexer is not necessary for signal forwarding. We can use an AND-OR gate,
as shown in Figure 9b, instead of a multiplexer. That will reduce the size by one AND
gate. Additionally, the AND-OR gate also can be simplified to a NAND-NAND gate by
inverting the output of each pipeline register, as shown in Figure 9c. As a result, only 8
transistors are needed to bypass a signal. That is fewer than a multiplexer (12 transistors)
or an AND-OR gate (10 transistors).

Src1
Src2
Src3

OP

Dest

PC

Src1
Src2
Src3

OP

Dest

PC

Src1
Src2
Src3

PCPC

Ins
Decode

I
n
s

I
s
s
u
e

Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

Load
Process

Final
Res
Sel

WB

P
C
+
4 Source

Operand
Fetch

I
T
C
M D
T
C
M

PC

PC+4

Ins
Issue

IRam

PC

Ins

PC

S1

S2

S3

Dest

Ex
Unit

Ex
Op

Ex
Mop

Ins
Decode

Source
Operand
Fetch

I
ns

D
is
pa
tc
h

Int
Unit

Csr
Unit

Mem
Unit

PC

Res1

Res2

Dest

Ex
Unit

Ex
Op

Ex
Mop

Ex
Res
Sel

PC

Res1

Dest

Ex
Unit

Ex
Op

Ex
Mop

Load
Data

Load
Process

Write
Back

Final
Res
Sel

SRAM
Access

SRAM
Access

Fwd
Sel

RF

RF

DRam

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

PCPC

P
C
+
4

I
T
C
M

PC

Ins

I
n
s

D
i
s
p
a
t
c
h

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

Res

OP

Dest

PCPC

P
C
+
4

I
T
C
M

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB

PCPC

P
C
+
4

I
T
C
M

PC

Ins

I
n
s

D
i
s
p
a
t
c
h

Ins
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Ex
Res
Sel

Res

OP

Dest

D
T
C
M

Load
Process

Final
Res
Sel

WB

OP

Dest

PC

Branch
Predict

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WBBranch
Predict

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WB
Variable
Branch
Predict

PipeEn

GshareEn

32+32=64 32+5+32*3+12=145

PCPC

P
C
+
4

I
T
C
M

PC

Ins

Src1
Src2
Src3

OP

Dest

PC

Instruction
Decode

Source
Operand
Fetch

I
n
s

I
s
s
u
e

RF Int
Unit

Mul
Div
Unit

Mem
Unit

Res

OP

Dest

Ex
Res
Sel

D
T
C
M

Load
Process

Final
Res
Sel

WBBranch
Predict

PipeEn

GshareEn

Figure 8. Variable architecture. Pipeline registers and branch predictor can be disabled in normal mode (N-mode) and
low-power mode (L-mode). They are translucent in the figure.

A forward bus is used in the 4-stage pipeline architecture to access data before writing
them to the register file. In the variable architecture, the destinations of forwarding data
come from the pipeline registers directly. In low-power mode, the forwarding data from
Execute is invalid, since the pipeline register between Decode and Execute is bypassed,
and all bits in the register are flushed to 0. Thus, the destination keeps 5′b00000 and the
forward bus will be out of service.



Micromachines 2021, 12, 292 10 of 16

LPEn

Q

Q
SET

CLR

D

Clk

Din

Dout

AO21

PipeEn

Q

Q
SET

CLR

D

Clk

Din

Dout

Q

Q
SET

CLR

D

Clk

Din

Dout

Software Hardware

Low-load tasks

Set
Mode Register

Increase 
clock frequency

Computation
intensive task

Reduce
clock frequency

Set
Mode Register

Unlock clock to
pipeline register

Set PLL

Set PLL

Write 2'b00
to MR

Lock clock to
pipeline registerExecute

2 NOPs

Low-load tasks
Low power
Scenario

Low power
Scenario

Hig
h P

e
rfor

ma
nc

e 
Sce

n
ari

o

M
o
d
e

S
w

itc
h
in

g
M

o
d
e

S
w

itc
h
in

g

PipeEn

Flush pipeline

Write 2'b1x
to MR

Q

Q
SET

CLR

D

Clk

Din
Dout

PipeEn

(a)

LPEn

Q

Q
SET

CLR

D

Clk

Din

Dout

AO21

PipeEn

Q

Q
SET

CLR

D

Clk

Din

Dout

Q

Q
SET

CLR

D

Clk

Din

Dout

Software Hardware

Low-load tasks

Set
Mode Register

Increase 
clock frequency

Computation
intensive task

Reduce
clock frequency

Set
Mode Register

Unlock clock to
pipeline register

Set PLL

Set PLL

Write 2'b00
to MR

Lock clock to
pipeline registerExecute

2 NOPs

Low-load tasks
Low power
Scenario

Low power
Scenario

Hi
g
h Pe

rfor
manc

e Sce
nari

o

M
o
d
e

S
w

itc
h
in

g
M

o
d
e

S
w

itc
h
in

g

PipeEn

Flush pipeline

Write 2'b1x
to MR

Q

Q
SET

CLR

D

Clk

Din
Dout

PipeEn

(b)

LPEn

Q

Q
SET

CLR

D

Clk

Din

Dout

AO21

PipeEn

Q

Q
SET

CLR

D

Clk

Din

Dout

Q

Q
SET

CLR

D

Clk

Din

Dout

Software Hardware

Low-load tasks

Set
Mode Register

Increase 
clock frequency

Computation
intensive task

Reduce
clock frequency

Set
Mode Register

Unlock clock to
pipeline register

Set PLL

Set PLL

Write 2'b00
to MR

Lock clock to
pipeline registerExecute

2 NOPs

Low-load tasks
Low power
Scenario

Low power
Scenario

Hig
h Pe

rfor
manc

e Sce
nari

o

M
o
d
e

S
w

itc
h
in

g
M

o
d
e

S
w

itc
h
in

g

PipeEn

Flush pipeline

Write 2'b1x
to MR

Q

Q
SET

CLR

D

Clk

Din
Dout

PipeEn

(c)

Figure 9. Bypass circuits for each pipeline register. (a) MUX Bypass, (b) AND-OR Bypass, (c) NAND-
NAND Bypass.

In addition to the data path, the execution controlling mechanism in low-power mode
is also different. There are no pipeline stalls caused by data hazards in this mode. The con-
troller only stalls the processor when executing multiplication and division, which could
take additional cycles. Another memory-mapped register is used to indicate whether the
processor is working with or without a complex pipeline structure. The register is named
PipeEn, as shown in Figure 8. When writing 0 to this bit, the processor flushes all pipeline
registers between Fetch and Execute, and then blocks the clock to those pipeline registers.

4.4. Software-Based Mode Switching

Mode switching is controlled by software. There is a mode register (MR) in the
processor indicating current operating mode. PipeEn assigned to bit[1] and GshareEn
assigned to bit[0] are used to indicate the pipeline architecture and the type of branch
predictor. Note that, there are only three modes in the processor, and therefore writing
2′b01 to the mode register is invalid. When the processor switches from L-mode to N-mode
or H-mode, the following steps must be done in software:

1. Set mode register to 2′b1x (2′b10 for N-mode; 2′b11 for H-mode).
2. Increase the clock frequency.
3. Jump to compute-intensive tasks.

When switching to L-mode, the following things must be done by software to change
the micro-architecture:

1. Reduce the clock frequency.
2. Set MR to 2′b00.
3. Execute two NOP instructions.
4. Jump to low-load tasks.



Micromachines 2021, 12, 292 11 of 16

Two extra NOPs are inserted after setting the MR. There are three instructions exe-
cuting in the pipeline simultaneously besides the MR setting instruction, and the flushing
pipeline registers will kill the following two instructions. An example of switching flow
is shown in Figure 10. The processor works in L-mode for low-load tasks at first. When a
compute-intensive task is coming, MR is set to 2′b1x in the software. The processor will
flush the pipeline registers and unlock their clock. Then it increases the clock frequency
and works on the coming tasks. When the tasks are finished, the processor reduces the
clock frequency and writes 2′b00 to MR turning to L-mode.

LPEn

Q

Q
SET

CLR

D

Clk

Din

Dout

AO21

PipeEn

Q

Q
SET

CLR

D

Clk

Din

Dout

Q

Q
SET

CLR

D

Clk

Din

Dout

Software Hardware

Low-load tasks

Set
Mode Register

Increase 
clock frequency

Computation
intensive task

Reduce
clock frequency

Set
Mode Register

Unlock clock to
pipeline register

Set PLL

Set PLL

Write 2'b00
to MR

Lock clock to
pipeline registerExecute

2 NOPs

Low-load tasks
Low power
Scenario

Low power
Scenario

Hi
g
h 
Pe

rfor
manc

e Sce
nari

o

M
o
d
e

S
w

itc
h
in

g
M

o
d
e

S
w

itc
h
in

g

PipeEn

Flush pipeline

Write 2'b1x
to MR

Q

Q
SET

CLR

D

Clk

Din
Dout

PipeEn

Figure 10. Software-based mode switching flow.

The variable branch predictor could change the prediction algorithm in one cycle and
lock or unlock the Gshare predictor next cycle. Switching between H-mode and N-mode
only needs two steps in software:

1. Write corresponding data to GshareEn register (bit[0] in MR).
2. Jump to new tasks.

5. Experiment Results and Discussion

We have implemented the variable core in UMC 40LP. It has 26.59 K gates, which is
only 7.19% more than PipeCoreG. Additionally, its maximum frequency is 2.3% slower
due to the additional NAND cells in the critical path. In low power mode, the maximum
frequency is about 260 Mhz. The micro-architectures of the variable core in different
operating modes are the same as the corresponding baseline processors. Thus, they have
the same execution efficiency evaluated by IPC.

First, we simulated the processor in different modes with a clock frequency of 20 MHz.
Figure 11 demonstrates the power consumption of each benchmark in Embench. In all
cases, working in L-mode reduces power consumption greatly. N-mode also needs less



Micromachines 2021, 12, 292 12 of 16

power than H-mode. Compared with H-mode, N-mode and L-mode could save more
than 25.36% and 49.30% power in the best cases. Even in the worst cases, about 7.54% and
31.40% power are saved.

nettle-aes

crc_32
libminver

libst
picojpeg_test

qrtest
basicmath_small

libedn
libnsichneu

libstatemate

mont64

nettle-sha256

combined

libhuffbench

libslre
libub

matmult_int

avr
0

20

40

60

80

L-mode Power N-mode Power H-mode Power

P
o

w
e

r 
(μ

W
)

Figure 11. Power consumption of the variable processor in different modes.

As shown in Figure 12, the average power of different modes are 41.7 µW, 59.7 µW
and 71.1 µW, respectively. Typically, N-mode and L-mode consume 16.08% and 41.37% less
power than H-mode within the same clock period. The power consumption of each mode
increases a little over the value that is in the corresponding baseline core. This is caused by
two reasons: (1) The execution controller in the variable core is a little more complicated
than those of TinyCore and LittleCore. Thus, the power of the “logic” part increases a little.
(2) Many NAND cells are inserted after some of the pipeline registers, leading to the power
increasing in the “PipeReg” part.

0 20 40 60

LittleCore

L-mode

PipeCoreA

N-mode

PipeCoreG

H-mode

othersPredictorPipeReg

logicPcGenRegfile

Power (μW)

Figure 12. Average power consumption and distribution of the variable processor in different modes.

Energy dissipation for each instruction is shown in Figure 13. To execute one in-
struction, the variable core in different modes consumes 2.12 pJ (L-mode), 4.02 pJ (N-
mode) and 4.50 pJ (H-mode), respectively. For each instruction, the variable core in
L-mode needs 52.92% less energy than H-mode. Compared with PipeCoreG consuming
4.36 pJ/instruction, the variable core could save 7.78% and 51.57% more energy in N-mode
and L-mode. Only 3.08% more power is consumed in H-mode. According to the power
and energy distribution, shutting down the branch predictor saves 0.509 pJ energy which is
92.2% of total energy consumed by the Gshare predictor in PipeCoreG. Bypassing pipeline
registers between Fetch and Execute saves 1.585 pJ energy. That is 76.48% of all pipeline
registers in PipeCoreG. The energy overhead of H-mode, which is 0.134 pJ, is 3.08% of the
total power in PipeCoreG. Most of the additional energy is caused by MUX logics after
pipeline registers.



Micromachines 2021, 12, 292 13 of 16

0 1 2 3 4

L-mode

N-mode

H-mode

PipeCoreG

othersPredictorPipeReg

logicPcGenRegfile

Energy Efficiency (pJ/instruc�on)

Figure 13. Average energy consumption and distribution of the variable processor in different modes.

Table 2 shows the peak performance with tight timing constraints and the energy
efficiency with relaxed timing constraints for our proposed processor and the state-of-
the-art cores. In view of the maximum frequency, the peak performance of the variable
core in H-mode and N-mode is better than riscy and Cortex-M4. Additionally, its peak
performance in H-mode is a little better than in N-mode due to a better branch predic-
tor. For low-load scenarios, the variable core, working in L-mode, needs less power than
zero-riscy and Cortex-M0+. Therefore, the variable core provides a better trade-off be-
tween peak performance and energy efficiency, even if the switching circuit involves some
power overhead.

Table 2. Comparison with the state-of-the-art processors.

Core Name Technology Power
Supply

Area
(KGE)

Performance
(CoreMark/MHz)

Max Frequency
(MHz)

Power
(µW/MHz)

Peak Performance
(CoreMark/s)

Efficiency
(µW/CoreMark)

Variable Core(L-mode) 40 nm 1.1 V 25.9 3.44 260 3.12 894 0.91

Variable Core(N-mode) 40 nm 1.1 V 25.9 2.75 700 4.50 1925 1.64

Variable Core(H-mode) 40 nm 1.1 V 25.9 2.91 700 5.49 2037 1.89

PipeCoreG 40 nm 1.1 V 24.8 2.91 720 5.32 2095 1.83

zero-riscy [42] 65 nm 1.2 V 18.9 2.44 560 2.81 1366 1.15

riscy [42] 65 nm 1.1 V 40.7 3.19 560 6.98 1786 2.19

Cortex-M0+[44] 40 nm 1.1 V 12.5 2.46 297 3.8 730 1.54

Cortex-M4 [45] 40 nm 1.1 V 53 3.42 223 12.26 762 3.58

We simulated the variable core with dynamic mode switching. The core executed
the Dhrystone benchmark (DMIPS) 50 times in each mode. Energy consumption was
calculated by integrating the corresponding power curve. All curves are demonstrated
in Figure 14. The energy curve for PipeCoreG running DMIPS 50 times is also shown
in Figure 14 as a reference. The variable core works at 200 MHz in L-mode, while the
other modes and PipeCoreG work at 600 MHz. As the result shows, complicated micro-
architectures lead to better peak performance, reducing the execution time for the same
task. Simpler micro-architectures improve energy efficiency greatly. Embedded systems
could benefit greatly from the variable architecture, if they work on low-load tasks most of
the time and handle compute-intensive tasks for only short periods.



Micromachines 2021, 12, 292 14 of 16

0 50 100 150 200

0.5

1

1.5

2

0

50

100

Processor power PipeCoreG energy H-mode energy

N-mode energy L-mode energy

P
o

w
e

r 
(m

W
)

Time (μS)

En
e

rgy (n
J)

Figure 14. Dynamic power and energy for DMIPS.

6. Conclusions

This paper has analyzed the power distributions of embedded processors with dif-
ferent architectures, and pointed out the key factors reducing energy efficiency. As the
results show, the pipeline registers consume 53.9% power with only 7.54% of the total
area, and the branch predictor leads to 22.38% more power dissipation with an only 6.34%
performance increase. To improve energy efficiency in idle state, a variable processor with
three operating modes was proposed in this paper. The core is a 4-stage pipeline processor
with a Gshare predictor in high-performance mode. It could shut down unnecessary units
in different modes to improve energy efficiency. In normal mode, an Always-Not-Taken
predictor is used instead of a Gshare predictor. Additionally, some of the pipeline registers
are bypassed in low-power mode.

The variable core, in N-mode and L-mode, consumes 16.08% and 41.37% less power
than H-mode on average. Compared with the baseline processor, the proposed processor
needs 7.78% and 51.57% less energy to execute one instruction in N-mode and L-mode, re-
spectively. In H-mode, only 3.08% more power is consumed in our design, with 7.19% more
gates being involved. The result illustrates that processors with the variable architecture
and multiple operating modes will achieve better energy efficiency in various scenarios
and meet the demands of peak performance.

For complex tasks in embedded systems, more complicated architectures are em-
ployed, such as multi-issue and out-of-order, due to the increase in performance demand.
These processors may be simplified by adding new data paths to support architecture
switching. For further exploration, our proposed software-controlled variable architecture
may also be applied to these complicated processors to balance peak performance and
energy efficiency.

Author Contributions: Conceptualization, W.M. and N.Y., Methodology, W.M. and N.Y., Validation,
W.M., Q.C., Y.G. and L.X., Formal analysis, Q.C., Investigation, W.M., Writing, W.M., Project adminis-
tration, N.Y., Funding acquisition, N.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(No. 61771388), and in part by Primary Research& Development Plan of Shaanxi Province,
China(2019TSLGY08-03).

Conflicts of Interest: The authors declare no conflict of interest.



Micromachines 2021, 12, 292 15 of 16

References
1. Gartner Identifies Top 10 Strategic IoT Technologies and Trends. Available online: https://www.gartner.com/en/newsroom/

press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends (accessed on 9 March 2021).
2. Shakhsheer, Y.; Zhang, Y.; Otis, B.; Calhoun, B.H. A custom processor for node and power management of a battery-less body

sensor node in 130 nm CMOS. In Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, San Jose, CA, USA,
9–12 September 2012; pp. 1–4. [CrossRef]

3. Su, F.; Chen, W.; Xia, L.; Lo, C.; Tang, T.; Wang, Z.; Hsu, K.; Cheng, M.; Li, J.; Xie, Y.; et al. A 462GOPs/J RRAM-based nonvolatile
intelligent processor for energy harvesting IoE system featuring nonvolatile logics and processing-in-memory. In Proceedings of
the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; pp. T260–T261. [CrossRef]

4. Beucher, N.; Belanger, N.; Savaria, Y.; Bois, G. A Methodology to Evaluate the Energy Efficiency of Application Specific
Processors. In Proceedings of the 2007 14th IEEE International Conference on Electronics, Circuits and Systems, Marrakech,
Morocco, 11–14 December 2007; pp. 983–986. [CrossRef]

5. Rodrigues, R.; Annamalai, A.; Koren, I.; Kundu, S. A Study on the Use of Performance Counters to Estimate Power in
Microprocessors. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 882–886. [CrossRef]

6. Fan, Y.; Wu, J.; Wang, S. Efficient energy exploration for embedded systems. In Proceedings of the 18th IEEE International
Symposium on Consumer Electronics (ISCE 2014), Jeju, Korea, 22–25 June 2014; pp. 1–2. [CrossRef]

7. Haque, M.E.; He, Y.; Elnikety, S.; Nguyen, T.D.; Bianchini, R.; McKinley, K.S. Exploiting Heterogeneity for Tail Latency and
Energy Efficiency. In Proceedings of the 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, 14–17 October 2017; pp. 625–638.

8. ARM Limited. Available online: https://www.arm.com/products/processors/cortex-m (accessed on 9 March 2021).
9. Rossi, D.; Conti, F.; Marongiu, A.; Pullini, A.; Loi, I.; Gautschi, M.; Tagliavini, G.; Capotondi, A.; Flatresse, P.; Benini, L. PULP: A

parallel ultra low power platform for next generation IoT applications. In Proceedings of the 2015 IEEE Hot Chips 27 Symposium
(HCS), Cupertino, CA, USA, 22–25 August 2015; pp. 1–39. [CrossRef]

10. Gala, N.; Menon, A.; Bodduna, R.; Madhusudan, G.S.; Kamakoti, V. SHAKTI Processors: An Open-Source Hardware Initiative.
In Proceedings of the 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded
Systems (VLSID), Kolkata, India, 4–8 January 2016; pp. 7–8. [CrossRef]

11. Zhang, S.; Wright, A.; Bourgeat, T.; Arvind, A. Composable Building Blocks to Open up Processor Design. In Proceedings of the
2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Fukuoka, Japan, 20–24 October 2018;
pp. 68–81. [CrossRef]

12. Hoang, T.T.; Duran, C.; Nguyen, K.D.; Dang, T.K.; Nhu, Q.N.Q.; Than, P.H.; Tran, X.T.; Le, D.H.; Tsukamoto, A.; Suzaki, K.; et al.
Low-power high-performance 32-bit RISC-V microcontroller on 65-nm silicon-on-thin-BOX (SOTB). IEICE Electron. Express 2020,
17, 20200282. [CrossRef]

13. Rovinski, A.; Zhao, C.; Al-Hawaj, K.; Gao, P.; Xie, S.; Torng, C.; Davidson, S.; Amarnath, A.; Vega, L.; Veluri, B.; et al. A 1.4 GHz
695 Giga Risc-V Inst/s 496-Core Manycore Processor With Mesh On-Chip Network and an All-Digital Synthesized PLL in 16nm
CMOS. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June 2019; pp. C30–C31. [CrossRef]

14. Matthews, E.; Shannon, L. TAIGA: A new RISC-V soft-processor framework enabling high performance CPU architectural
features. In Proceedings of the 2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent,
Belgium, 4–8 September 2017; pp. 1–4. [CrossRef]

15. Gautschi, M.; Schiavone, P.D.; Traber, A.; Loi, I.; Pullini, A.; Rossi, D.; Flamand, E.; Gürkaynak, F.K.; Benini, L. Near-Threshold
RISC-V Core With DSP Extensions for Scalable IoT Endpoint Devices. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017,
25, 2700–2713. [CrossRef]

16. Flamand, E.; Rossi, D.; Conti, F.; Loi, I.; Pullini, A.; Rotenberg, F.; Benini, L. GAP-8: A RISC-V SoC for AI at the Edge of the IoT.
In Proceedings of the 2018 IEEE 29th International Conference on Application-specific Systems, Architectures and Processors
(ASAP), Milan, Italy, 10–12 July 2018; pp. 1–4. [CrossRef]

17. Eggimann, M.; Mach, S.; Magno, M.; Benini, L. A RISC-V Based Open Hardware Platform for Always-On Wearable Smart
Sensing. In Proceedings of the 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), Otranto,
Italy, 13–14 June 2019; pp. 169–174. [CrossRef]

18. Mach, S.; Schuiki, F.; Zaruba, F.; Benini, L. A 0.80pJ/flop, 1.24Tflop/sW 8-to-64 bit Transprecision Floating-Point Unit for a 64 bit
RISC-V Processor in 22nm FD-SOI. In Proceedings of the 2019 IFIP/IEEE 27th International Conference on Very Large Scale
Integration (VLSI-SoC), Cusco, Peru, 6–9 October 2019; pp. 95–98. [CrossRef]

19. Zaruba, F.; Benini, L. The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz
64-Bit RISC-V Core in 22-nm FDSOI Technology. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 2629–2640. [CrossRef]

20. ARM Cortex-M0+. Available online: https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0-plus (accessed
on 9 March 2021).

21. ARM Cortex-M3. Available online: https://developer.arm.com/ip-products/processors/cortex-m/cortex-m3 (accessed on 9
March 2021).

22. ARM Cortex-M4. Available online: https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4 (accessed on 9
March 2021).

https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
http://doi.org/10.1109/CICC.2012.6330705
http://dx.doi.org/10.23919/VLSIT.2017.7998149
http://dx.doi.org/10.1109/ICECS.2007.4511157
http://dx.doi.org/10.1109/TCSII.2013.2285966
http://dx.doi.org/10.1109/ISCE.2014.6884511
https://www.arm.com/products/processors/cortex-m
http://dx.doi.org/10.1109/HOTCHIPS.2015.7477325
http://dx.doi.org/10.1109/VLSID.2016.130
http://dx.doi.org/10.1109/MICRO.2018.00015
http://dx.doi.org/10.1587/elex.17.20200282
http://dx.doi.org/10.23919/VLSIC.2019.8778031
http://dx.doi.org/10.23919/FPL.2017.8056766
http://dx.doi.org/10.1109/TVLSI.2017.2654506
http://dx.doi.org/10.1109/ASAP.2018.8445101
http://dx.doi.org/10.1109/IWASI.2019.8791364
http://dx.doi.org/10.1109/VLSI-SoC.2019.8920307
http://dx.doi.org/10.1109/TVLSI.2019.2926114
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0-plus
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m3
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4


Micromachines 2021, 12, 292 16 of 16

23. ARM Cortex-M7. Available online: https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7 (accessed on 9
March 2021).

24. Chang, J.; Pedram, M. Energy minimization using multiple supply voltages. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1997,
5, 436–443. [CrossRef]

25. Usami, K.; Igarashi, M.; Minami, F.; Ishikawa, T.; Kanzawa, M.; Ichida, M.; Nogami, K. Automated low-power technique
exploiting multiple supply voltages applied to a media processor. IEEE J. Solid-State Circuits 1998, 33, 463–472. [CrossRef]

26. Horowitz, M. 1.1 Computing’s energy problem (and what we can do about it). In Proceedings of the 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 10–14.

27. Balakrishnan, S.; Rajwar, R.; Upton, M.; Lai, K. The impact of performance asymmetry in emerging multicore architectures.
In Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05), Madison, WI, USA, 4–8 June 2005;
pp. 506–517. [CrossRef]

28. Kumar, R.; Farkas, K.I.; Jouppi, N.P.; Ranganathan, P.; Tullsen, D.M. Single-ISA heterogeneous multi-core architectures:
The potential for processor power reduction. In Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003, MICRO-36, San Diego, CA, USA, 3–5 December 2003; pp. 81–92. [CrossRef]

29. Kumar, R.; Tullsen, D.M.; Ranganathan, P.; Jouppi, N.P.; Farkas, K.I. Single-ISA heterogeneous multi-core architectures for
multithreaded workload performance. In Proceedings of the 31st Annual International Symposium on Computer Architecture,
Munich, Germany, 23 June 2004; pp. 64–75. [CrossRef]

30. Kumar, R.; Tullsen, D.M.; Jouppi, N.P. Core architecture optimization for heterogeneous chip multiprocessors. In Proceed-
ings of the 2006 International Conference on Parallel Architectures and Compilation Techniques (PACT), Seattle, WA, USA,
16–20 September 2006; pp. 23–32.

31. Kuroda, T.; Suzuki, K.; Mita, S.; Fujita, T.; Yamane, F.; Sano, F.; Chiba, A.; Watanabe, Y.; Matsuda, K.; Maeda, T.; et al. Variable
supply-voltage scheme for low-power high-speed CMOS digital design. IEEE J. Solid-State Circuits 1998, 33, 454–462. [CrossRef]

32. Agwa, S.; Yahya, E.; Ismail, Y. Power efficient AES core for IoT constrained devices implemented in 130 nm CMOS. In Proceedings
of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4.
[CrossRef]

33. Kim, W.; Gupta, M.S.; Wei, G.; Brooks, D. System level analysis of fast, per-core DVFS using on-chip switching regulators.
In Proceedings of the 2008 IEEE 14th International Symposium on High Performance Computer Architecture, Salt Lake City, UT,
USA, 16–20 February 2008; pp. 123–134.

34. Burd, T.D.; Pering, T.A.; Stratakos, A.J.; Brodersen, R.W. A dynamic voltage scaled microprocessor system. IEEE J. Solid-State
Circuits 2000, 35, 1571–1580. [CrossRef]

35. Annavaram, M.; Grochowski, E.; Shen, J. Mitigating Amdahl’s law through EPI throttling. In Proceedings of the 32nd
International Symposium on Computer Architecture (ISCA’05), Madison, WI, USA, 4–8 June 2005; pp. 298–309. [CrossRef]

36. Vasilakis, E.; Sourdis, I.; Papaefstathiou, V.; Psathakis, A.; Katevenis, M.G.H. Modeling energy-performance tradeoffs in ARM
big.LITTLE architectures. In Proceedings of the 2017 27th International Symposium on Power and Timing Modeling, Optimization
and Simulation (PATMOS), Thessaloniki, Greece, 25–27 September 2017; pp. 1–8. [CrossRef]

37. Sayadi, H.; Pathak, D.; Savidis, I.; Homayoun, H. Power conversion efficiency-aware mapping of multithreaded applications on
heterogeneous architectures: A comprehensive parameter tuning. In Proceedings of the 2018 23rd Asia and South Pacific Design
Automation Conference (ASP-DAC), Jeju, Korea, 22–25 January 2018; pp. 70–75. [CrossRef]

38. Chronaki, K.; Moretó, M.; Casas, M.; Rico, A.; Badia, R.M.; Ayguadé, E.; Valero, M. On the maturity of parallel applications for
asymmetric multi-core processors. J. Parallel Distrib. Comput. 2019, 127, 105–115. [CrossRef]

39. Edun, A.; Vazquez, R.; Gordon-Ross, A.; Stitt, G. Dynamic Scheduling on Heterogeneous Multicores. In Proceedings of the 2019
Design, Automation Test in Europe Conference Exhibition (DATE), Florence, Italy, 25–29 March 2019; pp. 1685–1690. [CrossRef]

40. Lukefahr, A.; Padmanabha, S.; Das, R.; Sleiman, F.M.; Dreslinski, R.G.; Wenisch, T.F.; Mahlke, S. Composite Cores: Pushing
Heterogeneity Into a Core. In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture,
Vancouver, BC, Canada, 1–5 December 2012; pp. 317–328.

41. Srinivasan, S.; Kurella, N.; Koren, I.; Kundu, S. Exploring Heterogeneity within a Core for Improved Power Efficiency.
IEEE Trans. Parallel Distrib. Syst. 2016, 27, 1057–1069. [CrossRef]

42. Davide Schiavone, P.; Conti, F.; Rossi, D.; Gautschi, M.; Pullini, A.; Flamand, E.; Benini, L. Slow and steady wins the race? A
comparison of ultra-low-power RISC-V cores for Internet-of-Things applications. In Proceedings of the 2017 27th International
Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), Thessaloniki, Greece, 25–27 September
2017; pp. 1–8.

43. Embench: A Modern Embedded Benchmark Suite. Available online: https://www.embench.org/ (accessed on 9 March 2021).
44. Arm Ltd. Arm Cortex-M0+ Processor Datasheet; Arm Ltd.: San Jose, CA, USA, 2020.
45. Arm Ltd. Arm Cortex-M4 Processor Datasheet; Arm Ltd.: San Jose, CA, USA, 2020.

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
http://dx.doi.org/10.1109/92.645070
http://dx.doi.org/10.1109/4.661212
http://dx.doi.org/10.1109/ISCA.2005.51
http://dx.doi.org/10.1109/MICRO.2003.1253185
http://dx.doi.org/10.1109/ISCA.2004.1310764
http://dx.doi.org/10.1109/4.661211
http://dx.doi.org/10.1109/ISCAS.2017.8050361
http://dx.doi.org/10.1109/4.881202
http://dx.doi.org/10.1109/ISCA.2005.36
http://dx.doi.org/10.1109/PATMOS.2017.8106950
http://dx.doi.org/10.1109/ASPDAC.2018.8297285
http://dx.doi.org/10.1016/j.jpdc.2019.01.007
http://dx.doi.org/10.23919/DATE.2019.8714804
http://dx.doi.org/10.1109/TPDS.2015.2430861
https://www.embench.org/

	Introduction
	Related Work
	Dynamic Voltage and Frequency Scaling (DVFS)
	Heterogeneous Multi-Core Processors
	Fine-Grained Heterogeneous Processors

	Power Consumption in Embedded Processors
	Architecture and Implementation
	Multiple Operating Modes
	Variable Branch Predictor
	Variable Pipeline Architecture
	Software-Based Mode Switching

	Experiment Results and Discussion
	Conclusions
	References

