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Abstract: The excessive pesticide residues in cereals, fruit and vegetables is a big threat to human
health, and it is necessary to develop a portable, low-cost and high-precision pesticide residue
detection scheme to replace the large-scale laboratory testing equipment for rapid detection of
pesticide residues. In this study, a colorimetric device for rapid detection of organophosphorus
pesticide residues with high precision based on a microfluidic mixer chip was proposed. The
microchannel structure with high mixing efficiency was determined by fluid dynamics simulation,
while the corresponding microfluidic mixer chip was designed. The microfluidic mixer chip was
prepared by a self-developed liquid crystal display (LCD) mask photo-curing machine. The influence
of printing parameters on the accuracy of the prepared chip was investigated. The light source with
the optimal wavelength of the device was determined by absorption spectrum measurement, and the
relationship between the liquid reservoir depth and detection limit was studied by experiments. The
correspondence between pesticide concentration and induced voltage was derived. The minimum
detection concentration of the device could reach 0.045 mg·L−1 and the average detection time
was reduced to 60 s. The results provide a theoretical and experimental basis for portable and
high-precision detection of pesticide residues.

Keywords: colorimetric device; organophosphorus pesticide residues; microfluidics; LCD mask
photo-curing

1. Introduction

Organophosphorus pesticides are kinds of organic compound containing phospho-
rus, which is widely used in agricultural production, household health, garden manage-
ment and other fields. Organophosphorus pesticides can effectively inhibit the activity of
cholinesterase in the nervous system of animals and human beings, so that the acetylcholine
decomposition process is suppressed, resulting in the accumulation of acetylcholine in
nerve endings [1–3]. In recent years, the extensive use of organophosphorus pesticides
has caused pollution in groundwater, surface water and soil, and its residues in food
seriously threaten human health. The Codex Alimentarius Commission (CAC) has set strict
standards of pesticide residues in food. For example, the maximum content of glufosinate
(a typical organophosphorus pesticide) in most fruit and vegetables is 0.05 mg·L−1 [4–6].
At present, the detection methods of organophosphorus pesticide residues mainly include
the precision instrumental analysis method and rapid detection method. The precision
instrumental analysis method has superiority of high sensitivity and high selectivity, how-
ever, the shortcomings of a large volume, high cost, time-consuming duration and tedious
pretreatment has limited the application of this method. Rapid detection methods mainly
includes the biological detection method, immune method, enzyme inhibition method and
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biosensor method [7,8]. The enzyme inhibition method is based on the principle of col-
orimetry. The organophosphorus pesticides can inhibit the activity of acetylcholinesterase
(AChE), slow down or stop the decomposition of acetylcholine. Therefore, acetylcholine,
AChE and a chromogenic agent can be mixed to detect the sample concentration of pes-
ticide residues. The presence of organophosphorus pesticides can be determined by the
change of color or the change of physicochemical signal of enzyme reactions with a specific
compound [9]. The rapid detection instrument and colorimetric instrument developed
based on this principle has been able to realize the preliminary screening of pesticide
residues in agricultural products. This method is currently facing many challenges, such
as various accessories, inconvenience to carry, cumbersome operation, a lengthy process,
poor accuracy, low sensitivity and repeatability. It is necessary to find a portable, low-
cost and high-precision pesticide residue detection scheme to detect the concentration of
organophosphorus pesticides.

Microfluidic chip technology integrates the processes of sample reaction, separation
and detection involved in the fields of chemistry, biology and medicine into one chip, which
makes the analysis equipment miniaturized and automated [10,11]. Jia [12] developed an
impedance immunosensor based on a microfluidic chip for rapid detection of pesticide
residues in vegetable samples. The microfluidic chip consisted of a detection microchamber
inlet and outlet microchannel. A gold interdigitated array microelectrode (IDAM) was
embedded in the microchannel of the microfluidic chip, which can be used for direct
detection of practical samples. The research confirmed the value of microfluidic chips in
pesticide detection, but the preparation of an immunosensor is difficult, and the detection
time can be further compressed. Deng [13] developed a rapid semi-quantification detection
method of trichlorfon residues by a microfluidic paper-based phosphorus-detection chip,
the chip fabrication process was optimized. The author emphasizes the low cost of the
chip, however, the durability of paper-based microfluidic chips was not investigated.
Asghar [14] developed an innovative immuno-based microfluidic device that can rapidly
detect and capture Candida albicans from phosphate-buffered saline (PBS) and human whole
blood. The microchip technology showed an efficient capture of Candida albicans in PBS
with an efficiency of 61–78% at various concentrations ranging from 10 to 105 colony-
forming units per milliliter (cfu·mL−1). The mixing efficiency of microfluidic chip is also
an important factor of pesticide detection device. Through reasonable structure design, the
chip channel with high mixing efficiency at low Reynolds number can be obtained [15].
Fan [16] developed a rapid microfluidic mixer utilizing sharp corner structures, it can be
potentially used in the fluid mixing in variety of lab-on-a-chip applications. The preparation
method of the chip also needs to be considered. Plevniak [17] developed a low-cost,
smartphone-based, 3D-printed microfluidic chip system for rapid diagnosis of anemia
in 60 s, and a 3D-printed chip with a 5 gel lens on camera was assembled for capturing
and analyzing color-scale results from the chip view-window. The color-scale image
capture and analysis app written in-house was developed to extract RGB (red, green, and
blue) peak values in the region of interest. The 3D printing technology greatly reduces
the cost of microfluidic chip preparation, while the optical observation technology can
achieve semi-quantitative blood sample observation. However, it is difficult to realize
accurate quantitative analysis for samples with no significant color change. Previous studies
have confirmed the advantages of microfluidic chips in the field of detection, especially
in improving the mixing efficiency and reducing the consumption of reagents [18,19].
Meanwhile, the photoelectric detection method has higher detection accuracy and lower
detection concentration than the image method.

Based on the above analysis, a microfluidic mixer chip which can realize efficient and
quick mixing was developed. The chip was successfully fabricated by a self-development
LCD mask photo-curing machine, and the corresponding colorimetric device was devel-
oped to realize the rapid and accurate detection of organophosphorus pesticides. Firstly,
two kinds of mixing microchannel were designed, the mixing efficiency was evaluated by
simulation, and the optimal microchannel structure was confirmed. Secondly, the microflu-
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idic mixer chip was fabricated by a self-development LCD mask photo-curing machine, the
influence of printing parameters on the microchannel accuracy was investigated. Finally,
a portable colorimetric device was developed, the corresponding relationship between
pesticide concentration and induced voltage was constructed, and quantitative detection
of organophosphorus pesticides was realized. The results indicated that the detection
efficiency was increased and the detection sample was reduced.

2. Experimental
2.1. Basic Theory

In order to achieve high-precision detection of organophosphorus pesticides, related
theories involved in enzyme reaction, microfluidic chip design theory, mixing index anal-
ysis and laminar flow simulation were adopted. In addition, the calculation method of
detection limit was developed to evaluate the performance of the colorimetric device. The
theoretical contents related to the research are listed as follows.

The color reaction was based on the Ellman method [20]. Under the catalysis of
acetylcholinesterase (AChE), the thioacetylcholine iodide was hydrolyzed into thiocholine
and acetic acid. The thiocholine reacted with 5, 5′-dithiobis (2-nitrobenzoic acid) to form a
yellow product, as shown in Figure 1. The higher the AChE activity, the darker the color of
the reagent after reaction. By contrast, AChE activity was inhibited and the color of reagent
was lighter.
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Figure 1. The principle of color reaction.

The diffusion coefficient D can be defined as [21],

D=
kT

6πµr
(1)

where k denotes the Boltzmann constant, T gives the absolute temperature, µ is dynamic
viscosity and r is molecular radius. The diffusion coefficient is inversely proportional to
the dynamic viscosity of the solution at a certain temperature.

The cross-section structure of the channel fabricated on the chip was rectangular, and
the expression of Reynolds number can be expressed as follows,

Re =
4ρAv

pµ
(2)

where A is the interface area, ρ is the liquid density, p is the wetting perimeter length, and
v is the flow rate.

The relationship between transmitted light intensity I and incident light intensity I0
can be expressed by the Lambert law,

I = I010−α·l (3)

where l is the path length, α is the absorption coefficient describing the absorption capacity
of a substance to light.
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When the incident light is definite, the transmitted light is proportional to the concen-
tration of the substance, and the above principle can be used to detect the concentration
of pesticides.

The detection limit of the colorimetric device xLOD is determined by the following
formula [22–24],

xLOD =
2tsy

nt2sy2 − Ar2 × (tsy ∑ xi −
√

A2r2

k
+ Ar2 ∑ xi

2 − n
A
k

t2sy
2 − At2sy

2) (4)

where t is the Student’s t-function parameter, usually assumed to be t = 3 for conve-
nience [22], sy is the standard deviation of the measurement, n is the tested number of
concentrations, k designates the number of repeat measurements, r is the sensitivity as the
slope of a linear fit, xi represents the pesticide concentration of the i-th experiment, the
determinant in the denominator A is given by:

A = n ∑ xi
2 − (∑ xi

2)
2

(5)

The Navier–Stokes equation [25] describing the behavior of incompressible fluid
is used to simulate the mass and momentum transfer of fluid, which can be expressed
as follows,

∂

∂xj

(
ρuj
)
= 0 (6)

∂

∂xi

(
ρuiuj

)
− ∂P

∂xi
+

∂τij

∂xi
(7)

where ρ and uj are density and velocity vector, respectively, u is velocity vector of fluid, P
is pressure on fluid, τij is stress tensor, respectively.

The mass flux is given by diffusion and convection, and the resulting mass balance is,

∇·
(
−D∇c + c

→
u
)
= 0 (8)

where c gives the concentration.
In substances involved in color reactions, the AChE has the largest molecular size and

the minimum diffusion rate, so the standard deviation of the AChE concentration on the
cross-section at different positions of the microchannel was used to measure the uniformity
of the fluid distribution, as well as the mixing efficiency of the chip [26].

2.2. Materials and Methods

The chromogenic agent (0.75 g·L−1) was prepared by mixing 5,5-dithio-bis-2-nitro ben-
zoic acid (DTNB) (Shanghai Chemical Reagent Co., Ltd. Shanghai, China) with phosphoric
acid buffer (0.1 mol·L−1). The concentration of AChE (Merck Life Science Technology Co.,
Ltd., Darmstadt, Germany) solution was 150 g·L−1. Different concentrations of glufosinate-
ammonium (Lear Chemical Co., Ltd., Shenzhen, China) standard solutions were prepared
to test the inhibition on AChE.

A transparent photosensitive resin (Shenzhen Novartis Intelligent Technology Co.,
Ltd., Shenzhen, China) was used to fabricate microfluidic mixer chip, the parameters of
photosensitive resin after ultraviolet curing is shown in Table 1.
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Table 1. Photosensitive resin parameters after ultraviolet curing.

Parameter Value

Density (g·cm−3) 1.05–1.25
Tensile modulus (GPa) 1.8–2.8
Tensile strength (MPa) 64–72

Bending modulus (GPa) 1.8–2.3
Heat distortion temperature (°C) 44–47

Elongation at break (%) 8–13

2.3. Characterization and Instruments

A self-developed LCD mask photo-curing machine was adopted for microfluidic
mixer chip fabrication. The device adopted 405 nm ultraviolet light as the curing light
source and the LCD panel as the selective light transmission plate to realize the curing
of photosensitive resin for complex parts. Figure 2 is the schematic diagram of the LCD
mask photo-curing machine: the machine includes platform, Z axis, material trough and
LCD panel, and the incident position of the light source can be controlled by the LCD
panel [27]. The shape of cured resin parts was observed by the laser microscope (VHX-1000,
KEYENCE Co., Ltd., Osaka, Japan) with a display resolution of height 0.005 µm and width
0.01 µm.
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Figure 2. Schematic diagram of self-developed liquid crystal display (LCD) mask photo-curing
machine.

The self-developed colorimetric device was adopted to detect the concentration of
glufosinate-ammonium, a typical organophosphorus pesticide, the equipment included a
light-emitting diode (LED) light source (Jinxin Photoelectric Technology Co., Ltd., Guangzhou,
China), precision current source (Shenzhen wave particle Technology Co., Ltd., Shenzhen,
China), precision voltage source (Shenzhen wave particle Technology Co., Ltd., Shenzhen,
China), silicon photodetector (Shanghai Bose Intelligent Technology Co., Ltd., Shanghai,
China) and Bluetooth voltage detection module. The schematic diagram of the equipment
is shown in Figure 3a. Figure 3b is the colorimetric device after assembly: the LED light
source is driven by a precision current source to ensure the stability of light intensity, and
the customized narrow band filter with a diameter of 10 mm (Beijing Yongxing perception
Instrument Co., Ltd., Beijing, China) was adopted to ensure that light of 385 nm to 430 nm
wavelength could pass through, as shown in Figure 3c. The induced voltage of the silicon
photodetector varies according to the intensity of the transmitted light, the induced voltage
can be received by Bluetooth module and stored in the self-developed mobile client, and
the resolution of silicon photodetector is 0.01 V, as shown in Figure 3d.



Micromachines 2021, 12, 290 6 of 13
Micromachines 2021, 12, 290 6 of 13 
 

 

microfluidic mixer chip

precision 
current source

LED light source

precision voltage source silicon 
photodetector

Bluetooth voltage 
detection module

mobile 
receiver

(a)

(b) (c)

narrow band filter

(d)

200 300 400 500 600 700 800
0

20

40

60

80

100

T
ra

n
sm

it
ta

n
ce

 (
T

%
)

Wavelength (nm)
 

Figure 3. Schematic diagram of colorimetric device (a), colorimetric device after assembly (b), the 

absorption spectrogram of the narrow band filter (c), and self-developed mobile client (d). 

In the experiment, the two solvents were pushed into the microfluidic chip channel 

through the syringes driven by a micro injection pump (XFP02-B, Suzhou iFLYTEK 

Scientific Instrument Co., Ltd., Suzhou, China), the liquid flow rate was controlled by 

micro injection pump. The ultraviolet-visible spectrophotometer (UV-2250, Shimadzu 

Instrument Equipment Co., Ltd., Kyoto, Japan) was adopted to obtain the absorption 

spectra of the solution after reaction. The three-dimensional structure of the chip was 

designed by SOLIDWORKS (Dassault Systèmes SOLIDWORKS Corp, Massachusetts, 

USA) software. The multi-physics coupling analysis software COMSOL Multiphysics 5.5 

(COMSOL Inc., Stockholm, Sweden) was applied to simulate the mixing process. The 

free quadrilateral mesh was adopted in the model, and the wall condition was no sliding, 

the fully developed flow was applied in the fluid inflow model, and the inlet pressure 

was 0. The MATLAB 2018 (Mathworks Inc., Natick, Massachusetts, USA) software was 

used to process the simulation images to obtain the concentration standard deviation on 

the chip channel section. 

3. Results and Discussion 

3.1. Influence of Microchannel Shape on Mixing Efficiency 

Among the substances involved in the color reaction, the molecular size of AChE is 

the largest, while the diffusion coefficient is the smallest, so the purpose of microchip 

channel design is to realize the rapid and complete mixing of AChE. The length, width 

and height of AChE were 98 nm, 79 nm and 3 nm, respectively [28]. The physical 

parameters of the mixed liquid are shown in Table 2. The diffusion coefficient of AChE 

can be obtained by substituting the parameters into Equation (1), and the calculated 

result is 0.22 × 10−11 [29]. In addition, the flow rate of the microfluidic mixer chip should be 

controlled at a low speed to ensure complete reaction after mixing. Therefore, the aim of 

microfluidic chip design is to realize the efficient mixing of AChE at low Reynolds 

number (10–82). The main principle is to make the fluid stretch, compress, fold and 

Figure 3. Schematic diagram of colorimetric device (a), colorimetric device after assembly (b), the absorption spectrogram
of the narrow band filter (c), and self-developed mobile client (d).

In the experiment, the two solvents were pushed into the microfluidic chip channel
through the syringes driven by a micro injection pump (XFP02-B, Suzhou iFLYTEK Sci-
entific Instrument Co., Ltd., Suzhou, China), the liquid flow rate was controlled by micro
injection pump. The ultraviolet-visible spectrophotometer (UV-2250, Shimadzu Instru-
ment Equipment Co., Ltd., Kyoto, Japan) was adopted to obtain the absorption spectra of
the solution after reaction. The three-dimensional structure of the chip was designed by
SOLIDWORKS (Dassault Systèmes SOLIDWORKS Corp, Massachusetts, USA) software.
The multi-physics coupling analysis software COMSOL Multiphysics 5.5 (COMSOL Inc.,
Stockholm, Sweden) was applied to simulate the mixing process. The free quadrilateral
mesh was adopted in the model, and the wall condition was no sliding, the fully developed
flow was applied in the fluid inflow model, and the inlet pressure was 0. The MATLAB
2018 (Mathworks Inc., Natick, MA, USA) software was used to process the simulation
images to obtain the concentration standard deviation on the chip channel section.

3. Results and Discussion
3.1. Influence of Microchannel Shape on Mixing Efficiency

Among the substances involved in the color reaction, the molecular size of AChE
is the largest, while the diffusion coefficient is the smallest, so the purpose of microchip
channel design is to realize the rapid and complete mixing of AChE. The length, width and
height of AChE were 98 nm, 79 nm and 3 nm, respectively [28]. The physical parameters of
the mixed liquid are shown in Table 2. The diffusion coefficient of AChE can be obtained by
substituting the parameters into Equation (1), and the calculated result is 0.22 × 10−11 [29].
In addition, the flow rate of the microfluidic mixer chip should be controlled at a low speed
to ensure complete reaction after mixing. Therefore, the aim of microfluidic chip design is
to realize the efficient mixing of AChE at low Reynolds number (10–82). The main principle
is to make the fluid stretch, compress, fold and surround in the channel to realize the
rapid mixing of the liquid involved in the reaction, which can be achieved by changing the
channel width and bending the channel shape. The change of the channel width makes the
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liquid flow perpendicular to the fluid flow direction, and the bending of the microchannel
makes the pressure difference inside the liquid. In this case, the method of channel bending
and width variation were proposed to improve the mixing efficiency [30,31]. Based on the
above principles, two types of microchannel structure were designed, as shown in Figure 4.
The channel volumes of the two types of structure are kept consistent to ensure the same
mixing time.

Table 2. Physical parameters of mixed liquid.

Parameter Value

Boltzmann constant (J·K−1) 1.38 × 10−23

Absolute temperature (K) 293.15
Dynamic viscosity (Pa·s) 10 × 10−3

Water density (Kg·m−3) 1000
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The mixing process of the designed two kinds of microchannels were simulated, and
the mixing index of AChE was compared, as shown in Figure 5a; the simulation results
demonstrate that the mixing efficiency of channel structure (b) is significantly higher than
that of channel structure (a). Meanwhile, the increase of channel flow has no significant
effect on the improvement of mixing efficiency. By contrast, increasing the flow rate will
reduce the mixing reaction time of the solution in the channel. Based on the above analysis,
the flow rate of 50 µL·min−1 was selected in the experiment and the corresponding mixing
time was 30 s; the simulated concentration distribution is shown in Figure 5b.
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Figure 5. The simulation result of mixing index of two kinds of channels (a) and the simulated concentration distribution at
the speed of 50 µL·min−1 (b).

Based on the above analysis, a microfluidic mixer chip was designed, as shown in
Figure 6, and contained two liquid inlets, a mixing channel, a liquid reservoir and an outlet.
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During the detection, the mixture of acetylcholine and the tested sample was injected into
inlet 1, and AChE and chromogenic agent were injected into inlet 2.
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Figure 6. The diagram of the designed microfluidic mixer chip.

3.2. Influence of Printing Parameters on Chip Fabrication Accuracy

The curing roughness and shape accuracy of the LCD mask photo-curing machine
was investigated before preparing the microfluidic mixer chip. The relationship between
UV exposure time and surface roughness of cured parts is shown in Figure 7. The suitable
exposure time is between 2–6 s. When the exposure time is 6 s, the surface roughness
decreases to the minimum of 0.17 µm.
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Figure 7. Relationship between ultraviolet (UV) exposure time and surface roughness.

Due to the small size of the rectangular microgroove, there will certain deviation
between the designed size and the actual preparation size during the curing process. In
order to accurately prepare the rectangular microgroove with the target size, the influence of
single layer printing thickness on channel size was investigated. A microchannel structure
with a height and width of 300 µm was designed, the effect of printing layer thickness
on dimensional accuracy was analyzed, and the exposure time is 6 s. The single layer
curing thickness with minimum curing error appears at 30 µm, as shown in Figure 8a, the
cross-section shape of the cured microchannel is shown in Figure 8b.

According to the above research, a rectangular cross-section microfluidic chip was
prepared. The photograph of the fabricated microfluidic chip is shown in Figure 9a, The
scanning electron microscope (SEM) photograph shows that the obtained structure has
good size consistency, as shown in Figure 9b.
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Figure 9. The microfluidic mixer chip fabricated by liquid crystal display (LCD) mask UV curing
method: (a) overall structure and (b) scanning electron microscope (SEM) photograph of microchan-
nel structure.

The chip was directly sealed with high transparency semi-solid acrylic material. The
adhesive force between the semi-solid acrylic and the cured resin is large, and it will lose
the bonding ability when contacting with water. In addition, the contact angle between
acrylic and water is 57.5◦, which is close to the cured resin (53.3◦).

3.3. Relationshiop between Pesticide Concentration and Detection Voltage

The absorption spectrum measurement results for 0, 1 and 2 mg·L−1 concentrations
of organophosphorus pesticide are shown in Figure 10. Theoretically, the sample without
pesticide has the deepest color, corresponding to the highest light absorption value. In this
test, whether the application of pesticide will change the absorption wavelength of the
sample was observed. Therefore, pure water was selected as the contrast sample during
the test. The experimental results indicated that the maximum absorption wavelength is
407 nm, it can be determined that the largest voltage difference would be obtained with
407 nm light source. In addition, the application of pesticides inhibited the color reaction
and reduced the absorption peak.
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Figure 10. Absorption spectrum measurement results for 0, 1 and 2 mg·L−1 concentrations.

The microfluidic chips with liquid reservoir depth of 540 µm, 720 µm, 900 µm, 1080 µm,
and 1260 µm were separately prepared. The voltage difference between the pesticide
concentration of 0 and 2 mg·L−1. The influence of liquid reservoir depth on voltage
difference is shown in Figure 11, the voltage difference increases linearly with the liquid
reservoir depth, the test error decreases with the liquid reservoir depth.
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Figure 11. Influence of liquid reservoir depth on voltage difference.

Based on Equation (4), the detection limit of the device at different liquid reservoir
depths was calculated, and each test was repeated 10 times; the test results are shown in
Figure 12. The detection limit of the device decreases with the increasing of liquid reservoir
depth. When the depth is greater than 900 µm, the decrease trend becomes slow. The
reason is that the injection sample easily produces micro bubbles in the filling process when
the liquid reservoir depth is too large, which affects the stability of the device. In addition,
the injection time and the required sample volume increase with the liquid reservoir depth.
After comprehensive analysis, the microfluidic chip with a liquid reservoir depth of 900 µm
was selected as the mixing microfluidic chip of the device.

The relationship between induced voltage and pesticide concentration is shown in
Figure 13. The test at each standard concentration was repeated 3 times, and the average
values of each test were used for linear fitting. The fitted curve indicated that with the
increase of glufosinate-ammonium content, the AChE activity was gradually suppressed,
and the color reaction was inhibited, resulting in the increase of induced voltage. The linear
relationship can be expressed as y = 2.27 + 0.801x, the linearity expression R2 can reach
0.985, while the detection limit is 0.045 mg·L−1.
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the sum of mixing time and reaction time, which can be reduced to 60 s.
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Based on the above analysis, the accumulation time required for liquid mixing and
reaction is 60 s at a flow rate of 50 µL·min−1 with a detection sample content of 25.2 µL.
Compared with the existing pesticide residue detector, the detection time is reduced
from more than 10 min to one minute, and the required sample content is very low.
In addition, the detection limit (0.045 mg·L−1) is lower than the traditional pesticide
detector (0.05 mg·L−1), which can meet the demand of pesticide residue detection with
high precision [32,33]. However, all the experiments in this study were carried out at room
temperature. In the follow-up study, an added temperature control function was proposed
to further improve the device’s detection efficiency.
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4. Conclusions

In this study, a colorimetric device for rapid detection of organophosphorus pesticide
residues with high precision based on a microfluidic mixer chip was proposed. The detec-
tion system includes a microfluidic mixer chip and a silicon photodetector. The microfluidic
simulation indicated that the microchannel with the characteristics of width variation and
shape bending had better mixing efficiency. The optimal preparation parameters of the
LCD mask photo-curing process were that the exposure time was 6 s and single layer
thickness was 30 µm. The reaction liquid had the maximum absorption at 407 nm, and
there was a linear relationship between pesticide concentration and induced voltage. The
linearity expression R2 could reach 0.985, the minimum detection concentration of the
system reached 0.045 mg·L−1 and the average detection time reduced to 60 s. The results
provide a theoretical and experimental basis for portable and high-precision detection of
pesticide residues.
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