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Abstract: Heat sinks are widely used in electronic devices with high heat flux. The design and build 

of microstructures on heat sinks has shown effectiveness in improving heat dissipation efficiency. 

In this paper, four kinds of treatment methods were used to make different microstructures on heat 

sink surfaces, and thermal radiation coating also applied onto the heat sink surfaces to improve 

thermal radiation. The surface roughness, thermal emissivity and heat dissipation performance 

with and without thermal radiation coating of the heat sinks were studied. The result shows that 

with an increase of surface roughness, the thermal emissivity can increase up to 2.5 times. With 

thermal radiation coating on a surface with microstructures, the heat dissipation was further 

improved because the heat conduction at the coating and heat sink interface was enhanced. 

Therefore, surface treatment can improve the heat dissipation performance of the heat sink 

significantly by enhancing the thermal convection, radiation and conduction. 

Keywords: heat sinks; surface microstructures; heat dissipation performance; thermal radiation; 

surface roughness 

 

1. Introduction 

With the increasing of the integration density of electronic devices, the high heat flux 

generated inside the devices has become a critical threaten to the reliability of 

performance [1]. Therefore, the question of how to achieve effective heat dissipation is 

always a hot research topic [2]. 

Finned heat sinks, dissipating heat by natural convection or forced convection with 

fans [3], are widely used in cooling electronic devices. In these cooling systems, air is used 

as a coolant because it is easy to obtain and due to the simplicity, high reliability and low 

cost of the required equipment [4]. As the demand for cooling intensity increases, many 

heat sinks with diverse fin structures were reported, including flat-plate fin [5,6], pin fin 

[7,8], interrupted fin [9], slotted fins [10], etc. Many attempts in optimizing the structure 

on heat sinks, for instance, the width, height, distribution and shape of fins [3,5,8,11,12] 

have been made. Another way is to change the material of the heat sink, including the fins 

and substrate [13,14]. Porous medias such as micro tubes [15,16], sintered metal [17,18] 

and metal foam [19,20] are very popular fin materials in research because they have very 
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large convection area. The orientation direction of the heat sink in application [21,22] and 

airflow condition [23,24] were also found to have impact on cooling efficiency. 

With the development of micromachining technology, various microstructures, 

including ribs [25,26], dimpled surfaces [27–29], surface with arrays of protrusions [30] 

and roughened surfaces [7,31] have been applied on heat sinks and have shown promising 

results in enhancing heat dissipation. These microstructures can enhance the convective 

heat transfer significantly without substantial increasing the pressure drop of the airflow. 

The literature mainly focus on the heat convection enhancement due to the surface area 

increase and turbulence flow of the coolant caused by the microstructures, while the 

contribution of the thermal radiation which plays an important role [32] is always ignored. 

On the other hand, the fabrication of these surface microstructures normally relies on 

processes that are quite costly and ineffective, such as welding, embossing [30], milling 

[33], laser sintering [31] and so on. 

In this work, we propose using common and simple surface treatment methods, 

including chemical polishing, chemical coarsening, mechanical shot peening and chemical 

oxidation, to fabricate surface microstructures with controllable roughness on flat-plate 

fin heat sinks. The influence of microstructures and roughness on the thermal emissivity 

and thermal convection of the heat sinks were studied experimentally. A thermal 

radiation coating was also implemented, and the interaction between the roughened 

surfaces and coating were also investigated. 

2. Materials and Methods 

2.1. Heat Sink Sample 

The heat sink samples used in this study were made of 6063 aluminum alloy through 

the extrusion process, as shown in Figure 1a. The structural parameters of the heat sinks 

are shown in Figure 1b, the length of each sample was 70 mm. In addition, the fin surfaces 

had a corrugated structure, which can enhance the heat dissipation. All the heat sink 

samples were cleaned to remove the oil and oxide layer. The samples were first washed 

by an alkaline solution with 50 g/L Na2CO3, 15 g/L Na2CrO4 and 2.5 g/L NaOH at 100 °C 

for 4 min. Then the transformed aluminum oxide layer and the residual alkaline solution 

were washed away by immersion into a nitric acid solution (250 mL/L) for 3–4 s. After 

being washed by water, a clean and uniform surface was obtained that was ready for 

surface treatments. 

 

Figure 1. Heat sink sample used for surface treatment: (a) photo of the untreated heat sink; (b) 

structural parameters of the heat sink (unit: mm). 

2.2. Surface Treatment Methods 

The heat sinks were treated by chemical and mechanical methods to get different 

surface microstructures. The methods including chemical polishing, chemical coarsening, 

chemical oxidation, mechanical shot peening and thermal radiation coating. 
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The chemical polishing used a strong acid polishing fluid 031003 purchased from 

Weihai Runking chemical development institute, Weihai, China. The samples were 

immersed in the polishing fluid with shaking at 100 °C for 90 s. 

The chemical coarsening used a solution with 310 g/L NaOH, 45 g/L Na3PO4 and 20 

g/L NaF, the samples were immersed into the solution at 70 °C for 2 min. Then washed 

away the black aluminum oxide layer by immersing into a weak acid solution until the 

surfaces became clean. 

The chemical oxidation used an alkaline solution with 50 g/L Na2CO3 and 15 g/L 

Na2CrO4, the samples were immersed into the solution at 100 °C for 8 min. Then washed 

away the residual oxide by immersing into a weak acid solution until the surfaces became 

clean. After chemical treatments, all the samples were washed with water and then dried. 

For the mechanical shot peening, a manual air peener was used. The shot with a 

diameter of 0.6 mm was made of 410 stainless steel, ejection speed was about 60 m/s, and 

coverage was 200%. 

The thermal radiation coating was a radiant cooling paint purchased from Beijing 

Ronglihengye Technology Co. Ltd., Beijing, China. The paint was sprayed onto the heat 

sink surfaces by a spray gun linked with compressed air. The thickness of the coating was 

controlled by the number of layers. For each layer, the thickness was about 0.8 μm. During 

spraying, apply the next layer after the previous layer was completely dry until the 

desired coating thickness was reached. 

2.3. Characterization and Measurements 

2.3.1. Heat Sink Surface Roughness and Emissivity Test 

The surface roughness of the samples was measured by a TIME® TR200 hand-held 

roughness meter (Beijing Time High Technology Co. Ltd., Beijing, China). In the 

experiment, nine evenly distributed points were measured on the heat sink surfaces, and 

the mean value and uncertainty were calculated. 

The thermal emissivity of the heat sink surfaces was tested by an IR camera (FLIR-

A20, FLIR Systems Inc., Portland, OR, USA), the experimental setup is shown in Figure 2. 

The IR camera determines the surface temperature of a sample according to the infrared 

radiation received from the measured surface. Even at the same temperature, the 

measured temperature will be different due to the difference in the thermal emissivity of 

the sample surface. In this experiment, a copper block with an embedded cartridge heater 

was used as heat source. The temperature measured by a thermocouple fastened onto the 

sample surface was used as the reference value. The setting of thermal emissivity value 

was changed in the IR camera until the measured temperature was the same as the 

temperature measured by the thermocouple, and this value was the thermal emissivity of 

the sample surface. The size of the samples cut from the heat sink fins was 20 mm × 20 

mm × 3 mm. The measuring distance was 0.3 m and the ambient temperature was 26.5 °C. 

In order to verify the accuracy of thermal emissivity measured by this method, the glass 

surface and silver film with a known thermal emissivity were tested, and the measured 

thermal emissivity of these two surfaces were 0.94 and 0.04 respectively, which were 

consistent with the actual value. Therefore, it was feasible to test the thermal emissivity 

by this method. 
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Figure 2. Heat sink surface thermal emissivity test system with infrared (IR) camera. 

2.3.2. Heat Dissipation Performance Test 

In order to study the effect of surface roughness on heat dissipation performance 

under forced convection, a wind tunnel experiment with a turbulent airflow was carried 

out. The experimental setup is shown in Figure 3. Since a very good forced convection 

will hide the effect of radiation heat dissipation, the heat sinks were set vertical to the air 

velocity vector to compromise the heat convection and radiation. Thus, the influence of 

surface microstructure on thermal radiation can be clearly presented. The wind tunnel 

was made of aluminum alloy, width and length was 120 mm and the height was 500 mm. 

the heat sink samples were place on an air-permeable plate which was 300 mm away from 

the air inlet. A fan was used to generate airflow in wind tunnel. The power of the fan was 

36 W and the wind speed was 15 m/s. 

 

Figure 3. Heat dissipation performance test system with wind tunnel. 

Joule heating was provided to simulate the heat source through a copper block with 

an embedded cartridge heater capable of up to 100 W (the input power was controlled by 

a voltage transformer). The heating surface was pressed against the heat sink’s bottom 
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surface by screws to ensure the effective contact. The heating power used in this study 

was 10, 30, 50, 70 and 90 W. 

Four K-type thermocouples were attached on the bottom surfaces of the heat sinks to 

measure the temperature of them. The four thermocouples were distributed in the four 

corners of the heat sinks with 10 mm distance to the nearest two edges, and distance 

between two neighboring thermocouples was 50 mm, as shown in the zoom-in part of 

Figure 3. The average value of temperatures measured by these four thermocouples was 

identified as the heat sink temperature. Another thermocouple was placed in the wind 

tunnel to measure the air temperature, its position was just above the heat sinks. An 

Agilent data acquisition unit 34,970 A (Agilent Technologies Inc., California, CA, USA) 

was used to collect and transmit all the thermal data of the thermocouples. 

3. Results and Discussion 

3.1. Surface Properities of Heat Sinks with Different Treatments 

3.1.1. Surface Roughness 

The images of heat sinks after different treatments are shown in Figure 4 and the 

measured surface roughness is listed in Table 1. As shown in Figure 4a,f, the heat sink 

surface without treatment is quite smooth. From the SEM image, we can see some parallel 

scratches along the length direction. These were caused by the die during the extrusion 

process. The roughness Ra of untreated surface is 1.24 μm, which is the normal value for 

extruded aluminum alloy. After chemical polishing, the heat sink surface becomes more 

smooth (Figure 4g), the roughness reduced to 0.27 μm. This is because the extrusion 

scratches with higher height were etched by the strong acid, and the surface oxidation 

layer and crystal layer also gradually dissolved, exposing the original surface of the 

aluminum alloy. After chemical coarsening, the surface of the sample shows a frosting 

appearance, the original extrusion scratches on the surface disappeared and the isotropic 

pitting structure appeared (Figure 4h). The structure is uniform and prominent on the 

surface, the roughness increased to 4.6 μm. After mechanical shot peening, the original 

surface was deformed obviously, and the scratches also disappeared. As shown in Figure 

4i, the microstructure is similar to the crushing marks, which showed irregular 

microscopic defects, and the surface roughness increased to 5.63 μm. Figure 4j presents a 

quite rough surface after chemical oxidation, which is covered by dense corrosion pits. 

The size and depth of the pits are not uniform and part of them are overlap with each 

other. This is because the original surface with scratches were not uniform, which lead to 

the difference in reaction speeds at different places, where the roughness increased to 16.5 

μm. 

 

Figure 4. Surfaces of heat sinks with different treatment: photos of heat sinks (a) without 

treatment, (b) chemical polishing, (c) chemical coarsening, (d) mechanical shot peening and (e) 

chemical oxidation; SEM images of heat sinks surfaces (f) without treatment, (g) with chemical 

polishing, (h) chemical coarsening, (i) mechanical shot peening and (j) chemical oxidation. 
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Table 1. Surface roughness of heat sink surfaces with different treatments. 

Roughness Without Treatment 
Chemical 

Polishing 

Chemical 

Coarsening 

Mechanical Shot 

Peening 

Chemical 

Oxidation 

Ra/μm 1.24 ± 0.05 0.27 ± 0.03 4.6 ± 0.1 5.63 ± 0.07 16.5 ± 0.1 

Rz/μm 9.0 ± 0.5 2.3 ± 0.2 27.8 ± 0.6 36.4 ± 0.4 87.8 ± 0.8 

Ry/μm 13.8 ± 0.5 3.8 ± 0.3 37.5 ± 1.3 42.1 ± 0.8 107 ± 2 

3.1.2. Thermal Emissivity 

The thermal emissivity of the surface is not only related to material composition and 

structure, but also related to the surface properties. In this study, we found the thermal 

emissivity by changing its value in the IR camera setting until it fit the tested temperature. 

The IR thermal images of heat sinks with different treatments are shown in Figure 5. The 

square part in the center of the images is the surface of the sample. It contents a dark part 

and a bright part. The bright part is the heat-conducting tape, which was used to fasten 

the thermocouple. Its emissivity is much higher than the sample surfaces, so it shows a 

higher temperature than real since the thermal emissivity value setting in the IR camera 

was lower. The dark part is the sample surface, the surface temperature of all samples is 

40 °C in this test, but the color is quite different with each other. The chemical polished 

surface which has the lowest surface roughness has the darkest color, this indicated that 

the thermal emissivity difference between it and the heat-conducting tape is the largest, 

so it has the lowest thermal emissivity. With the increase of surface roughness, the sample 

surface becomes brighter gradually, so the thermal emissivity also increase. 

 

Figure 5. The IR thermal images of heat sink surfaces with different treatments at 40 °C: (a) without 

surface treatment; (b) chemical polishing; (c) chemical coarsening; (d) mechanical shot peening; (e) 

chemical oxidation; (f) thermal radiation coating. 

The thermal emissivity of heat sinks with different surface treatments at 40 °C is listed 

in Table 2. Except for the thermal radiation coating, other surfaces have the same material, 

but the surface morphology and roughness are different, so the roughness of surface has 

great influence on its thermal emissivity. When the surface roughness increase, the 

thermal emissivity also increase. When the surface roughness is low, the increase in 

thermal emissivity is not so significant, For example, the surface roughness of the sample 

without treatment is about 5 times higher than the chemically polished sample, but the 

thermal emissivity only increased from 0.1 to 0.11. When the surface roughness is high, 

the increase in thermal emissivity is much more significant, the thermal emissivity of 

chemical oxidation surface is about 2.5 times of the untreated surface. 
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Table 2. Thermal emissivity of heat sinks with different surface treatments at 40 °C. 

 
Without 

Treatment 

Chemical 

Polishing 

Chemical 

Coarsening 

Mechanical 

Shot Peening 

Chemical 

Oxidation 

Thermal 

Radiation 

Coating 

Emissivity 0.11 0.1 0.16 0.23 0.25 0.98 

The increase of thermal emissivity with larger surface roughness is because of the 

decrease of light reflection. According to Kirchhoff’s law (emissivity), at a given 

temperature, for a given wavelength, the ratio of specific emissivity to absorption of all 

objects is the same, and is equal to the specific emissivity of the ideal black body at that 

temperature and wavelength. In other words, the higher the absorption rate of the 

material surface, the higher the thermal emissivity. For a smooth and flat surface with 

very low roughness, incident light touches the surface only once, some of the light is 

absorbed and the rest is reflected into the atmosphere directly. At this time, the surface 

has the highest reflectance and lowest absorbance, so it also has the lowest thermal 

emissivity. However, when the surface has rough structure, the incident light is reflected 

on the surface diffusely, and the reflected light may touch the rest of the surface again, so 

the absorption may happen more than once. The opportunity of IR light absorption of the 

surface is increased, the absorption rate is increased, and the emissivity is also increased. 

Therefore, the increase of surface roughness is beneficial to improve the surface thermal 

emissivity. 

After the thermal radiation coating was applied, the surface material of the samples 

were changed to a thermal material with near-blackbody emissivity, so the thermal 

emissivity reached 0.98. In the IR image shows in Figure 5f, the color of the sample with 

coating is even brighter than the heat-conducting tape, because the coating has higher 

emissivity. 

3.2. Heat Dissipation Performance of Heat Sinks with Different Surface Treatments 

The heat dissipation performances of the heat sinks with different surface treatments 

were tested in a wind tunnel. The temperatures of heat sinks under different heating 

power are shown in Figure 6a, all the temperatures were measured after the whole system 

reached thermal equilibrium state. It can be seen that the chemical polished heat sink with 

lowest surface roughness and thermal emissivity has the highest temperature, the 

chemical oxidized heat sink with highest surface roughness and thermal emissivity has 

the lowest temperature. Temperature of the heat sinks decrease with the surface 

roughness increase, the biggest difference is about 5 °C with 90 W heating power. In 

addition, from the fitting curve, it can be seen that the temperature of heat sinks increase 

almost linearly with the heating power, and the increasing slope of different heat sinks 

decrease slightly with the roughness increase, so the heat dissipation performance is better 

with higher surface roughness. 
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Figure 6. Performance of heat sinks with different surface treatment in wind tunnel under different heating power: (a) 

temperature of heat sinks, (b) percentage of radiation heat. 

The heat sinks transfer heat to the space by thermal convection and radiation. For 

thermal convection, it can be calculated by the Newton’s Equation (1): 

( )d c c w fQ A t A t t      (1) 

where, Qd is the convention heat (W), tw is the surface temperature of object (K), tf is the 

temperature of airflow (K), A is the surface area of the object involved in heat transfer (m2), 

Δt is the temperature difference between the surface temperature of object and airflow (K), 

αc is convective heat transfer coefficient (W/m2·K). 

For thermal radiation, it can be calculated by the following Equation (2): 

4 4-r w fQ A t t （ ） (2) 

where, Qr is the radiation heat (W), ε is the thermal emissivity, δ is the Stefan–Boltzmann 

constant, its value is 5.67032 × 10−8 W/(m−2 × K−4). 

From these Equations, we can see that the increase of surface area A and thermal 

emissivity ε will enhancement the heat dissipation. After surface treatments, the increase 

of surface roughness also increase the surface area of the heat sinks, and increase the area 

contact with the air. At the same time, the microstructures on the roughened surfaces will 

cause local air turbulence, more heat can be taken away by the air. Meanwhile, more heat 

radiation to the air because of the thermal emissivity increase with the surface roughness 

increase. With the combined effect of thermal convection and radiation enhancement, 

thermal equilibrium is established at a lower temperature. The percentage of radiation 

heat in the total dissipated heat of heat sinks are shown in Figure 6b. It can be seen that 

the percentage of radiation heat increase with the thermal emissivity and the heating 

power. The biggest percentage is about 11% with 90 W heating power and chemical 

oxidation treatment. This is because the radiation heat is related to the difference of the 

biquadrate of temperature, while convection heat is only related to the difference of 

temperature. At high temperature, the increase of radiation heat will be greater. Therefore, 

thermal radiation is very significant at high temperature. Of course, the percentage of 

radiation heat depends very much on the strength of forced convection. In the natural 

convection situation, the radiation heat dissipation will account for an even larger 

percentage. Therefore, thermal radiation cannot be ignored in the heat dissipation design 

at high temperature, and it is necessary to enhance the thermal radiation by increase 

surface thermal emissivity. In the future work, the influence of thermal radiation on the 

overall performance of the heat sinks with good forced convection and natural convection 

will be studied, and summarize the influence of thermal radiation on the performance of 

heat sink systematically. 
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3.3. Heat Dissipation Performance of Heat Sinks with Thermal Radiation Coating 

Since thermal radiation plays a very important role in heat dissipation, we sprayed a 

layer of radiant cooling paint with near blackbody emissivity onto the heat sink surfaces, 

and studied the influence of different surface roughness. 

We first studied the influence of different coating thickness, including 0.1, 0.15, 0.2 

and 0.25 mm. The temperatures of untreated heat sinks with different coating thickness 

in wind tunnel are shown in Figure 7. Form the result, it can be seen that when the coating 

thickness is 0.1 mm, the temperature of heat sink is about 5 °C lower than the one without 

coating, so the thermal radiation coating can enhance heat dissipation by increase the 

thermal radiation. However, when the thickness of the coating increase, the temperature 

of the heat sinks also increase. When the thickness reached 0.25 mm, the temperature of 

the heat sink is even higher than the one without coating. At the same time, the 

temperature increasing slope of heat sinks with different thickness almost has no 

difference. In this case, the surface roughness of all samples is the same, and the surface 

thermal emissivity is also the same. However, the total thermal radiation is not the same. 

The total thermal radiation including three parts, radiation of coating itself, the reflection 

of external radiation (which is negligible) and the transmitted substrate radiation. When 

the coating thickness increase, the transmitted substrate radiation will decrease, lead to 

total thermal radiation reduce. On the other hand, the coating has a relatively high thermal 

resistance compares to aluminum alloys, when the thickness of the coating increase, the 

total thermal resistance of the heat sink also increase, the temperature drop from heat sink 

surface to coating surface is larger, this is bad for both thermal radiation and convention, 

so the temperature is higher. Therefore, the thickness of the coating should be the 

minimum thickness which can covers the entire surface. 

 

Figure 7. Influence of thermal radiation coating thickness on the temperature of heat sinks. 

In order to study the combined effect of the surface microstructure and thermal 

radiation coating, we coated a 70 μm thick thermal radiation coating onto different treated 

heat sink surfaces. The IR thermal images of these heat sink surfaces at 40 °C are shown 

in Figure 8. It can be seen that they all have the same brightness, and the tested thermal 

emissivity has the same value, which is 0.98. The appearances of the heat sinks with 

coating are also the same, as shown in Figure 8f. The coating was fabricated by spraying, 

so it has a certain surface roughness. Since the coating material itself has a very high 

thermal emissivity, difference in surface roughness will not cause much change. 
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Figure 8. The IR thermal images of heat sink surfaces with thermal radiation coating on different 

treated surfaces: (a) without surface treatment; (b) chemical polishing; (c) chemical coarsening; (d) 

mechanical shot peening; (e) chemical oxidation; (f) photo of heat sink with thermal radiation 

coating. 

The temperatures of different treated heat sinks with thermal radiation coating in 

wind tunnel are shown in Figure 9a. At low heating power, the difference between heat 

sinks is very small. With the heating power increase, the difference also becomes larger. 

At 90 W, the biggest temperature difference reaches about 10 °C. Therefore, surface 

microstructure under the thermal radiation coating has influence on the heat dissipation 

performance of heat sinks. With different surface microstructures, the thermal emissivity 

does not increase, but the contact surface area between the coating and the treated surface 

increase significantly. Therefore, heat can conduct from heat sink to coating more 

efficiently. On the other hand, the coating can partly copy the surface microstructure 

underneath it, so the coating roughness also increase with the treated surface roughness 

increase, result in heat convection enhancement. Since all the heat sinks have very high 

thermal emissivity, the percentage of the radiation heat transfer in the total heat transfer 

can achieve 36% at highest heating power. 

 

Figure 9. Temperatures of heat sinks with thermal radiation coating in wind tunnel: (a) influence of different treated 

surface under the coating; (b) temperature difference of heat sinks with and without coating at different surface roughness 

(heating power 90 W). 

Figure 9b shows the temperature difference of heat sinks with and without coating 

at different surface roughness, the heating power was 90 W. With the roughness increase, 

the temperature difference also increase. For heat sinks with low surface roughness, both 

thermal emissivity and surface roughness increase after coating, but the contact thermal 

resistance between heat sink surface and coating is high. In this case, the temperature 
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decrease is small. For heat sinks with high surface roughness, both thermal emissivity and 

surface roughness have less increase after coating, but the contact surface area between 

the coating and the treated surface increase significantly, so the contact thermal resistance 

decrease. In this case, the temperature decrease is large. This indicated that the increase 

of contact surface area plays the main role in the enhancement of heat dissipation 

performance of heat sinks with coating. Therefore, surface microstructures not only can 

increase surface thermal emissivity and heat convention, but also can enhance the thermal 

conductivity between heat sink and thermal radiation coating dramatically. 

4. Conclusions 

In this work, we studied the effect of different treated surfaces on the heat dissipation 

performance of aluminum alloy heat sinks. Four kinds of treatments, including chemical 

polishing, chemical coarsening, mechanical shot peening and chemical oxidation, were 

used to make controllable microstructures on heat sink surfaces. The results show that the 

thermal emissivity can increase to 2.5 times with surface roughness increase. Benefits from 

the improvement in thermal emissivity and convection induced by roughened surface, 

the temperature of the heat sink can reduce by 5 °C under 90 W heating power. Thermal 

radiation coating also applied onto the heat sink surfaces to improve thermal radiation. 

We found that the heat sinks with higher surface roughness under the coating have 

greater improvement because the heat conduction at the coating and heat sink interface 

was enhanced. In summary, the microstructures can improve the heat dissipation 

performance of heat sinks significantly by enhancing the thermal convection, radiation 

and conduction. In the meantime, the proposed microstructures fabricated by the surface 

treatments on the heat sink surfaces are practicable and easy to implement. 
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